首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modern programmed (adaptive) theories of biological aging contend that organisms including mammals have generally evolved mechanisms that purposely limit their lifespans in order to obtain an evolutionary benefit. Modern non-programmed theories contend that mammal aging generally results from natural deteriorative processes, and that lifespan differences between species are explained by differences in the degree to which they resist those processes. Originally proposed in the 19th century, programmed aging in mammals has historically been widely summarily rejected as obviously incompatible with the mechanics of the evolution process. However, relatively recent and continuing developments described here have dramatically changed this situation, and programmed mammal aging now has a better evolutionary basis than non-programmed aging. Resolution of this issue is critically important to medical research because the two theories predict that very different biological mechanisms are ultimately responsible for age-related diseases and conditions.  相似文献   

2.
Programmed aging theories contend that evolved biological mechanisms purposely limit internally determined lifespans in mammals and are ultimately responsible for most instances of highly age-related diseases and conditions. Until recently, the existence of programmed aging mechanisms was considered theoretically impossible because it directly conflicted with Darwin’s survival-of-the-fittest evolutionary mechanics concept as widely taught and generally understood. However, subsequent discoveries, especially in genetics, have exposed issues with some details of Darwin’s theory that affect the mechanics of the evolution process and strongly suggest that programmed aging mechanisms in humans and other mammals can and did evolve, and more generally, that a trait that benefits a population can evolve even if, like senescence, it is adverse to individual members of the population. Evolvability theories contend that organisms can possess evolved design characteristics (traits) that affect their ability to evolve, and further, that a trait that increases a population’s ability to evolve (increases evolvability) can be acquired and retained even if it is adverse in traditional individual fitness terms. Programmed aging theories based on evolvability contend that internally limiting lifespan in a species-specific manner creates an evolvability advantage that results in the evolution and retention of senescence. This issue is critical to medical research because the different theories lead to dramatically different concepts regarding the nature of biological mechanisms behind highly age-related diseases and conditions.  相似文献   

3.
Programmed aging refers to the idea that senescence in humans and other organisms is purposely caused by evolved biological mechanisms to obtain an evolutionary advantage. Until recently, programmed aging was considered theoretically impossible because of the mechanics of the evolution process, and medical research was based on the idea that aging was not programmed. Theorists struggled for more than a century in efforts to develop non-programmed theories that fit observations, without obtaining a consensus supporting any non-programmed theory. Empirical evidence of programmed lifespan limitations continued to accumulate. More recently, developments, especially in our understanding of biological inheritance, have exposed major issues and complexities regarding the process of evolution, some of which explicitly enable programmed aging of mammals. Consequently, science-based opposition to programmed aging has dramatically declined. This progression has major implications for medical research, because the theories suggest that very different biological mechanisms are ultimately responsible for highly age-related diseases that now represent most research efforts and health costs. Most particularly, programmed theories suggest that aging per se is a treatable condition and suggest a second path toward treating and preventing age-related diseases that can be exploited in addition to the traditional disease-specific approaches. The theories also make predictions regarding the nature of biological aging mechanisms and therefore suggest research directions. This article discusses developments of evolutionary mechanics, the consequent programmed aging theories, and logical inferences concerning biological aging mechanisms. It concludes that major medical research organizations cannot afford to ignore programmed aging concepts in assigning research resources and directions.  相似文献   

4.
Negligible or negative senescence occurs when mortality risk is stable or decreases with age, and has been observed in some wild animals. Age‐independent mortality in animals may lead to an abnormally long maximum individual lifespans and be incompatible with evolutionary theories of senescence. The reason why there is no evidence of senescence in these animals has not been fully understood. Recovery rates are usually very low for wild animals with high dispersal ability and/or small body size (e.g., bats, rodents, and most birds). The only information concerning senescence for most of these species is the reported lifespan when individuals are last seen or caught. We deduced the probability density function of the reported lifespan based on the assumption that the real lifespan corresponding to Weibull or Gompertz distribution. We show that the magnitude of the increase in mortality risk is largely underestimated based on the reported lifespans with low recovery probability. The risk of mortality can aberrantly appear to have a negative correlation with age when it actually increases with increasing lifespan. We demonstrated that the underestimated aging rate for wild animals with low recovery probability can be generalizable to any aging models. Our work provides an explanation for the appearance of negligible senescence in many wild animals. Humans attempt to obtain insights from other creatures to better understand our own biology and its gain insight into how to enhance and extended human health. Our advice is to take a second glance before admiring the negligible senescence in other animals. This ability to escape from senescence is possibly only as beautiful illusion in animals.  相似文献   

5.
The evolutionary theories of aging are useful for gaining insights into the complex mechanisms underlying senescence. Classical theories argue that high levels of extrinsic mortality should select for the evolution of shorter lifespans and earlier peak fertility. Non-classical theories, in contrast, posit that an increase in extrinsic mortality could select for the evolution of longer lifespans. Although numerous studies support the classical paradigm, recent data challenge classical predictions, finding that high extrinsic mortality can select for the evolution of longer lifespans. To further elucidate the role of extrinsic mortality in the evolution of aging, we implemented a stochastic, agent-based, computational model. We used a simulated annealing optimization approach to predict which model parameters predispose populations to evolve longer or shorter lifespans in response to increased levels of predation. We report that longer lifespans evolved in the presence of rising predation if the cost of mating is relatively high and if energy is available in excess. Conversely, we found that dramatically shorter lifespans evolved when mating costs were relatively low and food was relatively scarce. We also analyzed the effects of increased predation on various parameters related to density dependence and energy allocation. Longer and shorter lifespans were accompanied by increased and decreased investments of energy into somatic maintenance, respectively. Similarly, earlier and later maturation ages were accompanied by increased and decreased energetic investments into early fecundity, respectively. Higher predation significantly decreased the total population size, enlarged the shared resource pool, and redistributed energy reserves for mature individuals. These results both corroborate and refine classical predictions, demonstrating a population-level trade-off between longevity and fecundity and identifying conditions that produce both classical and non-classical lifespan effects.  相似文献   

6.
The programmed vs. non-programmed aging controversy has now existed in some form for at least 150 years. For much of the XX century, it was almost universally believed that evolution theory prohibited programmed (adaptive) aging in mammals and there was little direct experimental or observational evidence favoring it. More recently, multiple new evolutionary mechanics concepts that support programmed aging and steadily increasing direct evidence favoring it overwhelmingly support the existence of programmed aging in humans and other organisms. This issue is important because the different theories suggest very different mechanisms for the aging process that in turn suggest very different paths toward treating and preventing age-related diseases.  相似文献   

7.
The evolutionary explanation for lifespan variation is still based on the antagonistic pleiotropy hypothesis, which has been challenged by several studies. Alternative models assume the existence of genes that favor aging and group benefits at the expense of reductions in individual lifespans. Here we propose a new model without making such assumptions. It considers that limited dispersal can generate, through reduced gene flow, spatial segregation of individual organisms according to lifespan. Individuals from subpopulations with shorter lifespan could thus resist collapse in a growing population better than individuals from subpopulations with longer lifespan, hence reducing lifespan variability within species. As species that disperse less may form more homogeneous subpopulations regarding lifespan, this may lead to a greater capacity to maximize lifespan that generates viable subpopulations, therefore creating negative associations between dispersal capacity and lifespan across species. We tested our model with individual‐based simulations and a comparative study using empirical data of maximum lifespan and natal dispersal distance in 26 species of birds, controlling for the effects of genetic variability, body size, and phylogeny. Simulations resulted in maximum lifespans arising from lowest dispersal probabilities, and comparative analyses resulted in a negative association between lifespan and natal dispersal distance, thus consistent with our model. Our findings therefore suggest that the evolution of lifespan variability is the result of the ecological process of dispersal.  相似文献   

8.
Sea urchins exhibit a very different life history from humans and short-lived model animals and therefore provide the opportunity to gain new insight into the complex process of aging. Sea urchins grow indeterminately, regenerate damaged appendages, and reproduce throughout their lifespan. Some species show no increase in mortality rate at advanced ages. Nevertheless, different species of sea urchins have very different reported lifespans ranging from 4 to more than 100?years, thus providing a unique model to investigate the molecular, cellular, and physiological mechanisms underlying both lifespan determination and negligible senescence. Studies to date have demonstrated maintenance of telomeres, maintenance of antioxidant and proteasome enzyme activities, and little accumulation of oxidative cellular damage with age in tissues of sea urchin species with different lifespans. Gene expression studies indicate that key cellular pathways involved in energy metabolism, protein homeostasis, and tissue regeneration are maintained with age. Taken together, these studies suggest that long-term maintenance of mechanisms that sustain tissue homeostasis and regenerative capacity is essential for indeterminate growth and negligible senescence, and a better understanding of these processes may suggest effective strategies to mitigate the degenerative decline in human tissues with age.  相似文献   

9.
Many laboratory models used in aging research are inappropriate for understanding senescence in mammals, including humans, because of fundamental differences in life history, maintenance in artificial environments, and selection for early aging and high reproductive rate. Comparative studies of senescence in birds and mammals reveal a broad range in rates of aging among a variety of taxa with similar physiology and patterns of development. These comparisons suggest that senescence is a shared property of all vertebrates with determinate growth, that the rate of senescence has been modified by evolution in response to the potential life span allowed by extrinsic mortality factors, and that most variation among species in the rate of senescence is independent of commonly ascribed causes of aging, such as oxidative damage. Individuals of potentially long‐lived species, particularly birds, appear to maintain high condition to near the end of life. Because most individuals in natural populations of such species die of aging‐related causes, these populations likely harbor little genetic variation for mechanisms that could extend life further, or these mechanisms are very costly. This, and the apparent evolutionary conservatism in the rate of increase in mortality with age, suggests that variation in the rate of senescence reflects fundamental changes in organism structure, likely associated with the rate of development, rather than physiological or biochemical processes influenced by a few genes. Understanding these evolved differences between long‐lived and short‐lived organisms would seem to be an essential foundation for designing therapeutic interventions with respect to human aging and longevity.  相似文献   

10.
Despite recent progress in the identification of genes that regulate longevity, aging remains a mysterious process. One influential hypothesis is the idea that the potential for cell division and replacement are important factors in aging. In this work, we review and discuss this perspective in the context of interventions in mammals that appear to accelerate or retard aging. Rather than focus on molecular mechanisms, we interpret results from an integrative biology perspective of how gene products affect cellular functions, which in turn impact on tissues and organisms. We review evidence suggesting that mutations that give rise to features resembling premature aging tend to be associated with cellular phenotypes such as increased apoptosis or premature replicative senescence. In contrast, many interventions in mice that extend lifespan and might delay aging, including caloric restriction, tend to either hinder apoptosis or result in smaller animals and thus may be the product of fewer cell divisions. Therefore, it appears plausible that changes in the number of times that cells, and particularly stem cells, divide during an organism's lifespan influence longevity and aging. We discuss possible mechanisms related to this hypothesis and propose experimental paradigms.  相似文献   

11.
Until recently, non-programmed theories of biological aging were popular because of the widespread perception that the evolution process could not support the development and retention of programmed aging in mammals. However, newer evolutionary mechanics theories including group selection, kin selection, and evolvability theory support mammal programmed aging, and multiple programmed aging theories have been published based on the new mechanics. Some proponents of non-programmed aging still contend that their non-programmed theories are superior despite the new mechanics concepts. However, as summarized here, programmed theories provide a vastly better fit to empirical evidence and do not suffer from multiple implausible assumptions that are required by non-programmed theories. This issue is important because programmed theories suggest very different mechanisms for the aging process and therefore different mechanisms behind highly age-related diseases and conditions such as cancer, heart disease, and stroke.  相似文献   

12.
We know very little about physiological constraints on the evolution of life-history traits in general, and, in particular, about physiological and molecular adjustments that accompany the evolution of variation in lifespan. Identifying mechanisms that underlie adaptive variation in lifespan should provide insight into the evolution of trade-offs between lifespan and other life-history traits. Telomeres, the DNA caps at the ends of linear chromosomes, usually shorten as animals age, but whether telomere rate of change is associated with lifespan is unknown. We measured telomere length in erythrocytes from five bird species with markedly different lifespans. Species with shorter lifespans lost more telomeric repeats with age than species with longer lifespans. A similar correlation is seen in mammals. Furthermore, telomeres did not shorten with age in Leach's storm-petrels, an extremely long-lived bird, but actually lengthened. This novel finding suggests that regulation of telomere length is associated not only with cellular replicative lifespan, but also with organismal lifespan, and that very long-lived organisms have escaped entirely any telomeric constraint on cellular replicative lifespan.  相似文献   

13.
Aging or senescence is an age-dependent decline in physiological function, demographically manifest as decreased survival and fecundity with increasing age. Since aging is disadvantageous it should not evolve by natural selection. So why do organisms age and die? In the 1940s and 1950s evolutionary geneticists resolved this paradox by positing that aging evolves because selection is inefficient at maintaining function late in life. By the 1980s and 1990s this evolutionary theory of aging had received firm empirical support, but little was known about the mechanisms of aging. Around the same time biologists began to apply the tools of molecular genetics to aging and successfully identified mutations that affect longevity. Today, the molecular genetics of aging is a burgeoning field, but progress in evolutionary genetics of aging has largely stalled. Here we argue that some of the most exciting and unresolved questions about aging require an integration of molecular and evolutionary approaches. Is aging a universal process? Why do species age at different rates? Are the mechanisms of aging conserved or lineage-specific? Are longevity genes identified in the laboratory under selection in natural populations? What is the genetic basis of plasticity in aging in response to environmental cues and is this plasticity adaptive? What are the mechanisms underlying trade-offs between early fitness traits and life span? To answer these questions evolutionary biologists must adopt the tools of molecular biology, while molecular biologists must put their experiments into an evolutionary framework. The time is ripe for a synthesis of molecular biogerontology and the evolutionary biology of aging.  相似文献   

14.
The incidence of diseases increases rapidly with age, accompanied by progressive deteriorations of physiological functions in organisms. Aging-associated diseases are sporadic but mostly inevitable complications arising from senescence. Senescence is often considered the antithesis of early development, but yet there may be factors and mechanisms in common between these two phenomena over the dynamic process of aging. The association between early development and late-onset disease with advancing age is thought to come from a consequence of developmental plasticity, the phenomenon by which one genotype can give rise to a range of physiologically and/or morphologically adaptive states in response to different environmental or genetic perturbations. On the one hand, we hypothesized that the future aging process can be predictive based on adaptivity during the early developmental period. Modulating the thresholds of adaptive plasticity by chemical genetic approaches, we have been investigating whether any relationship exists between the regulatory mechanisms that function in early development and in senescence using the zebrafish (Danio rerio), a small freshwater fish and a useful model animal for genetic studies. We have successfully conducted experiments to isolate zebrafish mutants expressing apparently altered senescence phenotypes during embryogenesis (“embryonic senescence”), subsequently showing shortened lifespan in adulthoods. We anticipate that previously uncharacterized developmental genes may mediate the aging process and play a pivotal role in senescence. On the other hand, unexpected senescence-related genes might also be involved in the early developmental process and regulation. The ease of manipulation using the zebrafish system allows us to conduct an exhaustive exploration of novel genes and small molecular compounds that can be linked to the senescence phenotype, and thereby facilitates searching for the evolutionary and developmental origins of aging in vertebrates. This article is part of a Special Issue entitled: Animal Models of Disease.  相似文献   

15.
The timing and duration of reproductive activities are highly variable both at the individual and population level. Understanding how this variation evolved by natural selection is fundamental to understanding many important aspects of an organism's life history, ecology and behaviour. Here, we combine game theoretic principles governing reproductive timing and the evolutionary theory of senescence to study the interaction between protandry (the earlier arrival or emergence of males to breeding areas than females) and senescence in seasonal breeders. Our general model applies to males who are seeking to mate as frequently as possible over a relatively short period, and so is relevant to many organisms including annual insects and semelparous vertebrates. The model predicts that protandry and maximum reproductive lifespans should increase in environments characterized by high survival and by a low competitive cost of maintaining the somatic machinery necessary for survival. In relatively short seasons under these same conditions, seasonal declines in the reproductive lifespans of males of equivalent quality will be evolutionarily stable. However, over a broad range of potential values for daily survival and maintenance cost, reproductive lifespan is expected to be relatively short and constant throughout a large fraction of the season. We applied the model to sockeye (or kokanee) salmon Oncorhynchus nerka and show that pronounced seasonal declines in reproductive lifespan, a distinctive feature of semelparous Oncorhynchus spp., is likely part of a male mating strategy to maximize mating opportunities.  相似文献   

16.
Whether errors in protein synthesis play a role in aging has been a subject of intense debate. It has been suggested that rare mistakes in protein synthesis in young organisms may result in errors in the protein synthesis machinery, eventually leading to an increasing cascade of errors as organisms age. Studies that followed generally failed to identify a dramatic increase in translation errors with aging. However, whether translation fidelity plays a role in aging remained an open question. To address this issue, we examined the relationship between translation fidelity and maximum lifespan across 17 rodent species with diverse lifespans. To measure translation fidelity, we utilized sensitive luciferase‐based reporter constructs with mutations in an amino acid residue critical to luciferase activity, wherein misincorporation of amino acids at this mutated codon re‐activated the luciferase. The frequency of amino acid misincorporation at the first and second codon positions showed strong negative correlation with maximum lifespan. This correlation remained significant after phylogenetic correction, indicating that translation fidelity coevolves with longevity. These results give new life to the role of protein synthesis errors in aging: Although the error rate may not significantly change with age, the basal rate of translation errors is important in defining lifespan across mammals.  相似文献   

17.
Calorie restriction (CR) extends the mean and maximum lifespan of a wide variety of organisms ranging from yeast to mammals, although the molecular mechanisms of action remain unclear. For the budding yeast Saccharomyces cerevisiae reducing glucose in the growth medium extends both the replicative and chronological lifespans (CLS). The conserved NAD(+)-dependent histone deacetylase, Sir2p, promotes replicative longevity in S. cerevisiae by suppressing recombination within the ribosomal DNA locus and has been proposed to mediate the effects of CR on aging. In this study, we investigated the functional relationships of the yeast Sirtuins (Sir2p, Hst1p, Hst2p, Hst3p and Hst4p) with CLS and CR. SIR2, HST2, and HST4 were not major regulators of CLS and were not required for the lifespan extension caused by shifting the glucose concentration from 2 to 0.5% (CR). Deleting HST1 or HST3 moderately shortened CLS, but did not prevent CR from extending lifespan. CR therefore works through a Sirtuin-independent mechanism in the chronological aging system. We also show that low temperature or high osmolarity additively extends CLS when combined with CR, suggesting that these stresses and CR act through separate pathways. The CR effect on CLS was not specific to glucose. Restricting other simple sugars such as galactose or fructose also extended lifespan. Importantly, growth on nonfermentable carbon sources that force yeast to exclusively utilize respiration extended lifespan at nonrestricted concentrations and provided no additional benefit when restricted, suggesting that elevated respiration capacity is an important determinant of chronological longevity.  相似文献   

18.
Genetic analysis of Drosophil has provided evidence in support of two proposed evolutionary genetic mechanisms of aging: mutation accumulation and antagonistic pleiotropy. Both mechanisms result from the lack of natural selection acting on old organisms. Analyses of large numbers of flies have revealed that mortality rates do not continue to rise with age as previously thought, but plateau at advanced ages. This phenomenon has implications both for models and for definitions of aging, and may be explained by the evolutionary theories. The physiological processes and genes most relevant to aging are being identified using Drosophila lines selected in the laboratory for postponed senescence. Oxidative stress and insufficient metabolic reserves/capacity may be particularly important factors in limiting the fruitfly lifespan. Genes which exhibit aging-related changes in expression are now being identified. Transgenic flies are being used to analyze the mechanisms of such aging-related gene expression, and to test the effects of specific genes on aging and aging-related deterioration.  相似文献   

19.
Evolutionary theories of aging predict the existence of certain genes that provide selective advantage early in life with adverse effect on lifespan later in life (antagonistic pleiotropy theory) or longevity insurance genes (disposable soma theory). Indeed, the study of human and animal genetics is gradually identifying new genes that increase lifespan when overexpressed or mutated: gerontogenes. Furthermore, genetic and epigenetic mechanisms are being identified that have a positive effect on longevity. The gerontogenes are classified as lifespan regulators, mediators, effectors, housekeeping genes, genes involved in mitochondrial function, and genes regulating cellular senescence and apoptosis. In this review we demonstrate that the majority of the genes as well as genetic and epigenetic mechanisms that are involved in regulation of longevity are highly interconnected and related to stress response.  相似文献   

20.
We test the 'free radical theory of aging' using six species of colubrid snakes (numerous, widely distributed, non-venomous snakes of the family Colubridae) that exhibit long (> 15 years) or short (< 10 years) lifespans. Because the 'rate of living theory' predicts metabolic rates to be correlated with rates of aging and oxidative damage results from normal metabolic processes we sought to answer whether physiological parameters and locomotor performance (which is a good predictor of survival in juvenile snakes) mirrored the evolution of lifespans in these colubrid snakes. We measured whole animal metabolic rate (oxygen consumption Vo2), locomotor performance, cellular metabolic rate (mitochondrial oxygen consumption), and oxidative stress potential (hydrogen peroxide production by mitochondria). Longer-lived colubrid snakes have greater locomotor performance and reduced hydrogen peroxide production than short-lived species, while whole animal metabolic rates and mitochondrial efficiency did not differ with lifespan. We present the first measures testing the 'free radical theory of aging' using reptilian species as model organisms. Using reptiles with different lifespans as model organisms should provide greater insight into mechanisms of aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号