首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 84 毫秒
1.
The classification of the hyperdiverse true bug family Miridae is far from settled, and is particularly contentious for the cosmopolitan subfamily Bryocorinae. The morphological diversity within the subfamily is pronounced, and a lack of explicit character formulation hampers stability in the classification. Molecular partitions are few and only a handful of taxa have been sequenced. In this study the phylogeny of the subfamily Bryocorinae has been analysed based on morphological data alone, with an emphasis on evaluating the tribe Dicyphina sensu Schuh, 1976, within which distinct groups of taxa exist. A broad sample of taxa was examined from each of the bryocorine tribes. A broad range of outgroup taxa from most of the other mirid subfamilies was also examined to test for bryocorine monophyly, ingroup relationships and to determine character polarity. In total a matrix comprising 44 ingroup, 15 outgroup taxa and 111 morphological characters was constructed. The phylogenetic analysis resulted in a monophyletic subfamily Bryocorinae sensu Schuh (1976, 1995), except for the genus Palaucoris, which is nested within Cylapinae. The tribe Dicyphini sensu Schuh (1976, 1995) has been rejected. The subtribe Odoniellina is synonymized with the subtribe Monaloniina and the subtribes Dicyphina, Monaloniina and Eccritotarsina are now elevated to tribal level, with the Dicyphini now restricted in composition and definition. The genus Felisacus is highly autapomorphic and a new tribe – the Felisacini – is erected for the included taxa. This phylogeny of the tribes of the Bryocorinae comprises the following sister‐group relationships: Dicyphini ((Bryocorini + Eccritotarsini)(Felisicini + Monaloniini)).  相似文献   

2.
基于28S rRNA D2序列的内茧蜂亚科的分子系统发育   总被引:4,自引:0,他引:4  
首次利用同源28S rRNA D2基因序列对内茧蜂亚科Rogadinae (昆虫纲Insecta:膜翅目Hymenoptera:茧蜂科Braconidae)进行了分子系统学研究。本研究从95%~100%乙醇浸渍保存的标本中提取基因组DNA并扩增了10种内群种类和5种外群种类的28S rDNA D2片段并测序(GenBank序列号AY167645-AY167659),利用BLAST搜索相关的同源序列, 采用了GenBank中13个种类的28S rRNA D2同源序列,然后据此进行分子分析。利用3个外群(共8个种类)和3种建树方法 (距离邻近法distance based neighbor joining, NJ; 最大俭约法maximum parsimony, MP; 和最大似然法maximum likelihood, ML)分析了内茧蜂亚科内的分子系统发育关系。结果表明,由分子数据产生的不同的分子系统树均显示内茧蜂亚科是一个单系群。内茧蜂亚科内依据形态和生物学特征的分群(族和亚族)及其系统发育关系得到部分支持。NJ、MP和ML分析结果均表明内茧蜂族Rogadini不是一个单系,而是一个并系,其余3族则得到不同程度的支持。内茧蜂族可分成2个分支:“脊茧蜂属Aleiodes+弓脉茧蜂属Arcaleiodes”和“沟内茧蜂属Canalirogas+锥齿茧蜂属Conspinaria+刺茧蜂属Spinaria+内茧蜂属Rogas”,二者不是姐妹群。脊茧蜂属Aleiodes和弓脉茧蜂属Arcaleiodes始终是姐妹群。脊茧蜂属Aleiodes是一个单系,并可分成2个姐妹分支,这与依据形态和生物学特征的亚属分群相一致。弓脉茧蜂属Arcaleiodes Chen et He,1991是一个独立的属。分支“沟内茧蜂属Canalirogas+锥齿茧蜂属Conspinaria+刺茧蜂属Spinaria+内茧蜂属Rogas”的单系性仅得到部分分子数据的支持;因形态特异(腹部成甲壳状)而列为亚族级的刺茧蜂属Spinaria,分子分析没有证实这一点。横纹茧蜂族Clinocentrini是个单系,并在内茧蜂亚科的系统发育中处于基部(原始)的位置。我们研究结果还表明,阔跗茧蜂属Yelicones和潜蛾茧蜂属Stiropius相对应的阔跗茧蜂族Yeliconini和潜蛾茧蜂族Stiropiini为2个独立的分支, 与形态和生物学的结果一致,但它们在内茧蜂亚科的系统发育的位置不明,有待今后进一步研究。  相似文献   

3.
4.
The xanthid subfamily Chlorodiellinae is one of the most ubiquitous coral reef crab taxa in the Indo‐West Pacific region. Many species are common in coral rubble and rocky shores from Hawaii to eastern Africa, often dominating reef cryptofauna in terms of biomass. Phylogenetic analyses of mitochondrial (COX1, 12S rRNA and 16S rRNA) and nuclear (histone H3) gene sequences of 202 specimens indicate that the Chlorodiellinae is polyphyletic as presently defined. Three genera, Pilodius, Cyclodius and Chlorodiella, and two previously undescribed lineages were recovered as a well‐supported clade. In combination with morphological data, the subfamily is redefined and restricted to this clade. Two new genera, Soliella gen. n., and Luniella gen. n., are described based on features of the carapace, male thoracic sternum and male gonopods. The remaining chlorodielline genera and members of the Etisinae, a subfamily with supposedly close morphological affinities to the Chlorodiellinae, were recovered at various positions throughout the xanthid phylogeny, although with relatively low support values. These results reiterate the unresolved status of xanthid subfamilial relationships, but nevertheless provide progress for xanthid systematics.  相似文献   

5.
The subfamily Dysponetinae (Annelida, Chrysopetalidae) was proposed by Aguado et al. (Cladistics 29, 610) based on a phylogenetic analysis including morphological and molecular information. However, as a differential diagnosis of the new subfamily, as required by the International Code of Zoological Nomenclature, was not included, the name was not made available. A diagnosis of the subfamily is proposed herein to correct this oversight.  相似文献   

6.
7.
Although the woodpeckers have long been recognized as a natural, monophyletic taxon, morphological analyses of their intra- and intergeneric relationships have produced conflicting results. To clarify this issue, and as part of a larger study of piciform relationships, nucleotide sequences for the 12S ribosomal RNA (12S; 1123 bp), cytochrome b (Cyt b; 1022 bp), and cytochrome oxidase c subunit 1 (COI; 1512 bp) mitochondrial genes were obtained from 34 piciform species that included 16 of the 23 currently recognized woodpecker genera (subfamily Picinae), three piculets (subfamily Picumninae), a wryneck (subfamily Jynginae), a honeyguide (family Indicatoridae), and three barbets (infraorder Ramphastides). Analyses were conducted on the individual and combined 12S, Cyt b, and COI sequences with maximum parsimony, neighbor-joining, maximum likelihood, and Bayesian algorithms. Based on the strong, congruent support among the different data partitions and models of sequence evolution, a highly resolved consensus of the relationships among woodpeckers and their allies could be formed. The monophyly of Indicatoridae + Picidae (infraorder Picides), Picidae, Picinae + Picumninae, and Picinae was strongly supported in all analyses. However, the tribes Colaptini, Picini, Campephilini, and Campetherini were shown to be paraphyletic as were the genera of Colaptes and Piculus. A revision of the tribal-level classification of woodpeckers is proposed and the importance of plumage convergence among woodpeckers is discussed.  相似文献   

8.
No qualitative cladistic analysis has been performed previously for the subfamily classification of Pompilidae (Hymenoptera). In 1994 Shimizu proposed six subfamilies, but their validity and relationships remain inconclusive. The objective of this study was to perform a quantitative analysis of phylogenetic relationships of the Pompilidae, with emphasis on testing the validity of proposed subfamilies. Two cladistic analyses were performed based on morphological evidence. First, a maximum-parsimony analysis of Shimizu's original morphological data matrix (72 taxa by 54 characters) was conducted, with the data subjected to a heuristic search for the first time with phylogenetic software. The resulting strict-consensus cladogram yielded a monophyletic Ceropalinae that was sister group to a large polytomy containing members of the remaining five subfamilies. In a second analysis, several of Shimizu's characters were re-examined, and new characters and more taxa were added to the data set. Terminal taxa were coded as species rather than as generic abstractions, and 20 additional morphological characters were introduced. The analysis was based on 77 morphological characters derived from the adults of 84 taxa. This second analysis suggested that Notocyphinae sensu Shimizu (1994) was nested within Pompilinae and that Epipompilinae sensu Shimizu (1994) was nested within Ctenocerinae; neither should retain their status as a separate subfamily. Lastly, Chirodamus s .s., which historically has been a member of the Pepsinae, is placed within the Pompilinae with reservations rather than erecting a new subfamily. After these allowances were made, a strict consensus tree gave the following relationships: (Ceropalinae + (Pepsinae + (Ctenocerinae + Pompilinae))).  相似文献   

9.
Abstract.  Within a framework of historical analysis of Eneopterinae crickets, the genus Pseudolebinthus Robillard gen.n. and two new species P. africanus Robillard, sp.n. and P. whellani Robillard, sp.n. , endemic from south-east Africa, are described. A cladistic analysis using 198 morphological characters and 47 terminals assessed the phylogenetic position of the new taxa within the subfamily. The resultant topologies support the previously proposed phylogeny for the subfamily and contained tribes. The monophyly of Pseudolebinthus is supported strongly as well as its sister relationship with Xenogryllus within the tribe Xenogryllini. A key to Eneopterinae tribes, Xenogryllini genera and Pseudolebinthus species is given. Taxonomic, evolutionary and acoustic issues raised by the recognition of Pseudolebinthus are discussed.  相似文献   

10.
The carabid subfamily Harpalinae contains most of the species of carabid beetles. This subfamily, with over 19,000 species, radiated in the Cretaceous to yield a large clade that is diverse in morphological form and ecological habit. While there are several morphological, cytological, and chemical characters that unite most harpalines, the placement of some tribes within the subfamily remains controversial, as does the sister group relationships to this large group. In this study, DNA sequences from the 28S rDNA gene and the wingless nuclear protein-coding gene were collected from 52 carabid genera representing 31 harpaline tribes in addition to more than 21 carabid outgroup taxa to reconstruct the phylogeny of this group. Molecular sequence data from these genes, along with additional data from the 18S rDNA gene, were analyzed with a variety of phylogenetic analysis methods, separately for each gene and in a combined data approach. Results indicated that the subfamily Harpalinae is monophyletic with the enigmatic tribes of Morionini, Peleciini, and Pseudomorphini included within it. Brachinine bombardier beetles are closely related to Harpalinae as they form the sister group to harpalines or, in some analyses, are included within it or with austral psydrines. The austral psydrines are the sister group to Harpalinae+Brachinini clade in most analyses and austral psydrines+Brachinini+Harpalinae clade is strongly supported.  相似文献   

11.
The sturgeon subfamily Scaphirhynchinae contains two genera of obligate freshwater sturgeon: Scaphirhynchus and Pseudoscaphirhynchus, from North America and Central Asia, respectively. Both genera contain morphologically variable species. A novel data set containing multiple individuals representing four diagnosable morphological variants for two species of Pseudoscaphirhynchus, P. hermanni and P. kaufmanni, was generated. These data were used to test taxonomic hypotheses of monophyly for the subfamily Scaphirhynchinae, monophyly of both Scaphirhynchus and Pseudoscaphirhynchus, monophyly of P. hermanni and P. kaufmanni, and monophyly of the recognized morphological variants. Monophyly of the subfamily Scaphirhynchinae is consistently rejected by all phylogenetic reconstruction methodologies with the molecular character set while monophyly of both river sturgeon genera is robustly supported. The molecular data set also rejects hypotheses of monophyly for sampled species of Pseudoscaphirhynchus as well as monophyly for the recognized intraspecific morphological variants. Interestingly both Scaphirhynchus and Pseudoscaphirhynchus demonstrate the same general pattern in reconstructed topologies; a lack of phylogenetic structure in the clade with respect to recognized diversity. Despite rejection of monophyly for the subfamily Scaphirhynchinae with molecular data, reconstructed hypotheses from morphological character sets consistently support monophyly for this subfamily. Disparities among the data sets, as well as reasons for rejection of monophyly for Scaphirhynchinae and species of Scaphirhynchus and Pseudoscaphirhynchus with molecular characters are examined and a decreased rate of molecular evolution is found to be most consistent with the data.  相似文献   

12.
Despite recent progress on the higher‐level relationships of Cichlidae and its Indian, Malagasy, and Greater Antillean components, conflict and uncertainty remain within the species‐rich African, South American, and Middle American assemblages. Herein, we combine morphological and nucleotide characters from the mitochondrial large ribosomal subunit, cytochrome c oxidase subunit I, NADH dehydrogenase four, and cytochrome b genes and from the nuclear histone H3, recombination activating gene two, Tmo‐4C4, Tmo‐M27, and ribosomal S7 loci to analyse relationships within the Neotropical cichlid subfamily Cichlinae. The simultaneous analysis of 6309 characters for 90 terminals, including representatives of all major cichlid lineages and all Neotropical genera, resulted in the first well‐supported and resolved generic‐level phylogeny for Neotropical cichlids. The Neotropical subfamily Cichlinae was recovered as monophyletic and partitioned into seven tribes: Astronotini, Chaetobranchini, Cichlasomatini, Cichlini, Geophagini, Heroini, and Retroculini. Chaetobranchini + Geophagini (including the “crenicichlines”) was resolved as the sister group of Heroini + Cichlasomatini (including Acaronia). The monogeneric Astronotini was recovered as the sister group of these four tribes. Finally, a clade composed of Cichlini + Retroculini was resolved as the sister group to all other cichlines. The analysis included the recently described ?Proterocara argentina, the oldest known cichlid fossil (Eocene), which was placed in an apical position within Geophagini, further supporting a Gondwanan origin for Cichlidae. These phylogenetic results were used as the basis for generating a monophyletic cichline taxonomy. © The Willi Hennig Society 2008.  相似文献   

13.
The 3400 species of Eumolpinae constitute one of the largest subfamilies of leaf beetles (Chrysomelidae). Their systematics is still largely based on late 19th century monographs and remains highly unsatisfactory. Only recently, some plesiomorphic lineages have been split out as separate subfamilies, including the southern hemisphere Spilopyrinae and the ambiguously placed Synetinae. Here we provide insight into the internal systematics of the Eumolpinae based on molecular phylogenetic analyses of three ribosomal genes, including partial mitochondrial 16S and nuclear 28S and complete nuclear 18S rRNA gene sequences. Sixteen morphological characters considered important in the higher-level systematics of Eumolpinae were also included in a combined analysis with the molecular characters. All phylogenetic analyses were performed using parsimony by optimizing length variation directly on the tree, as implemented in the POY software. The data support the monophyly of the Spilopyrinae outside the clade including all sampled Eumolpinae, corroborating their treatment as a separate subfamily within the Chrysomelidae. The systematic placement of the Synetinae remains ambiguous but consistent with considering it a different subfamily as well, since the phylogenetic analyses using all the available evidence show the representative sequence of the subfamily also unrelated to the Eumolpinae. The Megascelini, traditionally considered a separate subfamily, falls within the Eumolpinae. Several recognized taxonomic groupings within Eumolpinae, including the tribes Adoxini or Typophorini, are not confirmed by molecular data; others like Eumolpini seem well supported. Among the morphological characters analyzed, the presence of a characteristic groove on the pygidium (a synapomorphy of the Eumolpini) and the shape of tarsal claws (simple, appendiculate or bifid) stand out as potentially useful characters for taxonomic classification in the Eumolpinae.  相似文献   

14.
15.
The first rigorous analysis of the phylogeny of the North American vaejovid scorpion subfamily Syntropinae is presented. The analysis is based on 250 morphological characters and 4221 aligned DNA nucleotides from three mitochondrial and two nuclear gene markers, for 145 terminal taxa, representing 47 species in 11 ingroup genera, and 15 species in eight outgroup genera. The monophyly and composition of Syntropinae and its component genera, as proposed by Soleglad and Fet, are tested. The following taxa are demonstrated to be para‐ or polyphyletic: Smeringurinae; Syntropinae; Vaejovinae; Stahnkeini; Syntropini; Syntropina; Thorelliina; Hoffmannius; Kochius; and Thorellius. The spinose (hooked or toothed) margin of the distal barb of the sclerotized hemi‐mating plug is demonstrated to be a unique, unambiguous synapomorphy for Syntropinae, uniting taxa previously assigned to different subfamilies. Results of the analysis demonstrate a novel phylogenetic relationship for the subfamily, comprising six major clades and 11 genera, justify the establishment of six new genera, and they offer new insights about the systematics and historical biogeography of the subfamily, and the information content of morphological character systems.  相似文献   

16.
We tested the taxonomic utility of morphology and seven mitochondrial or nuclear genes in a phylogenetic reconstruction of swallowtail butterflies in the subfamily Parnassiinae. Our data included 236 morphological characters and DNA sequences for seven genes that are commonly used to infer lepidopteran relationships (COI+COII, ND5, ND1, 16S, EF-1alpha, and wg; total 5775 bp). Nuclear genes performed best for inferring phylogenies, particularly at higher taxonomic levels, while there was substantial variation in performance among mitochondrial genes. Multiple analyses of molecular data (MP, ML and Bayesian) consistently produced a tree topology different from that obtained by morphology alone. Based on molecular evidence, sister-group relationships were confirmed between the genera Hypermnestra and Parnassius, as well as between Archon and Luehdorfia, while the monophyly of the subfamily was weakly supported. We recognize three tribes within Parnassiinae, with Archon and Luehdorfia forming the tribe Luehdorfiini Tutt, 1896 [stat. rev.]. Three fossil taxa were incorporated into a molecular clock analysis with biogeographic time constraints. Based on dispersal-vicariance (DIVA) analysis, the most recent common ancestor of Parnassiinae occurred in the Iranian Plateau and Central Asia to China. Early diversification of Parnassiinae took place at the same time that India collided into Eurasia, 65-42 million years ago.  相似文献   

17.
Molecular analysis of mitochondrial cytochrome b sequences from 159 species of the family Cyprinidae supports the subfamily Danioninae, of which Rasborinae is shown to be a junior synonym. Analysis of combined cytochrome b and a fragment of the nuclear rhodopsin gene from 68 species, including 43 species representing the subfamily Danioninae, supports phylogenetic distinctness of Danio and Devario. In the combined molecular analysis Microrasbora rubescens, Chela, Laubuca, Devario, and Inlecypris form a clade with M. gatesi , M. nana and M. kubotai being in sister group position to the rest. The sister group of this Devario clade is Danio . Inlecypris is synonymized with Devario. Microdevario, new genus, is proposed for M. gatesi , M. nana and M. kubotai , supported by morphological characters. In the cytochrome b analysis, M. rubescens falls outside Devario , and there is no morphological support for including M. rubescens in Devario . In the cytochrome b analysis Esomus  +  Danionella is the sister group of Danio and Devario clades, whereas in individual rhodopsin and combined analyses Esomus is the sister group of Danio , and of Danio and the Devario clade, respectively. Sundadanio presents at least one strong morphological synapomorphy with Danio , but is positioned in molecular trees either as a member of the Cyprininae or as sister group of the remaining Danioninae. In the morphological analysis, small-sized species grouped together based on shared reductions that are not necessarily synapomorphies. In the molecular analysis, small-sized species such as Danionella and Sundadanio possess long branches and their position varies, but they did not group together. This suggests morphological homoplasy, but phylogenetic positions are not well supported in the molecular analyses  相似文献   

18.
Forty‐six characters, mostly of the thoracic pleuron, are proposed for the reconstruction of the phylogenetic relationships among the major groups of the family Phoridae. Analysis of these characters, in conjunction with the pre‐existing suite of morphological characters from other body parts, provides a basis for a strongly supported new classification of the Phoridae, in which Sciadocerinae is the sister group of ((Chonocephalus Wandolleck & Cyphocephalus Borgmeier) + (Termitoxeniinae + (Metopininae + Phorinae s.l.))). A new subfamily, Chonocephalinae subfamily nov. , is proposed for Chonocephalus and Cyphocephalus, and a new genus, Hirotophora gen. nov. , is proposed for Chaetopleurophora multiseriata (Aldrich) ( comb. nov. ). © 2015 The Linnean Society of London  相似文献   

19.
20.
A cladistic analysis was undertaken to determine relationships among extant genera of the ant subfamily Dolichoderinae. Twenty-one of the twenty-two currently recognized genera within the subfamily were examined using 104 morphological characters. A single fully resolved, most-parsimonious tree was found when a combination of ordered and unordered characters was used. When all characters were coded as unordered, seventy most-parsimonious trees were found. The following results were found with both character coding methods. Leptomyrmex was placed basal to the remainder of the subfamily and the monophyletic sets Dolichoderus + Liometopum + Axinidris + Tapinoma + Technomyrmex, Froggattella + Iridomyrmex + Ochetellus + Papyrius + Philidris + Turneria , and Bothriomyrmex + Dorymyrmex + Forelius + Loweriella were suggested. The genera Linepithema and Doleromyrma showed a small amount of instability in moving between neighbouring sister groups when the character coding method changed. The genera Anillidris and Anonychomyrma were difficult to place as they showed major differences in their positions between the two character coding methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号