首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of interleukin-4 (IL-4) on IL-6 production by human alveolar macrophages (AM) obtained by bronchoalveolar lavage from healthy donors was examined at the protein and gene levels. IL-6 production was quantitated by enzyme immunoassay (EIA) and bioassay using the IL-6 dependent murine hybridoma cell line MH60.BSF2. Results showed that when activated with LPS, AM released significantly more biologically active IL-6 than blood monocytes. Human rIL-4 significantly suppressed IL-6 production by AM and monocytes stimulated with LPS. Northern blot analysis revealed that IL-4 reduced the expression of IL-6 mRNA in LPS-stimulated AM and monocytes. The inhibitory effect was most pronounced when IL-4 was added with LPS or within the first 4 hr after LPS to AM or monocytes. The suppressive effect of IL-4 was completely neutralized by pretreatment with anti-IL-4 antibody. IL-4 also showed a suppressive effect on IL-6 production by macrophages generated in vitro by maturation of blood monocytes with granulocyte-macrophage colony stimulating factor (GM-CSF). These observations suggest that IL-4 may play a critical role in in situ regulation of immune responses through suppression of IL-6 production.  相似文献   

2.
Murine macrophage monolayers treated with cisplatin, lipopolysaccharide (LPS), muramyl dipeptide (MDP) or recombinant interferon-gamma (rIFN gamma) for 2-48 h showed significant increases in the release of H2O2, O2- and interleukin-1 (IL-1) as compared to untreated macrophages. The treatment of macrophages with different combinations of the above agents did not induce synergistic or additive effects on the production of H2O2, O2- and IL-1. The priming of macrophages with rIFN gamma had a significant effect in the additional increased production of H2O2, O2- and IL-1 when subsequently treated with cisplatin, LPS or MDP.  相似文献   

3.
Nod2 is an intracellular innate immune receptor that plays a role in host defense and susceptibility to inflammatory disease. We show in this study that macrophages rendered refractory to TLR4 and Nod2 signaling by exposure to LPS and muramyl dipeptide (MDP) exhibit impaired TNF-alpha and IL-6 production in response to pathogenic Listeria monocytogenes and Yersinia pseudotuberculosis as well as commensal bacteria including Escherichia coli and Bacteroides fragilis. Surprisingly, Nod2 deficiency was associated with impaired tolerization in response to pathogenic and commensal bacteria. Mechanistically, reduced tolerization of Nod2-null macrophages was mediated by recognition of bacteria through Nod1 because it was abolished in macrophages deficient in Nod1 and Nod2. Consistently, Nod2-null macrophages tolerant to LPS and MDP showed enhanced production of TNF-alpha and IL-6 as well as increased NF-kappaB and MAPK activation in response to the dipeptide KF1B, the Nod1 agonist. Furthermore, reduced tolerization of Nod2-deficient macrophages in response to bacteria was abolished when mutant macrophages were also rendered tolerant to the Nod1 ligand. Finally, MDP stimulation induced refractoriness not only to MDP, but also to iE-DAP stimulation, providing a mechanism to explain the reduced tolerization of Nod2-deficient macrophages infected with bacteria. These results demonstrate that cross-tolerization between Nod1 and Nod2 leads to increase recognition of both pathogenic and commensal bacteria in Nod2-deficient macrophages pre-exposed to microbial ligands.  相似文献   

4.
Lee PT  Holt PG  McWilliam AS 《Cytokine》2001,15(1):53-57
Alveolar macrophages (AM) play a crucial role in host defence by secretion of a large repertoire of biological response modifiers (BRM) following challenge. Newborns manifest increased susceptibility to lung infections, suggesting a deficiency in AM-mediated host defence. Thus, we investigated the ontogeny of BRM production by resting and stimulated AM. We analysed the capacity of rat AM to produce mRNA specific for a range of cytokines including tumour necrosis factor-alpha (TNF-alpha), interleukin (IL)-1beta, IL-6, IL-10, IL-12, IL-18, and the enzyme inducible nitric oxide synthase, in response to in vitro lipopolysaccharide (LPS) challenge. We report that production of nitric oxide by newborn AM under conditions of maximal stimulation was impaired. In addition, expression of IL-10 was only minimally upregulated in AM from newborns in response to LPS compared to adults. Inability to upregulate expression of IL-10 appeared to be influenced by microenvironmental factors, since peritoneal macrophages from newborns responded to LPS with significant upregulation of IL-10. Furthermore, when newborn AM were precultured in vitro, IL-10 responsiveness to LPS was partially restored. In contrast, cytokines such as TNF-alpha, IL-1, IL-6, IL-12 and IL-18 appeared to be expressed at adult levels by newborn AM. These results demonstrate that there may be functional differences in AM of newborns compared to adults, and these may be specific to the tissue compartment.  相似文献   

5.
Production of tumor necrosis factor (TNF) and interleukin-1 (IL-1) by macrophages of the spleen and peritoneal exudate of mice as well as cytotoxic factors (CFs) by murine splenocytes after in vitro activation was estimated. All the derivatives of muramyldipeptide (MDP) and glucosaminylmuramyldipeptide (GMDP) were able to induce production of TNF and CFs. In the presence of lipopolysaccharide (LPS), the effect was always higher. The response of the spleen macrophages to the effect of the preparations was higher than that of the peritoneal ones and ++non-fractionated splenocytes. GMDP and GMDP4 especially in the presence of LPS had the highest effect on induction of IL-1 by the murine peritoneal macrophages. On the contrary, MDP induced higher IL-1 synthesis by the spleen macrophages. The most active substances with respect to production of TNF, CFs and IL-1, i.e. MDP3 and GMDP4, might be recommended for immunotherapy of syngeneic tumors in animals.  相似文献   

6.
The action of some new MDP derivatives on functional activity of murine T-lymphocytes and macrophages was studied. The following tests have been used: proliferation of spleen cells in one-way allo-MLC; IL-1 and TNF production by peritoneal macrophages treated with the preparations. The most expressed enhancement of lymphocyte proliferative response in MLC has been exerted by beta C7H15 MDP and beta C16H33 MDP (stimulation indexes 31-69%). beta C7H15 MDP, beta C16H33 MDP and polyacrylamide-MDP (P-MDP) alone or in combination with LPS caused elevated secretion of IL-1 by macrophages. While beta C7H15 MDP was as active as MDP, beta C16H33 MDP and P-MDP manifested increased ability to stimulate IL-1 production in comparison with MDP. beta C7H15 MDP, beta C16H33 MDP, P-MDP and MDP induced similar level of TNF production by murine macrophages. However, simultaneous treatment of macrophages with beta C16H33 MDP and LPS resulted in more significant enhancement of TNF production than combination LPS + MDP.  相似文献   

7.
8.
Bacterial colonization is a secondary feature of many lung disorders associated with elevated cytokine levels and increased leukocyte recruitment. We hypothesized that, alongside macrophages, the epithelium would be an important source of these mediators. We investigated the effect of LPS (0, 10, 100, and 1000 ng/ml LPS, up to 24 h) on primary human lung macrophages and alveolar type II epithelial cells (ATII; isolated from resected lung tissue). Although macrophages produced higher levels of the cytokines TNF-alpha and IL-1beta (p < 0.0001), ATII cells produced higher levels of chemokines MCP-1, IL-8, and growth-related oncogene alpha (p < 0.001), in a time- and concentration-dependent manner. Macrophage (but not ATII cell) responses to LPS required activation of ERK1/2 and p38 MAPK signaling cascades; phosphorylated ERK1/2 was constitutively up-regulated in ATII cells. Blocking Abs to TNF-alpha and IL-1beta during LPS exposure showed that ATII cell (not macrophage) MCP-1 release depended on the autocrine effects of IL-1beta and TNF-alpha (p < 0.003, 24 h). ATII cell release of IL-6 depended on autocrine effects of TNF-alpha (p < 0.006, 24 h). Macrophage IL-6 release was most effectively inhibited when both TNF-alpha and IL-1beta were blocked (p < 0.03, 24 h). Conditioned media from ATII cells stimulated more leukocyte migration in vitro than conditioned media from macrophages (p < 0.0002). These results show differential activation of cytokine and chemokine release by ATII cells and macrophages following LPS exposure. Activated alveolar epithelium is an important source of chemokines that orchestrate leukocyte migration to the peripheral lung; early release of TNF-alpha and IL-1beta by stimulated macrophages may contribute to alveolar epithelial cell activation and chemokine production.  相似文献   

9.
The effect of muramyldipeptide (MDP), glucosaminylmuramyldipeptide (GMDP) and their six synthetic derivatives on production of tumor necrosis factor (TNF), interleukin-1 (IL-1) and interleukin-2 (IL-2) by murine spleen cells in vitro was studied. MDP induced insignificant TNF production and did not stimulate production of IL-1 by the murine splenocytes within a 24-hour cultivation period whereas in combination with lipopolysaccharide (LPS) it induced significant production of both the cytokins. GMDP induced marked production of TNF (54 per cent cytotoxic index) and IL-1 (stimulation index 8). Addition of LPS in an amount of 10 ng/ml increased production of TNF by the murine splenocytes under the effect of GMDP but had no effect on production of IL-1. Neither MDP nor GMDP even in combination with LPS induced production of IL-2 by splenocytes of mice DVA/2 and C57B1/6 at activation for 24 hours. All the synthetic derivatives of MDP and GMDP except the MDP polymer activated TNF production by the murine spleen cells. GMDP lysine had the highest effect: 67 per cent cytotoxic index. In combination with LPS its cytotoxic index amounted to 87 per cent. The TNF activity was always higher when LPS in an amount of 10 ng/ml was added to the glycopeptides.  相似文献   

10.
Lang CJ  Barnett EK  Doyle IR 《Cytokine》2006,33(6):346-351
Ventilatory-induced strain can exacerbate acute lung injury (ALI). Current ventilation strategies favour low tidal volumes and high end-expiratory volumes to 'rest' the lung, but can lead to an increase in CO2. Alveolar macrophages (AM) play a pivotal role in ALI through the release of inflammatory mediators. The effect of physical strain and CO2 on the release of pro-inflammatory mediators was examined in isolated rat AM. AM were cultured on IgG-coated silastic membranes with or without lipopolysaccharide (LPS) and 5% or 20% CO2 and subjected to a repetitive sinusoidal mechanical strain (30%, 60 cycles/min) for 4 h. Cell viability and metabolic activity were assessed. In both the presence and absence of LPS, physical strain increased metabolic activity by approximately 5%, while 20% CO2 decreased metabolic activity by approximately 40%. Twenty per cent CO2 decreased TNF-alpha secretion by approximately 45%, without affecting cell viability. Physical strain enhanced LPS-induced secretion of TNF-alpha by 1.5%, but not IL-6 or CINC-1. Hence, the effects of both CO2 and physical strain are mediated independently through changes in AM metabolic activity. Physical strain is not a major determinant of TNF-alpha, IL-6 or CINC-1 in AM. Our results confirm that high CO2 can lessen the TNF-alpha inflammatory response of AM.  相似文献   

11.
Alveolar macrophages express many proteins important in iron homeostasis, including the iron importer divalent metal transport 1 (DMT1) and the iron exporter ferroportin 1 (FPN1) that likely participate in lung defense. We found the iron regulatory hormone hepcidin (HAMP) is also produced by alveolar macrophages. In mouse alveolar macrophages, HAMP mRNA was detected at a low level when not stimulated but at a high level when exposed to lipopolysaccharide (LPS). LPS also affected the mRNA levels of the iron transporters, with DMT1 being upregulated and FPN1 downregulated. However, iron had no effect on HAMP expression but was able to upregulate both DMT1 and FPN1 in alveolar macrophages. IL-1 and IL-6, which are important in HAMP augmentation in hepatocytes, also did not affect HAMP expression in alveolar macrophages. In fact, the LPS-induced alterations in the expression of HAMP as well as DMT1 and FPN1 were preserved in the alveolar macrophages isolated from IL-1 receptor or IL-6-deficient mice. When alveolar macrophages were loaded with transferrin-bound (55)Fe, the subsequent release of (55)Fe was inhibited significantly by LPS. In addition, treatment of these cells with either LPS or HAMP caused the diminishment of the surface FPN1. These findings are consistent with the current model that HAMP production leads to a decreased iron efflux. Our studies suggest that iron mobilization by alveolar macrophages can be affected by iron and LPS via several pathways, including HAMP-mediated degradation of FPN1, and that these cells may use unique regulatory mechanisms to cope with iron imbalance in the lung.  相似文献   

12.
Muramyl dipeptide-elicited production of PGD2 from astrocytes in culture   总被引:1,自引:0,他引:1  
We used primary cultures of rat brain astroglial cells in order to investigate the interrelationship between PGD2 and other sleep-promoting substances such as muramyl dipeptide (MDP), lipopolysaccharide (LPS), delta-sleep-inducing peptide (DSIP), uridine, and interleukin 1 (IL-1). A large amount of PGD2 was released into the culture medium by stimulation with MDP, LPS, and IL-1 but DSIP and uridine failed to stimulate such release. These results suggest that PGD2 may be part of the series of biochemical steps involved in induction of sleep by MDP, LPS, and IL-1.  相似文献   

13.
In this study we investigated the effect of acute-phase levels of C-reactive protein (CRP) on cytokine production by pulmonary macrophages in the presence or absence of pulmonary surfactant. Both human alveolar and interstitial macrophages as well as human surfactant were obtained from multiple organ donor lungs. Precultured macrophages were stimulated with LPS alone or together with IFN-gamma in the presence or absence of CRP, surfactant, and combinations. Releases of TNF-alpha and of IL-1beta to the medium were determined. We found that CRP could modulate lung inflammation in humans by decreasing the production of proinflammatory cytokines by both alveolar and interstitial macrophages stimulated with LPS alone or together with IFN-gamma. The potential interaction between CRP and surfactant phospholipids did not overcome the effect of either CRP or surfactant on TNF-alpha and IL-1beta release by lung macrophages. On the contrary, CRP and pulmonary surfactant together had a greater inhibitory effect than either alone on the release of proinflammatory cytokines by lung macrophages.  相似文献   

14.
Alveolar macrophages (AM) play an important role in the pathogenesis of posttraumatic pulmonary failure, and have been identified as major source of pulmonary cytokines. The effects of locally generated IL-6 as well as femoral fracture on the pulmonary inflammatory response and organ damage have not been fully elucidated. In the present study we evaluated the influence of femoral fracture, isolated or in combination with hemorrhage, on the immune function of AM and remote lung injury, and investigated the role of pulmonary IL-6 within this setting. 18 wild type (WT) and 18 IL-6 knockout mice (IL-6(-/-)) underwent standardized femoral fracture, isolated or in combination with volume-controlled hemorrhage, followed by fluid resuscitation and splint fixation of the fracture. Animals were sacrificed 4h after induction of fracture and hemorrhage. Animals were randomly assigned to three study groups (each consisting of six animals). Besides sham groups, experimental groups included animals with isolated femoral fracture or in combination with hemorrhagic shock. Cytokine release of AM was determined by flow cytometry. Pulmonary damage in terms of interstitial thickening and lung neutrophil infiltration was assessed by histology and immunohistology. The productive capacity of AM for pro-inflammatory cytokines was increased after isolated femoral fracture in WT and IL-6(-/-) mice. An additional hemorrhagic insult resulted in a further enhancement of pro-inflammatory cytokine release and an increased MCP-1 secretion in WT and IL-6(-/-) animals. MCP-1 and pro-inflammatory cytokine production of AM was attenuated in IL-6(-/-) mice compared to the respective WT groups. Interstitial thickening and lung neutrophil infiltration was only observed after femoral fracture combined with hemorrhagic shock with an attenuation of the pulmonary organ damage in IL-6(-/-) compared to WT animals. These results support the role of IL-6 as a therapeutic target for posttraumatic immune modulation. With an increased pro-inflammatory mediator release, already an isolated femoral fracture seems to influence the immune response of AM.  相似文献   

15.
16.
Fibroblasts (Fb) from patients with sarcoidosis (SA) and hypersensitivity pneumonitis (HP) exhibited a lower proliferative capacity compared with Fb obtained from control (CO) and diffuse interstitial fibrosis patients (DIF). Proliferation of Fb from SA or lip patients was suppressed by autologous LPS-stimulated alveolar macrophages (AM) supernatants but not by those from CO patients. Similarly, alveolar macrophages (AM) derived supernatant, obtained from CO, did not suppress the proliferation of SA and HP Fb. AM from SA and HP patients secreted higher amounts of IL-1alpha and beta compared with controls and compared with Fb from SA and HP patients. Steady levels of IL-1alpha and betamRNA were expressed in unstimulated and stimulated cultures. Fb from SA and HP patients could be stimulated by LPS to secrete significantly higher levels of PGE(2) than those detected in supernatants from LPS stimulated Fb of DIF patients. Only the proliferation of Fb from SA and HP patients was sensitive to amounts of IL-1 equivalent to those detected in the lung of these diseases. As SA and HP are two diseases where irreversible deterioration occurs in only 20% of the patients, we hypothesize that mediators in the lung may modulate Fb proliferation. IL-1 of AM origin and PGE(2) of Fb origin secreted at high levels, may be candidates for this suppression because it was abrogated by anti IL-1beta and indomethacin.  相似文献   

17.
Many acute and chronic lung diseases are characterized by the presence of increased numbers of activated macrophages. These macrophages are derived predominantly from newly recruited peripheral blood monocytes and may play a role in the amplification and perpetuation of an initial lung insult. The process of inflammatory cell recruitment is poorly understood, although the expression of inflammatory cell-specific chemoattractants and subsequent generation of chemotactic gradients is likely involved. Although immune cells such as macrophages and lymphocytes are known to generate several inflammatory cell chemoattractants, parenchymal cells can also synthesize and secrete a number of bioactive factors. We now demonstrate the generation of significant monocyte chemotactic activity from tumor necrosis factor (TNF)-alpha and interleukin (IL)-1 beta-treated pulmonary type II-like epithelial cells (A549). The predominant inducible monocyte chemotaxin had an estimated molecular mass of approximately 14-15 kDa and was neutralized by specific antibody to human monocyte chemotactic protein-1 (MCP-1). Induction of activity was accompanied by increases in steady-state mRNA level for MCP-1. These data are consistent with the induction of MCP-1 expression from A549 cells by TNF and IL-1. MCP-1 production from A549 cells could be induced by lipopolysaccharide (LPS)-stimulated alveolar macrophage (AM)-conditioned media, but not by LPS alone. The inducing activity in AM-conditioned media was neutralized with specific antibodies to IL-1 beta, but not TNF-alpha. Our findings suggest that the alveolar epithelium can participate in inflammatory cell recruitment via the production of MCP-1 and that cytokine networking between contiguous alveolar macrophages and the pulmonary epithelium may be essential for parenchymal cell MCP-1 expression.  相似文献   

18.
DNA containing unmethylated CpG motifs is intrinsically immunostimulatory, inducing the production of a variety of cytokines and chemokines by immune cells. The strong Th1 response triggered by CpG oligodeoxynucleotide (ODN) inhibits the development of Th2-mediated allergic asthma in mice. This work documents that CpG ODN-induced IL-12 production plays a critical role in this process, because intrapulmonary CpG ODN inhibits allergic inflammation in wild-type but not IL-12(-/-) mice. CpG ODN rapidly localized to alveolar macrophages (AM), thereby triggering the phosphorylation of p38 mitogen-activated protein kinase (MAP kinase). AM cultured with CpG but not control ODN up-regulated IL-12 p40 expression and release, and these effects were blocked by the highly specific p38 MAP kinase inhibitor SB202190. Intrapulmonary administration of this inhibitor blocked the ability of CpG ODN to produce IL-12 in the lungs and reversed the anti-inflammatory effects of CpG ODN on allergic lung inflammation. These findings indicate that IL-12 production by AM is stimulated by intrapulmonary CpG ODN administration through a p38 MAP kinase-dependent process, and IL-12 is a key cytokine that mediates CpG ODN-induced protection against allergic lung inflammation.  相似文献   

19.
The biologic activities of helper T cell-replacing factors derived from concanavalin A-stimulated murine T cells (TRF-T) and from lipopolysaccharide-activated macrophages (TFR-M) have been compared. TRF-T stimulates immune responses to heterologous erythrocyte antigens (SRBC and BRBC) in T cell-depleted spleen cultures but not in macrophage-depleted spleen cultures. TRF-M stimulates immune responses in both T cell-depleted and macrophage-depleted spleen cultures. Under conditions where LPS stimulates the release of TRF-M from cultures of activated macrophages, TRF-t has no effect on TFR-M production. Thus. TRF-T does not appear to function by stimulating the release of TRF-M from macrophages. In macrophage-depleted spleen cultures, saturating concentrations of TRF-T and TRF-M when mixed together exhibit striking synergistic effects on the induction of immune responses to erythrocyte antigens. The kinetics of the synergistic effects of TRF-M and TRF-T are consistent with an effect of TRF-M on the production of TRF-T sensitive B cells.  相似文献   

20.
The mechanism of chronic lung inflammation leading to lung fibrosis is unknown and does not have a characteristic inflammatory macrophage phenotype. This study was undertaken to determine whether a change in macrophage phenotype could account for chronic lung inflammation. In this study, human alveolar macrophages (AM) from subjects with systemic sclerosis (SSc) were obtained from bronchoalveolar lavage (BAL) and characterized on the basis of function (response to LPS), phenotype, and relative cell-surface B7 expression. AM from the subjects' disease-involved and noninvolved lung lobes were compared with each other and to AM from normal volunteer BAL. AM from involved SSc lobes produced significantly more interleukin (IL)-1beta and PGE(2) than AM from uninvolved lobes in response to LPS, but there was no spontaneous production of either mediator. The activator AM phenotype designated by RFD1+ surface epitope was significantly elevated in SSc BAL samples compared with normal BAL, although there were no differences comparing involved vs. noninvolved lobes within SSc subjects. The major histocompatibility complex II costimulatory molecule B7.2 was also significantly elevated in SSc AM compared with normal AM, again with no differences between involved and noninvolved lobes. In an attempt to determine environmental influences on AM phenotypes, normal AM were cultured in vitro with IFN-gamma, IL-3, IL-4, IL-10, IL-12, or dexamethasone for 6 days. Of the cytokines examined, only IL-4 induced significant increases in both the activator phenotype RFD1+ and B7.2 expression. Taken together, these results indicate that IL-4 could account for proinflammatory AM phenotype changes and B7 surface-marker shifts, as seen in subjects with SSc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号