首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
J. P. Knox  A. D. Dodge 《Planta》1985,164(1):30-34
Eosin, a known generator of singlet oxygen, applied to leaf discs of Pisum sativum L. sensitized the inhibition of photosynthesis. Analysis of partial photosynthetic electron-transport reactions and of the kinetics of variable chlorophyll fluorescence located the damage at photosystem II. This injury required the presence of oxygen and was also caused by the irradiation of eosin-treated leaf tissue with green light. The role of oxygen and photodynamic reactions in the susceptibility of photosystem II to damage by environmental stresses is discussed.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DCPIP 2,6-dichlorophenolindophenol - DPC 1,5-diphenylcarbazide - PSI photosystem I - PSII photosystem II - 1O2 singlet oxygen - Tricine N-[2-hydroxyl-3,1-bis(hydroxymethyl)ethyl]-glycine  相似文献   

2.
Loss of sulfide adaptation ability in a thermophilic Oscillatoria   总被引:1,自引:0,他引:1  
A spontaneous variant incapable of anoxygenic photosynthesis was derived from a fully competent strain of Oscillatoria amphigramulata which was originally isolated from a high sulfide-containing hot spring of New Zealand. Although the variant (Oa-2) acquired a slight ability to photosynthesize in the presence of 0.3–0.4 mM sulfide, this was only after a 24 h exposure to sulfide and represented oxygenic photosynthesis only. Unlike the parent strain, the incompetent variant never grew in the presence of sulfide >0.05 mM, nor was there any relief of the inhibition by DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] of CO2 photoincorporation when sulfide was present. The variant strain has retained all of these characteristics over a 4 year period with monthyl transfers in non-sulfide medium. The wild type, under identical conditions, has retained all of its competence with respect to sulfide.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   

3.
Two facultative anoxygenic photoautotrophic cyanobacteria, Oscillatoria limnetica and Aphanothece halophytica were found capable of CO2 photoassimilation using molecular hydrogen as electron donor in a photosystem I driven reaction. A. halophytica was also capable of evolving hydrogen from Na-dithionite reduced methylviologen in a light independent reaction.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DSPD Disallcylidenepropanediamine - FCCP Carbonylcyanide p-trifluoromethoxyphenyl hydrazone - Tricine N-tris(hydroxy methyl)-methylglycine  相似文献   

4.
Oscillatoria limnetica grown photoautotrophically under aerobic or anaerobic conditions contained a single superoxide dismutase (SOD) of identical electrophoretic mobility in both cases. Its activity was cyanide resistant and H2O2 sensitive, implicating Fe-SOD. The enzyme level was high in aerobically and low in anaerobically growing cells. Anaerobically grown cells were more sensitive than aerobic to photooxidation, as expressed by bleaching of phycocyanin and disintegration of the trichomes.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - SOD superoxide dismutase  相似文献   

5.
A number of cyanobacteria showing a high degree of adaptation to life under reduced oxygen tensions as witnessed by their potency of facultative anoxygenic CO2 photoassimilation with sulfide as electron donor were found to lack polyunsaturated fatty acids in their lipids. Lack of polyunsaturated fatty acids was found in representatives of different taxonomic groups. One of the strains lacking polyenoic acids was Oscillatoria limnetica, which can alternatively grow acrobically or anaerobically with sulfide as electron donor. This organism was found to synthesize monounsaturated fatty acids by desaturation of their saturated counterparts, in the presence as well as in the absence of molecular oxygen.Abbreviations ACP Acyl carrier protein - DCMU 3(3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   

6.
Oscillatoria sp. strain 23 is a filamentous, non-heterocystous cyanobacterium that fixes nitrogen aerobically. Although, in this organism nitrogenase is inactivated by oxygen a high tolerance is observed. Up to a pO2 of 0.15 atm, oxygen does not have any measurable effects on acetylene reduction. Higher concentrations of oxygen inhibited the activity to a relatively high degree. Evidence for two mechanisms of oxygen protection of nitrogenase in this cyanobacterium was obtained. A high rate of synthesis of nitrogenase may allow the organism to maintain a certain amount of active enzyme under aerobic conditions. Secondly, a switch off/on mechanism may reversibly convert the active enzyme into a non-active form which is insensitive to oxygen inactivation after a sudden and short-term exposure to high oxygen concentrations. It is conceived that these mechanisms in addition to a temporal separation of nitrogen fixation from oxygenic photosynthesis sufficiently explain the regulation process of aerobic nitrogen fixation in this organism.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - CAP chloramphenicol  相似文献   

7.
Restoration of a high potential (HP) form of cytochrome b-559 (Cyt b-559) from a low potential (LP) form was the primary process in the reconstitution of O2-evolving center during the photoreactivation of Tris-inactivated chloroplasts. In normal chloroplasts, about 0.5 to 0.7 mol of Cyt b-559 was present in the HP form per 400 chlorophyll molecules. However, the HP form was converted to the LP form when the O2-evolving center was inactivated by 0.8 M alkaline Tris-washing (pH 9.1). The inactivation was reversible and both the Cyt b-559 HP form and the O2-evolving activity were restored by incubating the inactivated chloroplasts with weak light, Mn2+, Ca2+ and an electron donor (photoreactivation). The recovery of the HP form preceded the recovery of O2-evolving activity. 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) did not inhibit the recovery of the HP form. Thus, the recovery of Cyt b-559 HP form was the primary reaction in the photoreactivation, which was stimulated by the light-induced redox reaction of the PS-II core center.Abbreviations ASC ascorbate - BSA bovine serum albumin - Chl chlorophyll - Cyt b-559 HP form high potential form of cytochrome b-559 - Cyt b-559 LP form low potential form of cytochrome b-559 - Cyt b-559 VLP form very low potential form of cytochrome b-559 - Cyt f cytochrome f - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DCPIP 2,6-dichlorophenol indophenol - Hepes N-2-hydroxyethyl-piperazine-N-2-ethanesulfonic acid - HQ hydroquinone - SHN chloroplast-preparation medium containing 0.4 M sucrose, 50 mM Hepes-Na (pH 7.8) and 20 mM NaCl - PS-II Photosystem II  相似文献   

8.
Guy  Micha  Kende  Hans 《Planta》1984,160(3):276-280
Protoplasts isolated from leaves of peas (Pisum sativum L.) and of Vicia faba L. produced 1-aminocyclopropane-1-carboxylic acid (ACC) from endogenous substrate. Synthesis of ACC and conversion of ACC to ethylene was promoted by light and inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and carbonyl cyanide m-chlorophenylhydrazone. Aminoethoxyvinylglycine inhibited ethylene synthesis to a minor extent when given during incubation of the protoplasts but was very effective when added both to the medium in which the protoplasts were isolated and to the incubation medium as well. Radioactivity from [U-14C]methionine was incorporated into ACC and ethylene. However, the specific radioactivity of the C-2 and C-3 atoms of ACC, from which ethylene is formed, increased much faster than the specific radioactivity of ethylene. It appears that ACC and ethylene are synthesized in different compartments of the cell and that protoplasts constitute a suitable system to study this compartmentation.Abbreviations ACC 1-Aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine - CCCP carbonyl cyanide m-chlorophenylhydrazone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   

9.
The rate of volatilization of Hg2+ as metallic Hg is accelerated by illumination of Chlorella cells. In the presence of the uncoupler methylamine the rate of volatilization in the light is greatly but transiently increased. DCMU (3-(3,4-dichlorophenyl)-1,1-dimethyl urea) prevented the light response. In the presence of Hg2+, O2 evolution by the cells was not completely inhibited by DCMU. Hg2+ appears to prevent DCMU reaching its binding site. Light seems to increase the amount of or leakage from the cells of a metabolite capable of reducing Hg2+ to Hg°.  相似文献   

10.
P. Horton  P. Lee 《Planta》1985,165(1):37-42
Thylakoids isolated from peas (Pisum sativum cv. Kelvedon Wonder) and phosphorylated by incubation with ATP have been compared with non-phosphorylated thylakoids in their sensitivity to photoinhibition by exposure to illumination in vitro. Assays of the kinetics of fluorescence induction at 20° C and the fluorescence emission spectra at-196° C indicate a proportionally larger decrease in fluorescence as a result of photoinhibitory treatment of non-phosphorylated compared with phosphorylated thylakoids. It is concluded that protein phosphorylation can afford partial protection to thylakoids exposed to photoinhibitory conditions.Abbreviations and symbols DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - F 0 Level of chlorophyll fluorescence when photosystem 2 traps are open - F m Level of chlorphyll fluorescence when photosystem 2 traps are closed - P Maximum level of fluorescence reached in the absence of DCMU - PSI (II) photosystem I(II)  相似文献   

11.
The light-induced oxygen evolution, photoreduction of 2,6-dichlorophenolindophenol (DPIP) and carotenoid photobleaching induced by carbonylcyanide m-chlorophenylhydrazone (CCCP) were investigated withspinach chloroplast fragments in the presence of H2O2. Oxygenevolution in the presence of H2O2 was not inhibited by CCCPand was only partially inhibited by 5 µM 3-(3,4-dichlorophenyl)-1,1-dimethylurea(DCMU) which completely inhibited the Hill reaction with DPIP.The degree of inhibition by DCMU was decreased by a simultaneousaddition of CCCP. Carotenoid photobleaching in the presenceof CCCP was stimulated by H2O2. The CCCP-induced carotenoidphotobleaching was completely inhibited by DCMU. However, itwas only partially inhibited by DCMU in the presence of H2O2.These data indicate that H2O2 donates electrons at a site betweenthe CCCP-sensitive site and the reaction center of photosystemII and is reduced at a site between the DCMU-blocked site andthe reaction center of photosystem II. 1Present address: Department of Biology, Kyushu Dental College,Kitakyushu 803, Japan. (Received June 20, 1974; )  相似文献   

12.
Three independent methods have been used to determine the size of the quantum accumulation unit in green plant photosynthesis. This unit is defined as that group of pigment molecules within which quantal absorption acts must take place leading to the evolution of a single O2 molecule. All three methods take advantage of the nonlinearity of oxygen yield with light dose at very low dosages. The experimental values of this unit size, based on an assumed model for the charge cooperation in O2 evolution, ranging from 800 to 1600, suggest that there is either limited energy transfer between energy-trapping units or chemical cooperation among oxygen precursors formed in several neighboring energy-trapping units. Widely diffusible essential precursors to molecular oxygen are ruled out by these results. Inhibition studies show that O2 evolution is blocked when 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) is added to chloroplasts after two preliminary flashes and before a third flash which would have yielded O2 in the absence of DCMU. This experiment is interpreted as evidence that the site of DCMU inhibition is on the oxidizing side of system II. Pretreatment of chloroplasts with large concentrations of Tris, previously believed to destroy O2 evolution by blocking an essential reaction in the electron chain between water and system II, may be alternately interpreted as promoting the dark reversal of the system II light-induced electron transfer.  相似文献   

13.
Studies with Eudorina elegans L. were done to provide additional information on the effect of phenyl urea herbicides on phytoplankton. Colonies were grown in various concentrations of DCMU, 3(3,4-dichlorophenyl)-1,1-dimethylurea. DCMU at 10-5 m induced an algicidic response. DCMU at 10-7 M and 10-9 M caused a significant reduction in the growth of colonies. Photosynthesis was significantly inhibited at all concentrations of DCMU. A rapidly growing population of algae treated with 10-7 m and 10-9 m DCMU showed a reduced motile/non-motile balance of colonies.  相似文献   

14.
We investigated the slow signal of apparent O2 release under brief light flashes by using mutants of Synechocystis sp. PCC 6803 which lacked CP43 and D1. The slow signal was present at higher amplitudes in the mutants. It was inhibited by starving the mutants of glucose (>90%), by 10 mM NaN3 (85%) and by boiling samples for 2 min (100%). In the mutants and in the wild-type, the slow signal was 95% inhibited by the combination of DBMIB (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone) and HQNO (2-n-heptyl-4-hydroxyquinoline-N-oxide). In the wild type, the addition of DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) or CCCP (carbonylcyanide m-chlorophenylhydrazone) completely inhibited photosynthetic O2 evolution, yet failed to inhibit the slow signal. We explain the kinetics of the wild-type signal as a positive deflection due to the inhibition of respiration by PS I activity, and a negative deflection due to the stimulation of respiration by electrons originating from PS II. We found no evidence of a meta-stable S3 in Synechocystis sp. PCC 6803 that could contribute to the slow signal of apparent O2 release. We present a calculation which involves only averaging, division and subtraction, that can remove the contribution of the slow signal from the true photosynthetic O2 signal and provide up to a 10-fold improved accuracy of the S-state models.Abbreviations ADRY Acceleration of the Deactivation Reactions of the water-splitting enzyme system Y - Ant-2-p 2-(3-chloro-4-trifluoromethyl)-anilino-3,5-dinitrothiophene - CCCP carbonylcyanide m-chlorophenylhydrazone - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, a.k.a. Dibromothymoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron) - HQNO 2-n-heptyl-4-hydroxyquinoline-N-oxide - S. 6803 Synechocystis sp. PCC 6803  相似文献   

15.
Mutants of Anabaena sp. PCC 7120 with O2-sensitive acetylene-reducing activity were studied to identify envelope components that contribute to the barrier limiting diffusion of oxygen into the heterocyst. Mutant strain EF114, deficient in a heterocyst-specific glycolipid, reduced acetylene only under strictly anaerobic conditions. Analysis of in vivo O2 uptake as a function of dissolved pO2 showed that EF114 has lost the low affinity, diffusion-limited respiratory component associated with heterocysts in wild-type filaments. The low affinity respiratory activity was also lost in EF116, a mutant in which the cohesiveness of the outer polysaccharide layer was reduced. Restoration of aerobic nitrogen fixation in a spontaneous revertant of EF116 and in a strain complemented with cosmid 41E11 was associated with restoration of the low affinity component of respiratory activity. The results provide evidence that the barrier to diffusion of gas into heterocysts depends upon both the glycolipid layer and the polysaccharide layer of the heterocyst envelope.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   

16.
S. Takagi  E. Kamitsubo  R. Nagai 《Protoplasma》1992,168(3-4):153-158
Summary Using a centrifuge microscope with stroboscopic illumination, we examined the effects of light irradiation on the passive movement of chloroplasts in dark-adapted mesophyll cells ofVallisneria gigantea. While irradiation with red light accelerates the passive gliding of chloroplasts produced by centrifugal force, irradiation with far-red light negates this effect. Irradiation with blue light does not accelerate the passive gliding, while red light is completely effective even in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea, an inhibitor of photosynthesis. An apparently active movement of chloroplasts can be induced by irradiation with red or blue light only in the presence of the far-red light-absorbing form of phytochrome. The significance of the reaction in the light with respect to the regulation of cytoplasmic streaming is discussed.Abbreviations APW artificial pond water - CMS centrifuge microscope of the stroboscopic type - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - Pfr phytochrome, far-red light-absorbing form - Pr phytochrome, red light-absorbing form  相似文献   

17.
A. Schwartz  E. Zeiger 《Planta》1984,161(2):129-136
The supply of energy for stomatal opening was investigated with epidermal peels of Commelina communis L. and Vicia faba L., under white, blue and red irradiation or in darkness. Fluencerate response curves of stomatal opening under blue and red light were consistent with the operation of two photosystems, one dependent on photosynthetic active radiation (PAR) and the other on blue light, in the guard cells. The PAR-dependent system was 3(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-sensitive and KCN-resistant and showed a relatively high threshold irradiance for its activation; its activity was most prominent at moderate to high irradiances. The blue-light-dependent photosystem was KCN-sensitive, was active at low irradiances, and interacted with the PAR-dependent photosystem at high blue irradiances. Stomatal opening in darkness, caused by CO2-free air, fusicoccin or high KCl concentrations, was KCN-sensitive and DCMU-resistant. These data indicate that stomatal opening in darkness depends on oxidative phosphorylation for the supply of high-energy equivalents driving proton extrusion. Light-dependent stomatal opening appears to require photophosphorylation from guard-cell chloroplasts and the activation of the blue-light photosystem which could rely either on oxidative phosphorylation or a specific, membrane-bound electron-transport carrier.Abbreviations DCMU 3(3,4-dichlorophenyl)-1-1-dimethylurea - FC fusicoccin - KCN potassium cyanide - PAR photosynthetic active radiation - WL white light  相似文献   

18.
The effects of photosynthetic inhibitors and light-dark regimes on the replication of cyanophage SM-2 in its host cyanobacteria (Synechococcus elongatus UTEX 563 and Microcystis aeruginosa NRC-1, Synechococcus NRC-1 UTEX 1937) have been investigated. Photoassimilation of CO2 by infected cells was enhanced and remained elevated until late in the infection cycle. Photosynthetic inhibitors and the removal of light suppressed viral replication. SM-2, like other cyanophage of unicellular cyanobacteria, is highly dependent on host photosynthetic metabolism for the energy required in replication.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - CCCP carbonyl-cyanide m-chlorophenyl hydrazone - MMH Modified Modified Hughes Medium  相似文献   

19.
PS II membrane fragments produced from higher plant thylakoids by Triton X-100 treatment exhibit strong photoinhibition and concomitant fast degradation of the D1 protein. Involvement of (molecular) oxygen is necessary for degradation of the D1 protein.The herbicides atrazine and diuron, but not ioxynil, partly protect the D1 protein against degradation. Binding of atrazine to the D1 protein is necessary to protect the D1 polypeptide, as shown with PS II membrane fragments from an atrazine-resistant biotype of Chenopodium album which are protected by diuron not by atrazine.Abbreviations atrazine 2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine - Chl chlorophyll, diuron - (DCMU) 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DMBQ 2,5-dimethyl-p-benzoquinone - DCIP 2,6-dichlorophenol indophenol - DPC diphenylcarbazide - ioxynil 4-cyano-2,6-diiodophenol - kb binding constant - Mes 4-morpholinoethanesulfonic acid - P-680 reaction-center chlorophyll a of photosystem-II - PAGE polyacrylamide gel electrophoresis - PS II photosystem-II - QA and QB primary and secondary quinone electron acceptors - Z electron donor to the photosystem-II reaction center - SDS sodium dodecylsulfate - Tricine N-2-hydroxy-1,1-bis(hydroxymethyl)ethylglycine  相似文献   

20.
Tim S. Stuart 《Planta》1971,96(1):81-92
Summary Photosynthesis, photoreduction, the p-benzoquinone Hill reaction, and glucose uptake by whole cells, as well as cyclic photophosphorylation (with PMS) by chloroplast particles were strongly inhibited by 10-2 M salicylaldoxime or by heating whole cells for 1–2 min at 55°. In contrast, H2 photoproduction by whole cells of mutant No. 11 and wild type Scenedesmus and PS I-mediated MR reduction by chloroplast particles were either stimulated or not significantly inhibited by these agents. H2 production by mutant No. 8 was slightly depressed by salicylaldoxime. DCMU inhibited H2 photoproduction with 10-2 M salicylaldoxime approximately 20%, indicating some contribution of electrons by endogenous organic compounds to photosystem II between the O2-evolving mechanism and the DCMU-sensitive site. We conclude that photohydrogen production by PS I of Scenedesmus does not require cyclic photophosphorylation but is due to non-cyclic electron flow from organic substrate(s) through PS I to hydrogenase where molecular H2 is released.The following abbreviations were used CI-CCP carbonyl cyanide m-chlorophenylhydrazone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DCPIP dichlorophenol-indophenol - MR methyl red - PMS phenazine methosulfate - PS photosystem This work was supported by contract AT-(40-1)-2687 from the U.S. Atomic Energy Commission to Professor H. Gaffron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号