首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
2.
A fundamental yet poorly understood aspect of gene regulation in eukaryotic organisms is the mechanisms that control allelic exclusion and mutually exclusive gene expression. In the malaria parasite Plasmodium falciparum, this process regulates expression of the var gene family--a large, hypervariable repertoire of genes that are responsible for the ability of the parasite to evade the host immune system and for pathogenesis of the disease. A central problem in understanding this process concerns the mechanisms that limit expression to a single gene at a time. Here, we describe results that provide information on the mechanisms that control silencing and single gene expression and differentiate between several models that have recently been proposed. The results provide the first evidence, to our knowledge, supporting the existence of a postulated var-specific, subnuclear expression site and also reinforce the conclusion that var gene regulation is based on cooperative interactions between the two promoters of each var gene.  相似文献   

3.
Trypanosome variant surface glycoprotein genes expressed early in infection   总被引:11,自引:0,他引:11  
We have studied further the genes for trypanosomal variant surface glycoproteins expressed during a chronic infection of rabbits with Trypanosoma brucei, strain 427. We show that there are three closely related chromosomal-internal isogenes for VSG 121; expression of one of these genes is accompanied by the duplicate transposition of the gene to a telomeric expression site, also used by other chromosome-internal VSG genes. The 3' end of the 121 gene is replaced during transposition with another sequence, also found in the VSG mRNAs of two other variants. We infer that an incoming VSG gene duplicate recombines with the resident gene in the expression site and may exchange ends in this process. The extra expression-linked copy of the 121 gene is lost when another gene enters the expression site. However, when the telomeric VSG gene 221 is activated without duplication the extra 121 gene copy is inactivated without detectable alterations in or around the gene. We have also analysed the VSG genes expressed very early when trypanosomes are introduced into rats or tissue culture. The five genes identified in 24 independent switching events were all found to be telomeric genes and we calculate that the telomeric 1.8 gene has a 50% chance of being activated in this trypanosome strain when the trypanosome switches the VSG that is synthesized. We argue that the preferential expression of telomeric VSG genes is due to two factors: first, some telomeric genes reside in an inactive expression site, that can be reactivated; second, telomeric genes can enter an active expression site by a duplicative telomere conversion and this process occurs more frequently than the duplicative transposition of chromosome-internal genes to an expression site.  相似文献   

4.
5.
Metabolic sensors related to the maturation of metabolism seem to control a process of generic adaptation involving the silencing of genes and the expression of their copies more adapted to environmental changes. Nuclear methylases and histone deacetylases control the gene silencing process. Nuclear methylases compete with cytosolic methylases for the same methyl donnors, this will favor the expression of unmethylated more adapted gene copies, when cytosotic methylases take over. Methylated cytosolic compounds may then represent an index of this adaptation. If a more adapted gene copy is mutated, the regulatory ligand of the gene product that does not find its target may induce a reexpression of the silenced gene. The hypothetical model proposed considers that gene silencing and expression of a more adequate copy involves a nonspecific gene silencer switch that depends on the histone status; the silencer switch is counteracted by the ligand of the adapted gene copy product acting like an inducer.  相似文献   

6.
多倍体植物中基因表达模式的变化   总被引:2,自引:0,他引:2  
植物杂交和多倍化能导致基因组结构发生变化,并显著影响了基因表达,因此认为杂交和多倍化是促进植物进化的一个重要力量。近些年大量的研究表明植物多倍化后基因表达模式发生了复杂的改变,包括基因沉默、基因表达的基因组偏向性及组织特异性、基因激活等现象,本文对这些现象及其特点和机制进行了综述。  相似文献   

7.
B. Rogina  S. L. Helfand 《Genetics》1995,141(3):1043-1048
Examination of gene expression and aging in adult Drosophila reveals that the expression of some genes is regulated by age-dependent mechanisms. Genetic mutations, Hyperkinetic(1) and Shaker(5), which are known to shorten life span through an acceleration of the aging process, were used to study the expression of an enhancer trap marked gene. The temporal pattern of expression for such a marked gene shows scaling with respect to life span; it is altered in direct proportion to the life expectancy of the adult animal. This demonstrates that expression of this gene is controlled through mechanisms coupled to physiologic as opposed to chronologic age. Results provide direct evidence for linkage between the regulation of gene expression and life span and establish a model system for the genetic analysis of aging.  相似文献   

8.
9.
10.
A unified theory of gene expression   总被引:43,自引:0,他引:43  
Orphanides G  Reinberg D 《Cell》2002,108(4):439-451
The human genome has been called "the blueprint for life." This master plan is realized through the process of gene expression. Recent progress has revealed that many of the steps in the pathway from gene sequence to active protein are connected, suggesting a unified theory of gene expression.  相似文献   

11.
12.
氮源受限条件下植物病原真菌氮调控基因表达特性   总被引:1,自引:0,他引:1  
Zhou XG  Yao CX  Ding YM  Tao N  Sun ML  Zhang SS 《遗传》2012,34(7):848-856
研究证实植物病害的发生往往是由于植物病原真菌分泌的效应子诱导引起的,在此过程中,调控效应基因表达能够了解病原菌的侵染过程。细胞的营养状况据推测对于效应基因的表达起着重要的作用。已有研究表明在氮胁迫条件下相同效应基因的诱导作用在植株体内和体外是一致的,表明氮源缺乏的环境在植物体进化的早期就已经存在了。文章阐述了在氮受限条件下真菌致病系统中效应基因调控机制及其已经发现的氮调节基因特异性表达研究结果,通过对比几个病原菌中氮调控基因的功能,比较寄主植物体内和体外在氮限制条件下基因的诱导效应,从而揭示出氮的有效性在寄主植物病害发展过程中起到重要作用。  相似文献   

13.
14.
Eukaryotic gene expression is a complex, multistep process that needs to be executed with high fidelity and two general methods help achieve the overall accuracy of this process. Maximizing accuracy in each step in gene expression increases the fraction of correct mRNAs made. Fidelity is further improved by mRNA surveillance mechanisms that degrade incorrect or aberrant mRNAs that are made when a step is not perfectly executed. Here, we review how cytoplasmic mRNA surveillance mechanisms selectively recognize and degrade a surprisingly wide variety of aberrant mRNAs that are exported from the nucleus into the cytoplasm.  相似文献   

15.
RNA silencing: small RNAs as ubiquitous regulators of gene expression   总被引:14,自引:0,他引:14  
'RNA silencing' is the suppression of gene expression through nucleotide sequence-specific interactions that are mediated by RNA. Initially identified as an immune system that is targeted against transposons and viruses, RNA silencing is emerging as a fundamental regulatory process that is likely to affect many layers of endogenous gene expression in most, if not all, eukaryotes.  相似文献   

16.
17.
The finite proliferative potential of normal human fibroblasts can be overcome, a process commonly called immortalization, by the introduction of the catalytic subunit of human telomerase. In contrast to malignant transformation, the pattern of gene expression remains largely unmodified in telomerase-induced immortalization. Here we show evidence that suggests that the maintenance of a "young" pattern of gene expression by telomerization is mediated, at least in part, by a novel function of human telomerase that involves regulation of DNA methyltransferase I gene expression.  相似文献   

18.
刘齐  王燕  陈岩  张凤伟  谷甜甜  曲有鹏  岳磊  吴琼 《遗传》2009,31(7):732-740
生长因子受体结合蛋白10(Growth factor receptor-bound protein 10, Grb10)是一个存在于小鼠11号染色体和人7号染色体的母本表达的印记基因。文章利用原位杂交技术和定量RT-PCR方法对不同发育阶段的小鼠胚胎Grb10 基因进行时空表达谱的分析, 以确定该基因在胚胎发育中其表达与组织发育的关系。定量RT-PCR数据结果表明, Grb10在E8.5-E13.5 (Embryonic days 8.5-13.5), 表达水平逐渐增高, 在E13.5达到高峰, 后期表达量回落。在胚胎发育的中后期脑、心、肺组织的表达水平呈递减趋势。肝脏组织中Grb10表达水平较为恒定, 在E18.5出现高峰。原位杂交数据验证了定量RT-PCR的结果, 并且说明了Grb10在其他如骨、肾和肌肉等组织器官的高表达水平。研究结果表明Grb10基因是小鼠胚期发育的一个重要的基因。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号