首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
The cDNA encoding adenovirus E1A enhancer-binding protein E1A-F was isolated by screening a HeLa cell lambda gt11 expression library for E1A-F site-specific DNA binding. One cDNA clone produced recombinant E1A-F protein with the same DNA binding specificity as that endogenous to HeLa cells. Sequence analysis of the cDNA showed homology with the ETS-domain, a region required for sequence-specific DNA binding and common to all ets oncogene members. Analysis of the longest cDNA revealed about a 94% identity in amino acids between human E1A-F and mouse PEA3 (polyomavirus enhancer activator 3), a recently characterized ets oncogene member. E1A-F was encoded by a 2.5kb mRNA in HeLa cells, which was found to increase during the early period of adenovirus infection. In contrast, ets-2 mRNA was significantly reduced in infected HeLa cells. The results indicate that E1A enhancer binding protein E1A-F is a member of the ets oncogene family and is probably a human homologue of mouse PEA3.  相似文献   

4.
To distinguish the individual roles of the 13S, 12S, and 9S adenovirus E1A gene products, we isolated the corresponding cDNA clones and recombined them into both plasmids and viruses. Only the expected E1A mRNA products were made from the corresponding 12S and 13S viruses. The 9S mRNA was detected when the 9S virus was coinfected with the 13S virus but not when either virus was infected alone. The 13S virus formed plaques equally well in 293 cells, HeLa cells, and A549 cells, a human lung oat cell carcinoma line. Plaque titers of the 12S virus were much reduced in HeLa and A549 cells compared with 293 cells, although the 12S virus is multiplicity-dependent leaky in both HeLa and A549 cells. A549 cells were significantly more permissive than HeLa cells for growth of the 12S virus. In A549 cells even at low multiplicities of infection the final yield of 12S virus eventually approached the maximum yield from 293 cells. Expression from the adenovirus early region 2 and early region 3 promoters in HeLa cells was activated in the presence of a 13S cDNA E1A region but not in the presence of a 12S E1A cDNA region. Although defective for lytic growth in HeLa cells, the 12S virus immortalized BRK cells at very high efficiency, whereas infection of these cells with 13S virus, as with wild-type E1A virus, resulted mainly in cell death. The 13S product does have an immortalization function, however, revealed in the absence of adenovirus lytic functions when a plasmid containing the E1A 13S cDNA region was transfected into BRK cells. The 9S virus failed to immortalize infected BRK cells or to interfere with focus formation when coinfected with the 12S virus.  相似文献   

5.
6.
D Ross  E Ziff 《Journal of virology》1992,66(5):3110-3117
Human adenovirus 2 grows poorly in monkey cells, partly because of defects in late gene expression. Since deletions in early region 4 (E4) cause similar defects in late gene expression, we examined E4 mRNA expression in abortive infections. Processing of E4 mRNAs was defective during abortive infections, most likely at the level of splicing. At early times in productive infections in HeLa cells, the major E4 species produced is a 2-kb mRNA; at late times, a shift occurs so that smaller spliced E4 mRNAs are also produced. In CV-1 cells, a nonpermissive monkey cell line, this shift did not take place and only the 2-kb species was produced at late times, suggesting a defect in E4 mRNA splicing during abortive infections. The adenovirus DNA-binding protein (DBP) was required for normal processing of E4 mRNAs, since a host range mutant (hr602) containing an altered DBP gene showed a normal late E4 mRNA pattern in CV-1 cells; in addition, DBP was required during infections in HeLa cells for late E4 mRNA expression. DBP was not required for production of the late E4 pattern in transient expression assays in HeLa or 293 cells, suggesting that a second factor in addition to the DBP, present during infection but not transfection, modulates E4 mRNA processing.  相似文献   

7.
8.
9.
Adenovirus type 5 (Ad5) host range mutants dl312 and hr-1, with lesions in region E1A (0 to 4.5 map units) of the viral genome, fail to accumulate virus-specific early RNA during infection in HeLa cells. In a recent report, we showed that the addition of anisomycin, a stringent inhibitor of protein synthesis, at 1 h after infection of HeLa cells with hr-1 virus resulted in the accumulation of properly spliced and translatable mRNA from all early regions (M. G. Katze, H. Persson, and L. Philipson, Mol. Cell. Biol. 1:807-813, 1981). Based on these results we proposed a model in which expression of early mutant RNA was achieved through inactivation of a cellular protein normally causing a reduction in the amount of viral RNA. These studies have been extended in the present report, which shows that early viral proteins can be detected in Ad5 dl312- and Ad5 hr-1-infected HeLa cells which have been treated for several hours with anisomycin either shortly after infection or before infection. A pulse of drug treatment also resulted in expression of substantial amounts of adenovirus structural proteins after infection with both Ad5 hr-1 and Ad5 dl312, whereas in drug-free controls no late proteins were detected. The Ad5 hr-1 virus previously reported to be DNA replication negative in nonpermissive HeLa cells was found to replicate its DNA, albeit at low levels, when anisomycin was present either from 1 to 5 h postinfection or for 5 h before infection. When infectious virus production was examined in mutant-infected cells the titer of Ad5 dl312 virus was found to increase at least 500-fold in anisomycin-treated HeLa cells. Taken together, these and our previous results suggest that the block in gene expression characteristic for complementation group I Ad5 host range mutants in HeLa cells can be overcome by inactivating cellular gene products serving as negative regulators of viral gene expression.  相似文献   

10.
Joseph R. Nevins 《Cell》1982,29(3):913-919
We have attempted to determine whether any cellular genes are activated as a result of the action of the adenoviral El A gene. The proteins synthesized in uninfected HeLa cells have been compared to those produced in early adenovirus infected cells. At least one protein, absent from uninfected HeLa cells, was synthesized in large amounts following adenovirus infection. This 70 kd protein was not synthesized in cells infected with the E1A mutant d1312, even when the multiplicity of infection with the mutant was such that the only viral gene not expressed was the E1A gene. Thus the induction of the 70 kd protein requires the expression of the viral E1A gene. The 70 kd protein was also induced by heat shock in uninfected cells. The same 70 kd protein is synthesized in 293 cells, a line of human embryonic kidney cells transformed by a fragment of adenovirus DNA. These cells constitutively express the E1A and E1 B genes.  相似文献   

11.
12.
13.
14.
Rapid intracellular turnover of adenovirus 5 early region 1A proteins   总被引:20,自引:7,他引:13       下载免费PDF全文
The half-life of the adenovirus 5 early region 1A (E1A) proteins was examined in productively infected and transformed cells. In HeLa cells infected with adenovirus 5, the half-life of the E1A proteins was approximately 30 min; in the transformed 293 cells, the constitutively expressed E1A proteins had a half-life of approximately 120 min. In HeLa cells, the E1A proteins produced by an adenovirus mutant that expresses only the 13S mRNA had a half-life of about 35 min; E1A proteins produced by a mutant that express only the 12S mRNA had a half-life of about 80 min. This difference in the stability of these two classes of E1A proteins helps explain why the steady-state level of the 12S class is usually equal to or greater than that of the 13S class, despite the fact that the concentration of the 13S mRNA is about four times greater than the concentration of the 12S mRNA.  相似文献   

15.
A J Berk  F Lee  T Harrison  J Williams  P A Sharp 《Cell》1979,17(4):935-944
The studies described here demonstrate that the expression of many early adenovirus mRNAs is dependent upon the activity of a pre-early viral product. This viral gene product is defective in adenovirus 5 host range (Ad hr) group I mutants. Adenovirus 5 host range mutants were previously isolated by their ability to replicate in the adenovirus 5-transformed human embryonic cell line 293 and by their inability to replicate efficiently in HeLa cells (Harrison, Graham and Williams, 1977). The group I complementation class of host range mutants has been mapped by marker rescue between 0 and 4.4 units (Frost and Williams, 1978). We have used the S1 nuclease gel technique to examine the expression of early mRNA after infection of HeLa cells with Ad5 hr group I and II mutants. The Ad5 hr group II mutants stimulate the synthesis of a wild-type pattern of early mRNAs. In contrast, infection of HeLa cells with Ad5 hr group I mutants gives rise to only two early mRNAs. These mRNAs map from 1.5–4.4 units, or in the same region as the Ad5 hr group I mutations. Since infection of HeLa cells with Ad5 hr group I mutants was defective for synthesis of cytoplasmic mRNAs complementary to three early regions in the right half of the genome and to the early region 4.5–11.0 units, we also analyzed nuclear RNA from these cells by the S1 nuclease gel technique for the presence of precursor RNA chains. Nuclear precursors were not detected in Ad5 hr group I-infected HeLa cells, suggesting that the gene product defective in these mutants is required for synthesis of stable nuclear RNA from the three early regions in the right half of the genome and from the early region 4.5–11.0 units.  相似文献   

16.
A genetic system is described which allows the isolation and propagation of adenovirus mutants containing lesions in early region 2A (E2A), the gene encoding the multifunctional adenovirus DNA-binding protein (DBP). A cloned E2A gene was first mutagenized in vitro and then was introduced into the viral genome by in vivo recombination. The E2A mutants were propagated by growth in human cell lines which express an integrated copy of the DBP gene under the control of a dexamethasone-inducible promoter (D. F. Klessig, D. E. Brough, and V. Cleghon, Mol. Cell. Biol. 4:1354-1362, 1984). The protocol was used to construct five adenovirus mutants, Ad5d1801 through Ad5d1805, which contained deletions in E2A. One of the mutants, Ad5d1802, made no detectable DBP and thus represents the first DBP-negative adenovirus mutant, while the four other mutants made truncated DBP-related polypeptides. All five mutants were completely defective for growth and plaque formation on HeLa cell monolayers. Furthermore, the two mutants which were tested, Ad5d1801 and Ad5d1802, did not replicate their DNA in HeLa cells. The mutant Ad5d1804 encoded a truncated DBP-related protein which contained an entire amino-terminal domain derived from the host range mutant Ad5hr404, a variant of Ad5 which multiplies efficiently in monkey cells. While results of a previous study suggest that the amino-terminal domain of DBP could act independently of the carboxyl-terminal domain to enhance late gene expression in monkey cells, the Ad5d1804 polypeptide failed to relieve the block to late viral protein synthesis in monkey cells. The mutant Ad5d1802 was used to study the role of DBP in the regulation of early adenovirus gene expression in infected HeLa cells. These experiments show that E2A mRNA levels are consistently reduced approximately fivefold in Ad5d1802-infected cells, suggesting either a role for DBP in the expression of its own gene or a cis-acting defect caused by the E2A deletion. DBP does not appear to play a significant role in the regulation of adenovirus early regions 1A, 1B, 3, or 4 mRNA levels in infected HeLa cell monolayers since wild-type Ad5- and Ad5d1802-infected cells showed very little difference in the patterns of expression of these genes.  相似文献   

17.
Adenovirus vector expressing functional herpes simplex virus ICP0.   总被引:10,自引:7,他引:3       下载免费PDF全文
X X Zhu  C S Young    S Silverstein 《Journal of virology》1988,62(12):4544-4553
  相似文献   

18.
19.
20.
In soluble protein extracts obtained from adenovirus productively infected cells, monoclonal antibodies directed against the early region 1B 58,000-dalton (E1B-58K) protein immunoprecipitated, in addition to this protein, a polypeptide of 25,000 molecular weight. An analysis of tryptic peptides derived from this 25K protein demonstrated that it was unrelated to the E1B-58K protein. The tryptic peptide maps of the 25K protein produced in adenovirus 5 (Ad5)-infected HeLa cells and BHK cells were identical, whereas Ad3-infected HeLa cells produced a different 25K protein. The viral origin of this 25K protein was confirmed by an amino acid sequence determination of five methionine residues in two Ad2 tryptic peptides derived from the 25K protein. The positions of these methionine residues in the 25K protein were compared with the nucleotide sequence of Ad2 and uniquely mapped the gene for this protein to early region 4, subregion 6 of the viral genome. A mutant of Ad5 was obtained (Ad5 dl342) which failed to produce detectable levels of the E1B-58K protein. In HeLa cells infected with this mutant, monoclonal antibodies directed against the E1B-58K protein failed to detect the associated 25K protein. In 293 cells infected with Ad5 dl342, which contain an E1B-58K protein encoded by the integrated adenovirus genome, the mutant produced an E4-25K protein which associated with the E1B-58K protein derived from the integrated genome. Extracts of labeled Ad5 dl342-infected HeLa cells (E1B-58K-) were mixed in vitro with extracts of unlabeled Ad5 wild type-infected HeLa cells or 293 cells (E1B-58K+). When the mixed extracts were incubated with the E1B-58K monoclonal antibody, a labeled E4-25K protein was coimmunoprecipitated. When extracts of Ad5 dl342-infected HeLa cells and uninfected HeLa cells (both E1B-58K-) were mixed, the E1B-58K monoclonal antibody failed to immunoselect the E4-25K protein. These data provide evidence that the E1B-58K antigen is physically associated with an E4-25K protein in productively infected cells. This is the same E1B-58K protein that was previously shown to be associated with the cellular p53 antigen in adenovirus-transformed cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号