首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Molecular docking simulations were performed in this study to investigate the importance of both structural and catalytic zinc ions in the human alcohol dehydrogenase beta(2)beta(2) on substrate binding. The structural zinc ion is not only important in maintaining the structural integrity of the enzyme, but also plays an important role in determining substrate binding. The replacement of the catalytic zinc ion or both catalytic and structural zinc ions with Cu(2+) results in better substrate binding affinity than with the wild-type enzyme. The width of the bottleneck formed by L116 and V294 in the substrate binding pocket plays an important role for substrate entrance. In addition, unfavorable contacts between the substrate and T48 and F93 prevent the substrate from moving too close to the metal ion. The optimal binding position occurs between 1.9 and 2.4 A from the catalytic metal ion.  相似文献   

3.
Different subtypes of opioid receptors (OR) were activated in rats in vivo to study the activation effect on the heart’s resistance to ischemia and reperfusion. It has been established that administration of deltorphin II, a selective δ2-OR agonist, lowered the infarct size/area at risk index (IS/AAR) by 23%. Naltrexone, naloxone methiodide (an OR inhibitor not penetrating the blood-brain barrier (BBB)), and naltriben (δ2-antagonist) eliminated the cardioprotective effect of deltorphin II, while BNTX (a δ1-antagonist) produced no effect on the cardioprotective action of the δ2-agonist. The infarct-reducing effect of deltorphin II was eliminated by administration of chelerythrine (a protein kinase C (PKC) inhibitor), glibenclamide (a KATP-channels inhibitor), and 5-hydroxydecanoate (a mitochondrial KATP-channel blocker). Administration of other opioids did not reduce the IS/AAR index. It has been established that all the deltorphins manifest antiarrhythmic potency. Other opioids do not produce any effect on the incidence of arrhythmia occurrences. The antiarrhythmic effect of deltorphin II was eliminated by preliminary administration of naltrexone, naloxone methiodide, and naltriben, but BNTX did not affect the δ2-agonist’s anti-arrhythmic effect. The preliminary administration of chelerythrine, a PKC inhibitor, eliminated the δ2 agonist’s antiarrhythmic action. However, glibenclamide and 5-hydroxydecanoate did not alter the antiarrhythmic effect by deltorphin II. Therefore, activation of the peripheral δ2-ORs reduces the infarct size and prevents the onset of arrhythmias. The antiarrhythmic effect of the δ2-OR stimulation is mediated by activating PKC and opening the mitochondrial KATP-channels. PKC participates in the antiarrhythmic effect of the δ2-OR activation, but this effect does not depend on the condition of KATP-channels.  相似文献   

4.
MHC class I molecules are heterotrimeric complexes composed of heavy chain, 2-microglobulin (2m) and short peptide. This trimeric complex is generated in the endoplasmic reticulum (ER), where a peptide loading complex (PLC) facilitates transport from the cytosol and binding of the peptide to the preassembled ER resident heavy chain/2m dimers. Association of mouse MHC class I heavy chain with 2m is characterized by allelic differences in the number and/or positions of amino acid interactions. It is unclear, however, whether all alleles follow common binding patterns with minimal contributions by allele-specific contacts, or whether essential contacts with 2m are different for each allele. While searching for the PLC binding site in the 3 domain of the mouse MHC class I molecule H-2Db, we unexpectedly discovered a site critical for binding mouse, but not human, 2m. Interestingly, amino acids in the corresponding region of another MHC class I heavy chain allele do not make contacts with the mouse 2m. Thus, there are allelic differences in the modes of binding of 2m to the heavy chain of MHC class I.  相似文献   

5.
Alpha-synuclein (α-synuclein) aggregation and impairment of the Ubiquitin proteasome system (UPS) are implicated in Parkinson’s disease (PD) pathogenesis. While zinc (Zn) induces dopaminergic neurodegeneration resulting in PD phenotype, its effect on protein aggregation and UPS has not yet been deciphered. The current study investigated the role of α-synuclein aggregation and UPS in Zn-induced Parkinsonism. Additionally, levodopa (l-Dopa) response was assessed in Zn-induced Parkinsonian model to establish its closeness with idiopathic PD. Male Wistar rats were treated with zinc sulfate (Zn; 20 mg/kg; i.p.) twice weekly for 12 weeks along with respective controls. In few subsets, animals were subsequently treated with l-Dopa for 21 consecutive days following Zn exposure. A significant increase in total and free Zn content was observed in the substantia nigra of the brain of exposed groups. Zn treatment caused neurobehavioral anomalies, striatal dopamine decline, and dopaminergic neuronal cell loss accompanied with a marked increase in α-synuclein expression/aggregation and Ubiquitin-conjugated protein levels in the exposed groups. Zn exposure substantially reduced UPS-associated trypsin-like, chymotrypsin-like, and caspase-like activities along with the expression of SUG1 and β-5 subunits of UPS in the nigrostriatal tissues of exposed groups. l-Dopa treatment rescued from Zn-induced neurobehavioral deficits and restored dopamine levels towards normalcy; however, Zn-induced dopaminergic neuronal loss, reduction in tyrosine hydroxylase expression, and increase in oxidative stress were unaffected. The results suggest that Zn caused UPS impairment, resulting in α-synuclein aggregation subsequently leading to dopaminergic neurodegeneration, and that Zn-induced Parkinsonism exhibited positive l-Dopa response similar to sporadic PD.  相似文献   

6.
In a quest to identify new ground-state triplet germylenes, the stabilities (singlet–triplet energy differences, ΔES–T) of 96 singlet (s) and triplet (t) M1-Ge-M2-M3 species were compared and contrasted at the B3LYP/6–311++G**, QCISD(T)/6–311++G**, and CCSD(T)/6–311++G** levels of theory (M1?=?H, Li, Na, K; M2?=?Be, Mg, Ca; M3?=?H, F, Cl, Br). Interestingly, F-substituent triplet germylenes (M3?=?F) appear to be more stable and linear than the corresponding Cl- or Br-substituent triplet germylenes (M3?=?Cl or Br). Triplets with M1?=?K (i.e., the K-Ge-M2-M3 series) seem to be more stable than the corresponding triplets with M1?=?H, Li, or Na. This can be attributed to the higher electropositivity of potassium. Triplet species with M3?=?Cl behave similarly to those with M3?=?Br. Conversely, triplets with M3?=?H show similar stabilities and linearities to those with M3?=?F. Singlet species of formulae K-Ge-Ca-Cl and K-Ge-Ca-Br form unexpected cyclic structures. Finally, the triplet germylenes M1-Ge-M2-M3 become more stable as the electropositivities of the α-substituents (M1 and M2) and the electronegativity of the β-substituent (M3) increase.  相似文献   

7.
A preliminary study on the interaction of G protein (guanine triphosphate binding pro- tein) β1γ2 subunits and their coupled components in cell signal transduction was conducted in vitro. The insect cell lines, Sf9 (Spodoptera frugiperda) and H5 (Trichoplusia ni) were used to express the recombinant protein Gβ1γ2. The cell membrane containing Gβ1γ2 was isolated through affinity chromatography column with Ni-NTA agarose by FPLC method, and the highly purified protein was obtained. The adenylyl cyclase 2 (AC2) activity assay showed that the purified Gβ1γ2 could significantly stimulate AC2 activity. The interaction of β1γ2 subunits of G protein with the cytoplasmic tail of various mammalian adenylyl cyclases was monitored by BIAcore technology using NTA sensor chip, which relies on the phenomenon of surface plasmon resonance (SPR). The experiments showed the direct binding of Gβ1γ2 to the cytoplasmic tail C2 domain of AC2. The specific binding domain of AC2 with Gβ1γ2 was the same as AC2 activity domain which was stimulated by β1γ2.  相似文献   

8.
The P26 peptide corresponding to the 197–222 sequence of the second extracellular loop of the β1-adrenoreceptor (β1-AR) was synthesized by solid-phase fragment condensation on the Wang polymer. Pentapeptide fragments were prepared on the 2-chlorotrityl resin. The racemization degree of the C-terminal alanine residue of the pentapeptide was experimentally evaluated for the synthetic H-Glu-Ser-Asp-Glu-Ala-Arg-OH hexapeptide β1-АR-(202–207) which was prepared by the 5 + 1 fragment condensation with the use of various condensing agents. A content of the diastereoisomeric peptide in the products of the fragment condensation was determined by HPLC on a reversed phase. The D-alanine-containing hexapeptide was specially synthesized and used for a comparison. The minimum racemization degree of the C-terminal alanine residue was observed if complex F was applied to the synthesis of the hexapeptide.  相似文献   

9.
THE urate-binding α1–α2 globulin has been isolated from human plasma in a highly purified state1. The protein was purified by DEAE-‘Sephadex’, ammonium sulphate precipitation and semi-preparative Polyacrylamide gel electrophoresis. The urate-binding α1–α2 globulin is a rod-shaped glycoprotein, containing 12.1% carbohydrate, with an isoelectric point of 4.6 and a molecular weight of 67,000 ± 4,000. Amino-acid analysis indicated an unknown basic compound which appeared as an extra peak just in front of lysine1. To identify this compound, high voltage paper electrophoresis has been carried out on a plate electrophoresis apparatus in pyridine-acetate buffer pH 3.5. A spot separated out corresponding to ornithine. Amino-acid analysis on a BC-200 automatic analyser (Bio-Cal Instruments Co., West Germany), with a 54 cm column at 55° C and with 0.35 M sodium citrate buffer, pH 5.28, as elution buffer at a flow-rate of 150 ml./h, showed that ornithine was present. The presence of ornithine in the protein hydrolysate was also verified by gas chromatography/mass spectrometry2.  相似文献   

10.
While ~30% of the human genome encodes membrane proteins, only a handful of structures of membrane proteins have been resolved to high resolution. Here, we studied the structure of a member of the Cys-loop ligand gated ion channel protein superfamily of receptors, human type A γ2α1β2α1β2 gamma amino butyric acid receptor complex in a lipid bilayer environment. Studying the correlation between the structure and function of the gamma amino butyric acid receptor may enhance our understanding of the molecular basis of ion channel dysfunctions linked with epilepsy, ataxia, migraine, schizophrenia and other neurodegenerative diseases. The structure of human γ2α1β2α1β2 has been modeled based on the X-ray structure of the Caenorhabditis elegans glutamate-gated chloride channel via homology modeling. The template provided the first inhibitory channel structure for the Cys-loop superfamily of ligand-gated ion channels. The only available template structure before this glutamate-gated chloride channel was a cation selective channel which had very low sequence identity with gamma aminobutyric acid receptor. Here, our aim was to study the effect of structural corrections originating from modeling on a more reliable template structure. The homology model was analyzed for structural properties via a 100 ns molecular dynamics (MD) study. Due to the structural shifts and the removal of an open channel potentiator molecule, ivermectin, from the template structure, helical packing changes were observed in the transmembrane segment. Namely removal of ivermectin molecule caused a closure around the Leu 9 position along the ion channel. In terms of the structural shifts, there are three potential disulfide bridges between the M1 and M3 helices of the γ2 and 2 α1 subunits in the model. The effect of these disulfide bridges was investigated via monitoring the differences in root mean square fluctuations (RMSF) of individual amino acids and principal component analysis of the MD trajectory of the two homology models—one with the disulfide bridge and one with protonated Cys residues. In all subunit types, RMSF of the transmembrane domain helices are reduced in the presence of disulfide bridges. Additionally, loop A, loop F and loop C fluctuations were affected in the extracellular domain. In cross-correlation analysis of the trajectory, the two model structures displayed different coupling in between the M2–M3 linker region, protruding from the membrane, and the β1-β2/D loop and cys-loop regions in the extracellular domain. Correlations of the C loop, which collapses directly over the bound ligand molecule, were also affected by differences in the packing of transmembrane helices. Finally, more localized correlations were observed in the transmembrane helices when disulfide bridges were present in the model. The differences observed in this study suggest that dynamic coupling at the interface of extracellular and ion channel domains differs from the coupling introduced by disulfide bridges in the transmembrane region. We hope that this hypothesis will be tested experimentally in the near future.  相似文献   

11.
The effect of the β-amyloid peptide Aβ25–35 and fullerene C60 on the activity of the cytoplasmic enzymes lactate dehydrogenase (LDH) and glutathione peroxidase (GLP), and membrane-bound phosphofructokinase (PFK) and Na+,K+-ATPase in human erythrocytes has been studied. When used in combination, the cytotoxins decrease the activity of LDH and PFK in a nonadditive manner; in this case, Aβ25–35 protects PFK against the inhibitory effect of C60. The activity of LDH, GLP, and PFK decreases within the first 2–20 min of incubation of erythrocytes with Aβ25–35 in the absence of glucose. The addition of glucose sharply decreases the inhibitory action of Aβ25–35 on LDH and GLP but does not affect the fourfold decrease in activity of PFK; the activity of membrane-bound Na+,K+-ATPase does not depend on the presence of glucose. Possible mechanisms of interaction of Aβ25–35 and fullerene C60 with the erythrocyte membrane and enzymes are discussed.  相似文献   

12.
Nine minima were found on the intermolecular potential energy surface for the ternary system HNO3(CH3OH)2 at the MP2/aug-cc-pVDZ level of theory. The cooperative effect, which is a measure of the hydrogen-bonding strength, was probed in these nine conformations of HNO3…(CH3OH)2. The results are discussed here in terms of structures, energetics, infrared vibrational frequencies, and topological parameters. The cooperative effect was observed to be an important contributor to the total interaction energies of the cyclic conformers of HNO3…(CH3OH)2, meaning that it cannot be neglected in simulations in which the pair-additive potential is applied.
Graphical abstract The H-bonding behavior of various conformations of the HNO3(CH3OH)2 trimer was investigated
  相似文献   

13.
Utilizing first-principles calculations, we studied the electronic and optical properties of C24, C12X6Y6, and X12Y12 fullerenes (X?=?B, Al; Y?=?N, P). These fullerenes are energetically stable, as demonstrated by their negative cohesive energies. The energy gap of C24 may be tuned by doping, and the B12N12 fullerene was found to have the largest energy gap. All of the fullerenes had finite optical gaps, suggesting that they are optical semiconductors, and they strongly absorb UV radiation, so they could be used in UV light protection devices. They could also be used in solar cells and LEDs due to their low reflectivities.
Graphical abstract Possible applications of doped C24 fullerene
  相似文献   

14.
The objective of the present investigation was to study the ability of sulfobutyl ether7-β-cyclodextrin to form an inclusion complex with carbamazepine, an anti-epileptic drug with poor water solubility. The formation of the complex was carried out using the industrially feasible spray-drying method. The inclusion complex and physical mixtures were characterized by various techniques such as differential scanning calorimetry (DSC), infrared (IR), nuclear magnetic resonance (NMR), X-ray diffraction (XRD), and molecular modeling. The DSC, IR, and NMR studies confirmed the formation of an inclusion complex between carbamazepine and sulfobutyl ether7 β-cyclodextrin whereas XRD studies indicated an amorphous nature of the inclusion complex. Molecular modeling studies disclosed different modes of interaction between carbamazepine and sulfobutyl ether7 β-cyclodextrin with good correlation with experimental observations. The inclusion complex exhibited significantly higher in vitro dissolution profile as compared with pure carbamazepine powder. The in vivo anti-epileptic activity of carbamazepine/sulfobutyl ether7 β-cyclodextrin complex was evaluated in pentylenetetrazole-induced convulsions model. The carbamazepine/sulfobutyl ether7 β-cyclodextrin complex showed significantly higher anti-epileptic activity (p <0.01) as compared with that of carbamazepine suspension on oral administration.  相似文献   

15.
To analyze the influence of the beta-subunit on the kinetic properties of GlyR channel currents, alpha(1)-subunits and alpha(1)beta-subunits were transiently expressed in HEK 293 cells. A piezo dimorph was used for fast application of glycine to outside-out patches. The rise time of activation was dose dependent for both receptors and decreased with increasing glycine concentrations. Subunit composition had no effect on the time course of activation. Coexpression of alpha(1)- and beta-subunits resulted in a significantly lower EC(50) and a reduced slope of the dose-response curve of glycine compared with expression of alpha(1)-subunits alone. For both receptor subtypes, the time course of desensitization was concentration dependent. Desensitization was best fitted with a single time constant at 10-30 micro M, with two at 0.1 mM, and at saturating concentrations (0.3-3 mM) with three time constants. Desensitization of homomeric alpha(1)-receptor channels was significantly slower than that of alpha(1)beta-receptor channels. The time course of current decay after the end of glycine pulses was tested at different pulse durations of 1 mM glycine. It was best fitted with two time constants for both alpha(1) and alpha(1)beta GlyR channels, and increased significantly with increasing pulse duration.  相似文献   

16.

Background  

Cell scattering is a physiological process executed by stem and progenitor cells during embryonic liver development and postnatal organ regeneration. Here, we investigated the genomic events occurring during this process induced by functional blockade of α5β1 integrin in liver progenitor cells.  相似文献   

17.

Background

This study investigates the allosteric coupling that exists between the intra- and extracellular parts of human β2-adrenergic receptor (β2-AR), in the presence of the intracellular loop 3 (ICL3), which is missing in all crystallographic experiments and most of the simulation studies reported so far. Our recent 1 μs long MD run has revealed a transition to the so-called very inactive state of the receptor, in which ICL3 packed under the G protein’s binding cavity and completely blocked its accessibility to G protein. Simultaneously, an outward tilt of transmembrane helix 5 (TM5) caused an expansion of the extracellular ligand-binding site. In the current study, we performed independent runs with a total duration of 4 μs to further investigate the very inactive state with packed ICL3 and the allosteric coupling event (three unrestrained runs and five runs with bond restraints at the ligand-binding site).

Results

In all three independent unrestrained runs (each 500 ns long), ICL3 preserved its initially packed/closed conformation within the studied time frame, suggesting an inhibition of the receptor’s activity. Specific bond restraints were later imposed between some key residues at the ligand-binding site, which have been experimentally determined to interact with the ligand. Restraining the binding site region to an open state facilitated ICL3 closure, whereas a relatively constrained/closed binding site hindered ICL3 packing. However, the reverse operation, i.e. opening of the packed ICL3, could not be realized by restraining the binding site region to a closed state. Thus, any attempt failed to free the ICL3 from its locked state due to the presence of persistent hydrogen bonds.

Conclusions

Overall, our simulations indicated that starting with very inactive states, the receptor stayed almost irreversibly inhibited, which in turn decreased the overall mobility of the receptor. Bond restraints which represented the geometric restrictions caused by ligands of various sizes when bound at the ligand-binding site, induced the expected conformational changes in TM5, TM6 and consequently, ICL3. Still, once ICL3 was packed, the allosteric coupling became ineffective due to strong hydrogen bonds connecting ICL3 to the core of the receptor.
  相似文献   

18.
A new metal complex, Fe(Sal2dienNO3·H2O) (where Sal is salicylaldehyde and dien is diethylenetriamine), has been synthesized and characterized. The interactions between the Fe(III) complex and calf thymus DNA has been investigated using UV and fluorescence spectra, viscosity, thermal denaturation, and molecular modeling. The cleavage reaction on plasmid DNA has been monitored by agarose gel electrophoresis. The experimental results show that the mode of binding of the complex to DNA is classical intercalation and the complex can cleave pBR322 DNA.  相似文献   

19.
The catalytic pyrolysis pathways of carbonyl compounds in coal were systematically studied using density functional theory (DFT), with benzaldehyde (C6H5CHO) employed as a coal-based model compound and ZnO, γ-Al2O3, and CaO as catalysts. The results show that the products of both pyrolysis and catalytic pyrolysis are C6H6 and CO. However, the presence of any of the catalysts changes the reaction pathway and reduces the energy barrier, indicating that these catalysts promote C6H5CHO decomposition.
Graphical abstract The presence of catalysts changes the reaction pathway and the energy barrier decreases in the order Ea (no catalyst)> Ea (CaO)> Ea (γ-Al2O3)> Ea (ZnO), indicating that these catalysts promote C6H5CHO decomposition.
  相似文献   

20.
The nature of M–M bonding and aromaticity of [M2(NHCHNH)3]2(μ-E)2 (E?=?O, S; M?=?Nb, Mo, Tc, Ru, Rh) was investigated using atoms in molecules (AIM) theory, electron localization function (ELF), natural bond orbital (NBO) and molecular orbital analysis. These analyses led to the following main conclusions: in [M2(NHCHNH)3]2(μ-E)2 (E?=?O, S; M?=?Nb, Mo, Tc, Ru, Rh), the Nb–Nb, Ru–Ru, and Rh–Rh bonds belong to “metallic” bonds, whereas Mo–Mo and Tc–Tc drifted toward the “dative” side; all these bonds are partially covalent in character. The Nb–Nb, Mo–Mo, and Tc–Tc bonds are stronger than Ru–Ru and Rh–Rh bonds. The M–M bonds in [M2(NHCHNH)3]2(μ-S)2 are stronger than those in [M2(NHCHNH)3]2(μ-O)2 for M?=?Nb, Mo, Tc, and Ru. The NICS(1)ZZ values show that all of the studied molecules, except [Ru2(NHCHNH)3]2(μ-O)2, are aromaticity molecules. O-bridged compounds have more aromaticity than S-bridged compounds.
Graphical Abstract Left Molecular graph, and right electron localization function (ELF) isosurface of [M2(NHCHNH)3]2(μ-E)2(E?=?O, S; M?=?Nb, Mo, Tc, Ru, Rh)
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号