首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Few studies have investigated the consequences of parasite-mediated sexual selection on the parasites involved. In some cases parasite-mediated sexual selection could lead to increased virulence, but I develop a simple model that shows that, if a parasite is sexually transmitted (i.e., is a sexually transmitted disease, or STD) and if mating success of the host is adversely affected by the parasite, then less virulent STDs will be selected for because transmission of the STD depends on the mating success of the host. This selection for reduced virulence could have important consequences for the role of STDs in sexual selection.  相似文献   

2.
Mackey WC  Immerman RS 《Social biology》2003,50(3-4):281-299
(Micro)organisms, such as bacteria, which cause sexually transmitted diseases (STDs) in humans are presented with an interesting ecological challenge. These microorganisms need humans to have sexual contact with each other in order for the microorganisms to spread to other hosts as well as to have subsequent generations of descendants. However, diseases tend to lower the sex drive and to render the host less sexually attractive. It is argued that, over time, selective advantages sculpted organisms which cause STDs to be minimally symptomatic and to indirectly increase the number of sexual partners of the host. Neisseria gonorrhoeae which cause the STD gonorrhea are used as a prototype for these putative sexual dynamics. As a counter to the (micro)organisms' biological adaptations, human cultural innovations emerged and became integrated into the various traditions of social structures.  相似文献   

3.
共生菌普遍存在于昆虫体内,它们能够为宿主昆虫提供生长发育所必需的氨基酸、固醇类等营养物质,还能提高昆虫适应高温、寄生虫、病毒等不利环境因素的能力,昆虫则为共生菌提供稳定的生存环境和营养物质,昆虫与共生菌相互依存。多数情况下,共生菌通过垂直传播在宿主代次间进行传播,即共生菌由母代传递给子代。结合最近几年相关研究,本文综述了不同昆虫共生菌的垂直传播模式。除极少数肠道共生菌通过污染卵壳被宿主幼虫取食得以垂直传播外,垂直传播的共生菌多为经卵传播。根据侵染时期的不同,共生菌经卵传播模式多数可分为以下4种:侵染宿主昆虫幼虫中的生殖干细胞、侵染宿主昆虫年轻雌成虫中的生殖干细胞、侵染宿主昆虫雌成虫中的成熟卵母细胞以及侵染宿主昆虫囊胚期胚胎。其中,有些共生菌是以共生菌菌胞整体侵染的方式进入到宿主卵巢。另外,少数肠道共生菌也通过卵巢进行垂直传播,此类共生菌先侵染卵巢侧输卵管并在侧输卵管聚集,待卵排放至侧输卵管时再进入到卵中。在文中,我们也探讨了昆虫共生菌垂直传播过程中的细胞机制和免疫机制,包括共生菌避开宿主免疫反应、共生菌通过内吞作用进入卵巢以及不同共生菌间的协同作用等。  相似文献   

4.
Mechanical transmission of pathogens by biting insects is a non-specific phenomenon in which pathogens are transmitted from the blood of an infected host to another host during interrupted feeding of the insects. A large range of pathogens can be mechanically transmitted, e.g. hemoparasites, bacteria and viruses. Some pathogens are almost exclusively mechanically transmitted, while others are also cyclically transmitted. For agents transmitted both cyclically and mechanically (mixed transmission), such as certain African pathogenic trypanosomes, the relative impact of mechanical versus cyclical transmission is essentially unknown. We have developed a mathematical model of pathogen transmission by a defined insect population to evaluate the importance of mechanical transmission. Based on a series of experiments aimed at demonstrating mechanical transmission of African trypanosomes by tabanids, the main parameters of the model were either quantified (host parasitaemia, mean individual insect burden, initial prevalence of infection) or estimated (unknown parameters). This model allows us to simulate the evolution of pathogen prevalence under various predictive circumstances, including control measures and could be used to assess the risk of mechanical transmission under field conditions. If adjustments of parameters are provided, this model could be generalized to other pathogenic agents present in the blood of their hosts (Bovine Leukemia virus, Anaplasma, etc.) or other biting insects such as biting muscids (stomoxyines) and hippoboscids.  相似文献   

5.
1. Long‐term control of insects by parasites is possible only if the parasite populations persist. Because parasite transmission rate depends on host density, parasite populations may go extinct during periods of low host density. Vertical transmission of parasites, however, is independent of host density and may therefore provide a demographic bridge through times when their insect hosts are rare. 2. The nematode Howardula aoronymphium, which parasitises mycophagous species of Drosophila, can experience both horizontal and effectively vertical transmission, relative rates of which depend, in theory at least, on the density of hosts at breeding sites. 3. A nine‐generation experiment was carried out in which nematodes were transmitted either exclusively vertically or primarily horizontally. This experiment revealed that these parasites can persist and exhibit positive population growth even when there is only vertical transmission. 4. Assays at the end of the experiment revealed that the vertically transmitted nematodes had suffered no inbreeding depression and that they were similar to the horizontally transmitted nematodes in terms of virulence, infectivity, within‐host growth rate, and fecundity. Thus, vertical transmission of H. aoronymphium did not appear to compromise the ability of these parasites to control Drosophila populations.  相似文献   

6.
The risk of parasitism is considered to be a general cost of sociality and individuals living in larger groups are typically considered to be more likely to be infected with parasites. However, contradictory results have been reported for the relationship between group size and infection by directly transmitted parasites. We used independent contrasts to examine the relationship between an index of sociality in rodents and the diversity of their macroparasites (helminths and arthropods such as fleas, ticks, suckling lice and mesostigmatid mites). We found that the species richness of directly transmitted ectoparasites, but not endoparasites, decreased significantly with the level of rodent sociality. A greater homogeneity in the biotic environment (i.e. a reduced number of cohabiting host species) of the more social species may have reduced ectoparasites' diversity by impairing ectoparasites transmission and exchange. Our finding may also result from beneficial outcomes of social living that include behavioural defences, like allogrooming, and the increased avoidance of parasites through dilution effects.  相似文献   

7.
Sexually transmitted disease in a promiscuous insect, Adalia bipunctata   总被引:1,自引:0,他引:1  
Abstract.
  • 1 Sexually transmitted diseases (STDs) have rarely been reported in insects and other invertebrates. The majority of those reported involve organisms where sexual transmission is augmented by either vertical (i.e. inherited) transmission, or horizontal transmission, independent of host sexual activity.
  • 2 We here demonstrate the existence of an STD in the coccinellid beetle Adalia bipunctata. This species bears a parasitic mite of the genus Coccipolipus. We show that, like many other podapolipid mites, this mite is transmitted between host individuals at a high rate during copulation. It also appears to be transmitted at a low rate between non-copulating individuals.
  • 3 We show that infected female A.bipunctata produced eggs at a reduced rate, and that the eggs produced by infected females have highly decreased viability. However, no effect of infection upon host longevity was observed.
  • 4 The results are discussed in relation to the incidences of sexually transmitted disease in invertebrates in general, the causes of disease symptoms, and the importance of this disease in the evolution of A.bipunctata.
  相似文献   

8.
1. Damselflies and dragonflies are widely parasitised insects and numerous studies have tried to understand this host–parasite relationship. However, most of these studies have concentrated on a single host species, neglecting the larger pattern within the Odonata order. 2. The aim of this paper was to examine different damselfly and dragonfly species for common endo‐ and ectoparasites and whether a general infection pattern can be found. Additionally, the goal was to investigate whether the phylogeny of the host species could explain these possible infection patterns. To this end, a dataset from the existing literature was compiled and the prevalence of endoparasitic gregarines and ectoparasitic water mites was analysed for 46 different odonate species. 3. Three distinct patterns were found: (i) most of the odonate host species had both gregarines and water mites, rather than only either one or neither; (ii) there appears to be a positive association between gregarine and water mite prevalences across host species; (iii) a weak phylogenetic signal was detected in gregarine prevalence and a strong one in water mite prevalence. 4. It is hypothesised that, due to the infection and transmission mechanisms by which water mites and gregarines infect different odonate host species, parasitism is aggregated to common, high‐density species. However, much research is needed in order to fully understand this relationship between odonates and their parasites, especially within the same host populations and host species assemblages.  相似文献   

9.
Insects are host to a wide range of vertically transmitted bacterial endosymbionts, but we know relatively little about their viral counterparts. Here, we discuss the vertically transmitted viral endosymbionts of insects, firstly examining the diversity of this group, and then focusing on the well-studied sigma viruses that infect dipterans. Despite limited sampling, evidence suggests that vertically transmitted viruses may be common in insects. Unlike bacteria, viruses can be transmitted through sperm and eggs, a trait that allows them to rapidly spread through host populations even when infection is costly to the host. Work on Drosophila melanogaster has shown that sigma viruses and their hosts are engaged in a coevolutionary arms race, in which the spread of resistance genes in the host population is followed by the spread of viral genotypes that can overcome host resistance. In the long-term, associations between sigma viruses and their hosts are unstable, and the viruses persist by occasionally switching to new host species. It therefore seems likely that viral endosymbionts have major impacts on the evolution and ecology of insects.  相似文献   

10.
Sexually transmitted disease and the evolution of mating systems   总被引:3,自引:0,他引:3  
Sexually transmitted diseases (STDs) have been shown to increase the costs of multiple mating and therefore favor relatively monogamous mating strategies. We examine another way in which STDs can influence mating systems in species in which female choice is important. Because more popular males are more likely to become infected, STDs can counteract any selective pressure that generates strong mating skews. We build two models to investigate female mate choice when the sexual behavior of females determines the prevalence of infection in the population. The first model has no explicit social structure. The second model considers the spatial distribution of matings under social monogamy, when females mated to unattractive males seek extrapair fertilizations from attractive males. In both cases, the STD has the potential to drastically reduce the mating skew. However, this reduction does not always happen. If the per contact transmission probability is low, the disease dies out and is of no consequence. In contrast, if the transmission probability is very high, males are likely to be infected regardless of their attractiveness, and mating with the most attractive males imposes again no extra cost for the female. We also show that optimal female responses to the risk of STDs can buffer the prevalence of infection to remain constant, or even decrease, with increasing per contact transmission probabilities. In all cases considered, the feedback between mate choice strategies and STD prevalence creates frequency-dependent fitness benefits for the two alternative female phenotypes considered (choosy vs. randomly mating females or faithful vs. unfaithful females). This maintains mixed evolutionarily stable strategies or polymorphisms in female behavior. In this way, a sexually transmitted disease can stabilize the populationwide proportion of females that mate with the most attractive males or that seek extrapair copulations.  相似文献   

11.
Karsten Reckardt  Gerald Kerth 《Oikos》2009,118(2):183-190
In a two-year field study, we analyzed the distribution of two hematophagous ectoparasites, the bat fly Basilia nana and the wing mite Spinturnix bechsteini , within and among 14 female colonies and among 26 solitary male Bechstein's bats Myotis bechsteinii . Our goal was to investigate whether differences in the transmission mode of the parasites, which result from differences in their life cycle, affect their distribution between host colonies and among host individuals within colonies. Bat flies deposit puparia in bat roosts, allowing for the transmission of hatched flies via successively shared roosts, independent of body contact between hosts or of hosts occupying a roost at the same time. In contrast, wing mites stay on the bat's body and are transmitted exclusively by contact of bats that roost together. As expected in cases of higher inter-colony transmissibility, bat flies were more prevalent among the demographically isolated Bechstein's bat colonies and among solitary male bats, as compared to wing mites. Moreover, the prevalence and density of wing mites, but not of bat flies, was positively correlated with colony size, as expected in cases of low inter-colony transmissibility. Within colonies, bat flies showed higher abundance on host individuals in good body condition, which are likely to have high nutritional status and strong immunity. Wing mites showed higher abundance on hosts in medium body condition and on reproductive females and juveniles, which are likely to have relatively weak immunity. We suggest that the observed infestation patterns within host colonies reflect different host choice strategies of bat flies and wing mites, which may result from differences in their inter-colony transmissibility. Our data also indicate that infestation with wing mites, but not with bat flies, might be a cost of sociality in Bechstein's bats.  相似文献   

12.
Sexually transmitted infections (STIs) are predicted to play an important role in the evolution of host mating strategies, and vice versa, yet our understanding of host-STI coevolution is limited. Previous theoretical work has shown mate choice can evolve to prevent runaway STI virulence evolution in chronic, sterilizing infections. Here, I generalize this theory to examine how a broader range of life-history traits influence coevolution; specifically, how host preferences for healthy mates and STI virulence coevolve when infections are acute and can cause mortality or sterility, and hosts do not form long-term sexual partnerships. I show that mate choice reduces both mortality and sterility virulence, with qualitatively different outcomes depending on the mode of virulence, costs associated with mate choice, recovery rates, and host lifespan. For example, fluctuating selection—a key finding in previous work—is most likely when hosts have moderate lifespans, STIs cause sterility and long infections, and costs of mate choice are low. The results reveal new insights into the coevolution of mate choice and STI virulence as different life-history traits vary, providing increased support for parasite-mediated sexual selection as a potential driver of host mate choice, and mate choice as a constraint on the evolution of virulence.  相似文献   

13.
Research on the role of parasites in sexual selection has focusedmainly on host mate choice favoring relatively unparasitizedmales. But parasites can also generate variance in host reproductivesuccess by influencing the ability of individual hosts to directlycompete among themselves for mates or fertilizations, a subjectarea that has received far less attention. We demonstrate experimentallythat parasitism by mites can drive sexual selection by way ofa novel mechanism involving male competition: physical inhibitionof host copulation. Mite resistance in natural populations isheritable, emphasizing the evolutionary potential of parasite-mediatedsexual selection in this system and indicating that femalesshould be receiving indirect fitness benefits as a result ofthis process. We show that parasitism by mites, Macrochelessubbadius, reduces mating success of male Drosophila nigrospiracula.Smaller males were more strongly compromised, identifying hostbody size as a tolerance trait. As parasite load increased,the rate at which males attempted to copulate but failed becauseof obstruction by mites increased. When mites were removed frominfested males, host mating success was restored. Thus, thephysical presence of the mites per se generates differentialmating success, in this case by interrupting the normal flowof mating behaviors. This study elucidates a potent mechanismof parasite-mediated sexual selection in a system wherein parasiteresistance is demonstrably heritable, and as such expands ourunderstanding of the evolutionary potential of sexual selection.  相似文献   

14.
Host selection patterns in insects breeding in bracket fungi   总被引:3,自引:0,他引:3  
Abstract.  1. Fungivorous insects are generally viewed as polyphagous, largely because most fungal fruiting bodies constitute an unpredictable resource. To examine the validity of this hypothesis, and degree of phylogenetic relatedness between the preferred hosts of the insects, host selection in the insect fauna of bracket fungi was studied, using data obtained both from the field and the literature.
2. More than half (53%) of the insect species breeding in them appeared to be monophagous.
3. Modern phylogenies explained the host selection patterns better than older classifications, since non-monophagous species of beetles frequently used hosts that are closely related to each other.
4. The hypothesis that polyphagous species use more heavily decayed fruiting bodies than monophagous species was verified for insects breeding in Fomes fomentarius . The results indicate that the chemical composition of the fungi influences host selection.
5. It is suggested that fruiting bodies of bracket fungi differ from most other fungi in that their occurrence is more predictable. Therefore, the primary colonising fungivores generally attack only one host species, or a few hosts that are closely phylogenetically related. Polyphagous species generally colonise fruiting bodies after they have reached a certain stage of decay, thus escaping their chemical defence.  相似文献   

15.
On mammals and birds communities of ectoparasites are present, which can include scores of ticks, mites and insects species. The parasitizing of arthropods terrestrial vertebrates appeared as far back a the Cretaceous period, and after 70-100 mil. years of the coevolution ectoparasites have assimilated all food resources and localities of the hosts' bodies. To the present only spatial and (to the less extent) trophic niches of parasitic insects, ticks and mites are studied completely enough. The main results these investigations are discussed in the present paper. A high abundance of the communities is reached because of their partition into the number of ecological niches. Host is complex of ecological niches for many ectoparasites species. These niches reiterate in the populations of a species closely related species of hosts and repeat from generation to generation. The each part of host (niche) being assimilated be certain parasite species is available potentially for other species. The partition of host into ecological niches is clearer than the structure of ecosystems including free-living organisms. A real extent of the ecological niches occupation by different species of ticks, mites and insects is considerably lower than a potential maximum. The degree of ecological niches saturation depends on the history of the coevolution of parasites community components, previous colonization be new ectoparasite species and many other ecological factors affecting host-parasite system. The use of the ecological niche conception in parasitology is proved to be rather promising. Ectoparasites communities because of their species diversity, different types of feeding and a number of habitats on host represent convenient models and study of them can contribute significantly to the developmeht of the general conception of ecological niche.  相似文献   

16.
Members of several bacterial lineages are known only as symbionts of insects and move among hosts through maternal transmission. Such vertical transfer promotes strong fidelity within these associations, favoring the evolution of microbially mediated effects that improve host fitness. However, phylogenetic evidence indicates occasional horizontal transfer among different insect species, suggesting that some microbial symbionts retain a generalized ability to infect multiple hosts. Here we examine the abilities of three vertically transmitted bacteria from the Gammaproteobacteria to infect and spread within a novel host species, the pea aphid, Acyrthosiphon pisum. Using microinjection, we transferred symbionts from three species of natural aphid hosts into a common host background, comparing transmission efficiencies between novel symbionts and those naturally infecting A. pisum. We also examined the fitness effects of two novel symbionts to determine whether they should persist under natural selection acting at the host level. Our results reveal that these heritable bacteria vary in their capacities to utilize A. pisum as a host. One of three novel symbionts failed to undergo efficient maternal transmission in A. pisum, and one of the two efficiently transmitted bacteria depressed aphid growth rates. Although these findings reveal that negative fitness effects and low transmission efficiency can prevent the establishment of a new infection following horizontal transmission, they also indicate that some symbionts can overcome these obstacles, accounting for their widespread distributions across aphids and related insects.  相似文献   

17.
International trade and travel are devastating native flora and fauna in many countries through the intentional and/or unintentional introduction of exotic organisms. Pathway control appears to be particularly effective for microscopic organisms such as mites, nematodes, and fungi that are difficult to see with the naked eye. However, taxonomic and ecological information on such organisms is scarce, sometimes causing time lags or failure in eradication programs. Several groups of mites, nematodes, and fungi commonly share a habitat with insects or use them as dispersal agents (phoresy). Some exotic mites and nematodes are introduced simultaneously with exotic insects, sometimes in wood materials. In Japan, mites, nematodes, and fungi have been collected from lucanid beetles introduced as pets from Southeast Asia. While no lethal nematode species have been collected from lucanid beetles, one hemolymph-sucking mite species, inhabiting the sub-elytral space of its native host, is able to easily switch to the Japanese beetle, Dorcus rectus, killing the insect. Yeasts have also been reported on exotic beetles and laboulbeniomycetes have been found on mites associated with the beetles, although their interactions are unknown. Despite the lack of information available about other mites, nematodes, and fungi associated with intentionally and unintentionally introduced forest insects, our analysis of insect species listed by the International Union for Conservation of Nature suggests that unintentional introductions of the microscopic organisms are quite common as a consequence of the existence of symbiotic relationships such as phoresy and parasitism.  相似文献   

18.
Mycoviruses (fungal viruses) are reviewed with emphasis on plant pathogenic fungi. Based on the presence of virus-like particles and unencapsidated dsRNAs, mycoviruses are common in all major fungal groups. Over 80 mycovirus species have been officially recognized from ten virus families, but a paucity of nucleic acid sequence data makes assignment of many reported mycoviruses difficult. Although most of the particle types recognized to date are isometric, a variety of morphologies have been found and, additionally, many apparently unencapsidated dsRNAs have been reported. Until recently, most characterized mycoviruses have dsRNA genomes, but ssRNA mycoviruses now constitute about one-third of the total. Two hypotheses for the origin of mycoviruses of plant pathogens are discussed: the first that they are of unknown but ancient origin and have coevolved along with their hosts, the second that they have relatively recently moved from a fungal plant host into the fungus. Although mycoviruses are typically readily transmitted through asexual spores, transmission through sexual spores varies with the host fungus. Evidence for natural horizontal transmission has been found. Typically, mycoviruses are apparently symptomless (cryptic) but beneficial effects on the host fungus have been reported. Of more practical interest to plant pathologists are those viruses that confer a hypovirulent phenotype, and the scope for using such viruses as biocontrol agents is reviewed. New tools are being developed based on host genome studies that will help to address the intellectual challenge of understanding the fungal–virus interactions and the practical challenge of manipulating this relationship to develop novel biocontrol agents for important plant pathogens.  相似文献   

19.
A diverse range of endosymbionts are found within the cells of animals. As these endosymbionts are normally vertically transmitted, we might expect their evolutionary history to be dominated by host-fidelity and cospeciation with the host. However, studies of bacterial endosymbionts have shown that while this is true for some mutualists, parasites often move horizontally between host lineages over evolutionary timescales. For the first time, to our knowledge, we have investigated whether this is also the case for vertically transmitted viruses. Here, we describe four new sigma viruses, a group of vertically transmitted rhabdoviruses previously known in Drosophila. Using sequence data from these new viruses, and the previously described sigma viruses, we show that they have switched between hosts during their evolutionary history. Our results suggest that sigma virus infections may be short-lived in a given host lineage, so that their long-term persistence relies on rare horizontal transmission events between hosts.  相似文献   

20.
Fitness consequences of ectoparasitism are expressed over the lifetime of their hosts in relation to variation in composition and abundance of the entire ectoparasite community and across all host life history stages. However, most empirical studies have focused on parasite species-specific effects and only during some life history stages. We conducted a systematic, year-long survey of an ectoparasite community in a wild population of house finches Carpodacus mexicanus Müller in south-western Arizona, with a specific focus on ecological and behavioral correlates of ectoparasite prevalence and abundance. We investigated five ectoparasite species: two feather mite genera – both novel for house finches – Strelkoviacarus (Analgidae) and Dermoglyphus (Dermoglyphidae), the nest mite Pellonyssus reedi (Macronyssidae), and the lice Menacanthus alaudae (Menoponidae) and Ricinus microcephalus (Ricinidae). Mite P. reedi and louse Menacanthus alaudae abundance peaked during host breeding season, especially in older birds, whereas feather mite abundance peaked during molt. Overall, breeding birds had more P. reedi than non-breeders, molting males had greater abundance of feather mites than molting females and non-molting males, and young males had more feather mites than older males. We discuss these results in relation to natural history of ectoparasites under study and suggest that ectoparasites might synchronize their life cycles to those of their hosts. Pronounced differences in relative abundance of ectoparasite species among host's life history stages have important implications for evolution of parasite-specific host defenses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号