首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morphine is a potent analgesic, but the molecular mechanism for tolerance formation after repeated use is not fully understood. Binding immunoglobulin protein (BiP) is an endoplasmic reticulum (ER) chaperone that is central to ER function. We examined knock‐in mice expressing a mutant BiP with the retrieval sequence deleted in order to elucidate physiological processes that are sensitive to BiP functions. We tested the thermal antinociceptive effect of morphine in heterozygous mutant BiP mice in a hot plate test. Paw withdrawal latencies before and after a single administration of morphine were not significantly different between the wild‐type and mutant BiP mice. Repeated morphine administration caused the development of morphine tolerance in the wild‐type mice. The activation of glycogen synthase kinase 3b (GSK‐3b) was associated with morphine tolerance, because an inhibitor of GSK‐3β prevented it. On the other hand, the mutant BiP mice showed less morphine tolerance, and the activation of GSK‐3b was suppressed in their brain. These results suggest that BiP may play an important role in the development of morphine tolerance. Furthermore, we found that a chemical chaperone which improves ER protein folding capacity also attenuated the development of morphine tolerance in wild‐type mice, suggesting a possible clinical application of chemical chaperones in preventing morphine tolerance.  相似文献   

2.
Subtilase cytotoxin (SubAB) is the prototype of a distinct AB5 toxin family produced by Shiga toxigenic Escherichia coli. Recent reports disclosed pro-apoptotic pathways triggered by SubAB, whereas its anti-apoptotic signals have not been elucidated. In the present study, we investigated pro-survival signaling elicited by SubAB, especially focusing on extracellular signal-regulated kinase (ERK) and Akt. We found that SubAB activated ERK and Akt, and inhibition of individual kinases enhanced SubAB-triggered apoptosis. SubAB induced endoplasmic reticulum (ER) stress, and other ER stress inducers mimicked the stimulatory effects of SubAB on ERK and Akt. Attenuation of ER stress reduced SubAB-induced phosphorylation of these kinases, suggesting involvement of the unfolded protein response (UPR). SubAB induced activation of protein kinase-like ER kinase (PERK) and phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), and phosphorylation of eIF2α by salubrinal caused activation of ERK and Akt, leading to cell survival. Dominant-negative inhibition of PERK enhanced SubAB-induced apoptosis and reduced phosphorylation of ERK and Akt. Furthermore, the anti-apoptotic effect of eIF2α was significantly reversed by inhibition of ERK and Akt. These results suggest cytoprotective roles of ERK and Akt in SubAB-triggered, ER stress-mediated apoptosis.  相似文献   

3.
Because of its unusual length, nascent thyroglobulin (Tg) requires a long time after translocation into the endoplasmic reticulum (ER) to assume its mature tertiary structure. Thus, Tg is an ideal molecule for the study of protein folding and export from the ER, and is an excellent potential substrate for molecular chaperones. During the first 15 min after biosynthesis, Tg is found in transient aggregates with and without interchain disulfide bonds, which precede the formation of free monomers (and ultimately dimers) within the ER. By immunoprecipitation, newly synthesized Tg was associated with the binding protein (BiP); association was maximal at the earliest chase times. Much of the Tg released from BiP by the addition of Mg-ATP was found in aggregates containing interchain disulfide bonds; other BiP-associated Tg represented non-covalent aggregates and unfolded free monomers. Importantly, the immediate precursor to Tg dimer was a compact monomer which did not associate with BiP. The average stoichiometry of BiP/Tg interaction involved nearly 10 BiP molecules per Tg molecule. Cycloheximide was used to reduced the ER concentration of Tg relative to chaperones, with subsequent removal of the drug in order to rapidly restore Tg synthesis. After this treatment, nascent Tg aggregates were no longer detectable. The data suggest a model of folding of exportable proteins in which nascent polypeptides immediately upon translocation into the ER interact with BiP. Early interaction with BiP may help in presenting nascent polypeptides to other helper molecules that catalyze folding, thereby preventing aggregation or driving aggregate dissolution in the ER.  相似文献   

4.
5.
Cholera toxin (CT) contains one A chain and five B chains. The A chain is an enzyme that covalently modifies a trimeric G protein in the cytoplasm, resulting in the overproduction of cAMP. The B chain binds the glycosphingolipid G(M1), the cell surface receptor for CT, which initiates receptor-mediated endocytosis of the toxin. After endocytosis, CT enters the endoplasmic reticulum (ER) via retrograde vesicular traffic where the A chain retro-translocates through the ER membrane to reach the cytoplasm. The retro-translocation mechanism is poorly understood, but may involve proteins of the ER stress response, including the ER associated degradation (ERAD) pathway. We report here that treating cells with CT or CTB quickly up-regulates the levels of BiP, Derlin-1, and Derlin-2, known participants in the ER stress response and ERAD. CT did not induce calnexin, another known responder to ER stress, indicating that the CT-mediated induction of ER proteins is selective in this time frame. These data suggest that CT may promote retro-translocation of the A chain to the cytoplasm by rapidly up-regulating a set of ER proteins involved in the retro-translocation process. In support of this idea, a variety of conditions that induced BiP, Derlin-1, and Derlin-2 sensitized cells to CT and conditions that inhibited their induction de-sensitized cells to CT. Moreover, specifically suppressing Derlin-1 with siRNA protected cells from CT. In addition, Derlin-1 co-immunoprecipitated with CTA or CTB from CT-treated cells using anti-CTA or anti-CTB antibodies. Altogether, the results are consistent with the hypothesis that the B chain of CT up-regulates ER proteins that may assist in the retro-translocation of the A chain across the ER membrane.  相似文献   

6.
Calreticulin, a Ca2+-binding chaperone of the endoplasmic reticulum   总被引:2,自引:0,他引:2  
Calreticulin is a 46-kDa Ca2+-binding chaperone found across a diverse range of species. The protein is involved in the regulation of intracellular Ca2+ homeostasis and endoplasmic reticulum (ER) Ca2+ storage capacity. Calreticulin is also an important molecular chaperone involved in "quality control" within secretory pathways. The protein contains structurally and functionally unique domains with specialized functions. Studies on calreticulin knockout mice indicate that the protein is essential in early cardiac development. The protein also plays an important role in autoimmunity and cancer.  相似文献   

7.
The N-end rule pathway is a proteolytic system, in which single N-terminal residues act as a determinant of a class of degrons, called N-degrons. In the ubiquitin (Ub)-proteasome system, specific recognition components, called N-recognins, recognize N-degrons and accelerate polyubiquitination and proteasomal degradation of the substrates. In this study, we show that the pathway regulates the activity of the macroautophagic receptor SQSTM1/p62 (sequestosome 1) through N-terminal arginylation (Nt-arginylation) of endoplasmic reticulum (ER)-residing molecular chaperones, including HSPA5/GRP78/BiP, CALR (calreticulin), and PDI (protein disulfide isomerase). The arginylation is co-induced with macroautophagy (hereafter autophagy) as part of innate immunity to cytosolic DNA and when misfolded proteins accumulate under proteasomal inhibition. Following cytosolic relocalization and arginylation, Nt-arginylated HSPA5 (R-HSPA5) is targeted to autophagosomes and degraded by lysosomal hydrolases through the interaction of its N-terminal Arg (Nt-Arg) with ZZ domain of SQSTM1. Upon binding to Nt-Arg, SQSTM1 undergoes a conformational change, which promotes SQSTM1 self-polymerization and interaction with LC3, leading to SQSTM1 targeting to autophagosomes. Cargoes of R-HSPA5 include cytosolic misfolded proteins destined to be degraded through autophagy. Here, we discuss the mechanisms by which the N-end rule pathway regulates SQSTM1-dependent selective autophagy.  相似文献   

8.
BiP is found in association with calreticulin, both in the presence and absence of endoplasmic reticulum stress. Although the BiP-calreticulin complex can be disrupted by ATP, several properties suggest that the calreticulin associated with BiP is neither unfolded nor partially or improperly folded. (1) The complex is stable in vivo and does not dissociate during 8 hr of chase. (2) When present in the complex, calreticulin masks epitopes at the C terminus of BiP that are not masked when BiP is bound to an assembly-defective protein. And (3) overproduction of calreticulin does not lead to the recruitment of more BiP into complexes with calreticulin. The BiP-calreticulin complex can be disrupted by low pH but not by divalent cation chelators. When the endoplasmic reticulum retention signal of BiP is removed, complex formation with calreticulin still occurs, and this explains the poor secretion of the truncated molecule. Gel filtration experiments showed that BiP and calreticulin are present in distinct high molecular weight complexes in which both molecules interact with each other. The possible functions of this complex are discussed.  相似文献   

9.
The endoplasmic reticulum (ER) chaperone BiP/GRP78 regulates ER function and the unfolded protein response (UPR). Human cytomegalovirus infection of human fibroblasts induces the UPR but modifies it to benefit viral replication. BiP/GRP78 protein levels are tightly regulated during infection, rising after 36 h postinfection (hpi), peaking at 60 hpi, and decreasing thereafter. To determine the effects of this regulation on viral replication, BiP/GRP78 was depleted using the SubAB subtilase cytotoxin, which rapidly and specifically cleaves BiP/GRP78. Toxin treatment of infected cells for 12-h periods beginning at 36, 48, 60, and 84 hpi caused complete loss of BiP but had little effect on viral protein synthesis. However, progeny virion formation was significantly inhibited, suggesting that BiP/GRP78 is important for virion formation. Electron microscopic analysis showed that infected cells were resistant to the toxin and showed none of the cytotoxic effects seen in uninfected cells. However, all viral activity in the cytoplasm ceased, with nucleocapsids remaining in the nucleus or concentrated in the cytoplasmic space just outside of the outer nuclear membrane. These data suggest that one effect of the controlled expression of BiP/GRP78 in infected cells is to aid in cytoplasmic virion assembly and egress.  相似文献   

10.
The folding and assembly of nascent proteins in the endoplasmic reticulum are assisted by the molecular chaperone calnexin, which is itself retained within the endoplasmic reticulum. It was up to now assumed that calnexin was selectively expressed on the surface of immature thymocytes because of a particular characteristic of the protein sorting machinery in these cells. We now report that a small fraction of calnexin is normally expressed on the surface of various cells such as mastocytoma cells, murine splenocytes, fibroblast cells, and human HeLa cells. Surface biotinylation followed by chase culture of living cells revealed that calnexin is continuously delivered to the cell surface and then internalized for lysosomal degradation. These results suggest that there is continuous exocytosis and endocytosis of calnexin, and the amount of calnexin on the plasma membrane results from the balance of the rates of these two events. To study the structural requirement of calnexin for surface expression, we created deletion mutants of calnexin and found that the luminal domain, particularly the glycoprotein binding domain, is necessary. These findings suggest that the surface expression of calnexin depends on the association with glycoproteins and that calnexin may play a certain role as a chaperone on the plasma membrane as well.  相似文献   

11.
Members of the syntaxin family are target-soluble N-ethylmaleimide-sensitive factor-attachment protein receptors involved in vesicle docking and/or fusion within the exocytic and endocytotic pathways. By using the yeast two-hybrid system, we have identified a novel member of the syntaxin family, syntaxin 18, that binds to alpha-soluble N-ethylmaleimide-sensitive factor-attachment protein. Subcellular fractionation and immunocytochemical analysis revealed that syntaxin 18 is principally located in the endoplasmic reticulum. We examined the effect of overexpression of FLAG-tagged syntaxin 18 and a mutant lacking the N-terminal 81 amino acid residues on protein transport and organelles in the early secretory pathway. Both expressed proteins localized to the endoplasmic reticulum, and the expressed FLAG-syntaxin 18 caused remarkable aggregation of endoplasmic reticulum membranes. Although expression of the FLAG-syntaxin 18 lacking the N-terminal region produced less effect on the morphology of the endoplasmic reticulum, dispersion of the endoplasmic reticulum-Golgi intermediate compartment and cis-Golgi was elicited. Moreover, overexpression of the FLAG-syntaxin 18 mutant inhibited protein export from the endoplasmic reticulum. These results taken together suggest that syntaxin 18 functions in transport between the endoplasmic reticulum and Golgi.  相似文献   

12.
Rheumatoid arthritis (RA) is the most common, crippling human autoimmune disease. Using Western blotting and tandem mass spectroscopy, we have identified the endoplasmic reticulum chaperone BiP, a 78-kDa glucose-regulated protein, as a possible autoantigen. It preferentially stimulated increased proliferation of synovial T cells from patients with RA but not from patients with other arthritides. Mice with established collagen- or pristane-induced arthritis developed IgG Abs to BiP. Although BiP injected in CFA failed to induce arthritis in several strains of rats and mice, including HLA-DR4(+/-)- and HLA-DR1(+/+)-transgenic animals, it completely inhibited the development of arthritis when given i.v. 1 wk before the injection of type II collagen arthritis. Preimmunization with BiP suppressed the development of adjuvant arthritis in Lewis rats in a similar manner. This is the first report of a mammalian chaperone that is an autoantigen in human RA and in experimental arthritis and that can also prevent the induction of experimental arthritis. These findings may stimulate the development of new immunotherapies for the treatment of RA.  相似文献   

13.
Calreticulin is a molecular chaperone found in the endoplasmic reticulum in eukaryotes, and its interaction with N-glycosylated polypeptides is mediated by the glycan Glc(1)Man(7-9)GlcNAc(2) present on the target glycoproteins. Here, we report the thermodynamic parameters of its interaction with di-, tri-, and tetrasaccharide, which are truncated versions of the glucosylated arm of Glc(1)Man(7-9)GlcNAc(2), determined by the quantitative technique of isothermal titration calorimetry. This method provides a direct estimate of the binding constants (K(b)) and changes in enthalpy of binding (Delta H(b) degrees ) as well as the stoichiometry of the reaction. Unlike past speculations, these studies demonstrate unambiguously that calreticulin has only one site per molecule for binding its complementary glucosylated ligands. Although the binding of glucose by itself is not detectable, a binding constant of 4.19 x 10(4) m(-1) at 279 K is obtained when glucose occurs in alpha-1,3 linkage to Man alpha Me as in Glc alpha 1-3Man alpha Me. The binding constant increases by 25-fold from di- to trisaccharide and doubles from tri- to tetrasaccharide, demonstrating that the entire Glc alpha 1-3Man alpha 1-2Man alpha 1-2Man alpha Me structure of the oligosaccharide is recognized by calreticulin. The thermodynamic parameters thus obtained were supported by modeling studies, which showed that increased number of hydrogen bonds and van der Waals interactions occur as the size of the oligosaccharide is increased. Also, several novel findings about the recognition of saccharide ligands by calreticulin vis á vis legume lectins, which have the same fold as this chaperone, are discussed.  相似文献   

14.
Quality control in the endoplasmic reticulum (ER) prevents the arrival of incorrectly or incompletely folded proteins at their final destinations and targets permanently misfolded proteins for degradation. Such proteins have a high affinity for the ER chaperone BiP and are finally degraded via retrograde translocation from the ER lumen back to the cytosol. This ER-associated protein degradation (ERAD) is currently thought to constitute the main disposal route, but there is growing evidence for a vacuolar role in quality control. We show that BiP is transported to the vacuole in a wortmannin-sensitive manner in tobacco (Nicotiana tabacum) and that it could play an active role in this second disposal route. ER export of BiP occurs via COPII-dependent transport to the Golgi apparatus, where it competes with other HDEL receptor ligands. When HDEL-mediated retrieval from the Golgi fails, BiP is transported to the lytic vacuole via multivesicular bodies, which represent the plant prevacuolar compartment. We also demonstrate that a subset of BiP-ligand complexes is destined to the vacuole and differs from those likely to be disposed of via the ERAD pathway. Vacuolar disposal could act in addition to ERAD to maximize the efficiency of quality control in the secretory pathway.  相似文献   

15.
Calreticulin is a ubiquitous endoplasmic reticulum Ca2+ binding chaperone. The protein has been implicated in a variety of diverse functions. Calreticulin is a lectin-like chaperone and, together with calnexin, it plays an important role in quality control during protein synthesis, folding, and posttranslational modification. Calreticulin binds Ca2+ and affects cellular Ca2+ homeostasis. The protein increases the Ca2+ storage capacity of the endoplasmic reticulum and modulates the function of endoplasmic reticulum Ca2+-ATPase. Calreticulin also plays a role in the control of cell adhesion and steroid-sensitive gene expression. Recently, the protein has been identified and characterized in higher plants but its precise role in plant cells awaits further investigation.  相似文献   

16.
Almost all secreted proteins pass through the endoplasmic reticulum (ER), an organelle that is equipped to tolerate and/or degrade misfolded proteins. We report here that yeast expressing the cystic fibrosis transmembrane conductance regulator (CFTR) concentrate the protein at defined sites in the ER membrane that are not necessarily enriched for the ER molecular chaperone BiP. We propose that these sites are Russell bodies, an ER subcompartment in which misfolded proteins are stored and can be targeted for degradation.  相似文献   

17.
Glucose-regulated protein 78 (GRP78) is a well-characterized molecular chaperone that is ubiquitously expressed in mammalian cells. GRP78 is best known for binding to hydrophobic patches on nascent polypeptides within the endoplasmic reticulum (ER) and for its role in signaling the unfolded protein response. Structurally, GRP78 is highly conserved across species. The presence of GRP78 or a homologue in nearly every organism from bacteria to man, reflects the central roles it plays in cell survival. While the principal role of GRP78 as a molecular chaperone is a matter of continuing study, independent work demonstrates that like many other proteins with ancient origins, GRP78 plays more roles than originally appreciated. Studies have shown that GRP78 is expressed on the cell surface in many tissue types both in vitro and in vivo. Cell surface GRP78 is involved in transducing signals from ligands as disparate as activated alpha2-macroglobulin and antibodies. Plasmalemmar GRP78 also plays a role in viral entry of Coxsackie B, and Dengue Fever viruses. GRP78 disregulation is also implicated in atherosclerotic, thrombotic, and auto-immune disease. It is challenging to posit a hypothesis as to why an ER molecular chaperone, such as GRP78, plays such a variety of roles in cellular processes. An ancient and highly conserved protein such as GRP78, whose primary function is to bind to misfolded polypeptides, could be uniquely suited to bind a wide variety of ligands and thus, over time, could assume the wide variety of roles it now plays.  相似文献   

18.
Pro-survival signalling mediated by the androgen receptor (AR) is implicated as a key contributor to prostate carcinogenesis. As prostate tumours are characterized by nutrient-poor, hypoxic and acidified microenvironments, one mechanism whereby AR signalling may contribute to survival is by promoting adaptation to cellular stress. Here we have identified a novel role for AR in the inhibition of autophagy induced by serum withdrawal. This blockade is attributed to AR-mediated upregulation of the endoplasmic reticulum (ER) chaperone glucose-regulated protein 78/BiP (Grp78/BiP), and occurs independently of ER stress response pathway activation. Interestingly, AR activation did not affect serum starvation-induced mammalian target of rapamycin inhibition, illustrating that the adaptive role for androgens lies not in the ability to modulate nutrient sensing, but in the promotion of ER stability. Finally, we show that the adaptive advantage conferred by AR-mediated Grp78/BiP upregulation is temporary, as upon chronic serum starvation, AR activation delayed but did not suppress the onset of autophagy and cell death. This study reveals a novel mechanism whereby maintained AR signalling promotes temporary adaptation to cellular stress and in turn may contribute to the evasion of prostate tumour cell death.  相似文献   

19.
Ceramide produced at the endoplasmic reticulum (ER) is transported to the lumen of the Golgi apparatus for conversion to sphingomyelin (SM). N-(3-Hydroxy-1-hydroxymethyl-3-phenylpropyl)dodecanamide (HPA-12) is a novel analog of ceramide. Metabolic labeling experiments showed that HPA-12 inhibits conversion of ceramide to SM, but not to glucosylceramide, in Chinese hamster ovary cells. Cultivation of cells with HPA-12 significantly reduced the content of SM. HPA-12 did not inhibit the activity of SM synthase. The inhibition of SM formation by HPA-12 was abrogated when the Golgi apparatus was made to merge with the ER by brefeldin A. Moreover, HPA-12 inhibited redistribution of a fluorescent analog of ceramide, N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-d-erythro-sphingosine (C(5)-DMB-Cer), from intracellular membranes to the Golgi region. Among four stereoisomers of the drug, (1R,3R)-HPA-12, which resembles natural ceramide stereochemically, was found to be the most active, although (1R,3R)-HPA-12 did not affect ER-to-Golgi trafficking of protein. Interestingly, (1R,3R)-HPA-12 inhibited conversion of ceramide to SM little in mutant cells defective in an ATP- and cytosol-dependent pathway of ceramide transport. These results indicated that (1R,3R)-HPA-12 inhibits ceramide trafficking from the ER to the site of SM synthesis, possibly due to an antagonistic interaction with a ceramide-recognizing factor(s) involved in the ATP- and cytosol-dependent pathway.  相似文献   

20.
The subcellular localization and corresponding quaternary state of fluorescent labelled cholera toxin were determined at different time points after exposure to living cells by a novel form of fluorescence confocal microscopy. The compartmentalization and locus of separation of the pentameric B subunits (CTB) from the A subunit (CTA) of the toxin were evaluated on a pixel-by-pixel (voxel-by-voxel) basis by measuring the fluorescence resonance energy transfer (FRET) between CTB labelled with the sulfoindocyanine dye Cy3 and an antibody against CTA labelled with Cy5. The FRET efficiency was determined by a new technique based on the release of quenching of the Cy3 donor after photodestruction of the Cy5 acceptor in a region of interest within the cell. The results demonstrate vesicular transport of the holotoxin from the plasma membrane to the Golgi compartment with subsequent separation of the CTA and CTB subunits. The CTA subunit is redirected to the plasma membrane by retrograde transport via the endoplasmic reticulum whereas the CTB subunit persists in the Golgi compartment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号