首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sensory structures present on the palps and legs of adult Argas persicus Oken (Ixodoidea: Argasidae) were studied by light, scanning and transmission electron microscopy. The number, distribution, surface morphology and the fine structure of the prominent sensilla present on these appendages were determined. The palps have 2 morphologically prominent types of sensilla: one with a grooved surface of the hair and the other having a non-grooved hair. The TEM distinguishes at least 4 prominent subtypes in grooved sensilla with single or double lumina and dendrites occupying the periphery of the central lumen or distributed all over the central lumen. Amongst the sensilla with non-grooved hair-shaft, a rare type of Olfactory Mechanoreceptive (OM) sensillum was found on the palps and the first legs of A. persicus. At the base of the hair-shaft, the OM sensillum has 2 mechanosensory dendrites. The hair-shaft of the sensillum has a porous cuticle, characteristic of an olfactory sensillum. The lumen of the hair-shaft is invested with branching dendrites from 3–8 neurons, which are surrounded by 4 sheath cells. The sensilla on the legs, including those present in the Hallers organ, are of at least 3 prominent categories. (i) Single wall with un-innervated hair-shaft. (ii) Single wall, multiporous sensillum with dendrites present in the hair shaft. (iii) Double walls with spoke channels and dendrites present in the central lumen. Sensory projections from the crown of sensilla located on the distal end of the palp extend to the palpal and suboesophageal (SOG) ganglia. Projections in the SOG extend further to the contralateral side. Sensilla in the Hallers organ project to the first pedal ganglion and to the anterodorsal region of supraoesophageal ganglion. As expected, the primary sensory projections from the sensilla of the other 3 legs extend to the respective pedal ganglia.  相似文献   

2.
Five types of sensilla are situated on the apical area of the labial and maxillary palpi and galea of Cicidela sexguttata. Large, conical, and peg-like sensilla are in rows on the central region of each palpus. These sensilla have a hollow cuticular peg, with an apical pore and multi-innervation. This central region of palpal sensilla is surrounded by campaniform sensilla that are disc-shaped and small conical peg sensilla. A similar type of conical sensillum as the found in the palpal central region is situated around the periphery of the palpal apex and apex of the galea. This conical peg sensillum is located in a shallow depression and is structurally similar to the other peg sensilla, but it has a mechanoreceptor neuron attached to the cuticular base of the sensillum. A long, single, trichoid sensillum is situated in the center of the galea and is hollow, thick-walled, porous, and multi-innervated. The apices of the palpi and galea have a large number of dermal gland openings that actively secrete a substance during the feeding process of the tiger beetle. © 1995 Wiley-Liss, Inc.  相似文献   

3.
A comparative morphological study of the apical regions of palps in Trichoptera from different evolutionary lines of the order was carried out, and a comparison was made with representatives of Lepidoptera and Mecoptera. Light and scanning electron microscopy methods were used to study the structure of palpal apices in 81 species of the order Trichoptera, 6 of Lepidoptera, and 2 species of Mecoptera. As a result, 11 types of sensilla were identified on the terminal palpal segments, and highly differentiated apical sensory zones with thick short basiconic sensilla were found on the maxillary and labial palps. The presence of an apical sensory zone in caddisflies and related orders is recognized as a plesiomorphic character.  相似文献   

4.
Antennae and maxillary palps of both sexes of the Sheep Head fly Hydrotaea irritans (Diptera : Muscidae) were investigated using scanning electron microscopy to describe the types, morphology, and distribution of olfactory sensory structures. Only socketed bristles and microtrichia were found on the scape of the antennae. These structures were also observed on the pedicel together with a group of 7–8 as yet undescribed sensilla, whose function is unknown. Olfactory sensilla were not found on these 2 segments or on the arista. Large numbers of olfactory sensilla and microtrichia were present on the funiculus. The former included sensilla trichodea (thick-walled, multiporous sensilla), sensilla styloconica and 6 types of sensilla basiconica (thin-walled, multiporous sensilla), 4 of which occurred individually and 2 of which were found in groups. An olfactory pit containing groups of thin-walled multiporous sensilla was located on the dorsomedian side of the funiculus. All sensilla basiconica were classified on morphological characteristics. The maxillary palps were covered with microtrichia and socketed bristles, but only 1 type of olfactory sensillum was found. This was a type of sensillum basiconicum that differed from any of those found on the antennae. No differences were found in sensilla diversity and distribution between males and females.  相似文献   

5.
Two types of mechanosensitive proprioceptor organ are present on the stinging apparatus of the honeybee: campaniform sensilla and mechanosensory hairplates. The campaniform sensilla are located on the surface of the tapering sting-shaft, which comprises an unpaired stylet and paired lancets. Each sensillum on the lancet differs from that on the stylet in terms of their topography and external morphology. The sensory afferents of the campaniform sensilla display slow-adapted firing responses to deformation of the cuticle that would be caused by the action of inserting the sting into a substrate, and their afferent signals induce and/or prolong the stinging response. By contrast, the mechanosensory hairplates are located at basal cuticular plates and on the posterior surface of the lancet valves. Two fields of hairplates on the second ramus at the ventral edge of the groove and on the antero-lateral edge of the oblong plate respond synchronously to protraction of the lancet. During the stinging response, these hairplates are likely to detect any sliding movement of the lancet and its position relative to the stylet. Afferent signals produced by them are likely to provide important information to the neuronal circuit for the generation and modulation of the stinging motor pattern.  相似文献   

6.
Features of the antennae, maxillary palps, and mouthparts of the females of seven species of Culicoides spp. biting midges collected from a montane rainforest site in Trinidad, West Indies, were studied by light and scanning electron microscopy. Comparisons were made with two British species, Culicoides impunctatus and Culicoides nubeculosus. Species-specific differences were demonstrated in the camber and pitch of mandibular teeth, the size and shape of the subapical labral sensilla, the size and depth of the palpal sensory pit, and the number and shape of heads of the palpal sensilla. Counts of sensilla coeloconica and palpal sensilla were suggested as being contributory features for the prediction of host preference, indicating that Culicoides darlingtonae, Culicoides glabellus, Culicoides insinuatus, Culicoides paraensis, and Culicoides pseudodiabolicus were probably mammalophilic species. The host preferences of Culicoides heliconiae and Culicoides flavivenula could not be determined accurately.  相似文献   

7.

Introduction

Below ground orientation in insects relies mainly on olfaction and taste. The economic impact of plant root feeding scarab beetle larvae gave rise to numerous phylogenetic and ecological studies. Detailed knowledge of the sensory capacities of these larvae is nevertheless lacking. Here, we present an atlas of the sensory organs on larval head appendages of Melolontha melolontha. Our ultrastructural and electrophysiological investigations allow annotation of functions to various sensory structures.

Results

Three out of 17 ascertained sensillum types have olfactory, and 7 gustatory function. These sensillum types are unevenly distributed between antennae and palps. The most prominent chemosensory organs are antennal pore plates that in total are innervated by approximately one thousand olfactory sensory neurons grouped into functional units of three-to-four. In contrast, only two olfactory sensory neurons innervate one sensillum basiconicum on each of the palps. Gustatory sensilla chaetica dominate the apices of all head appendages, while only the palps bear thermo-/hygroreceptors. Electrophysiological responses to CO2, an attractant for many root feeders, are exclusively observed in the antennae. Out of 54 relevant volatile compounds, various alcohols, acids, amines, esters, aldehydes, ketones and monoterpenes elicit responses in antennae and palps. All head appendages are characterized by distinct olfactory response profiles that are even enantiomer specific for some compounds.

Conclusions

Chemosensory capacities in M. melolontha larvae are as highly developed as in many adult insects. We interpret the functional sensory units underneath the antennal pore plates as cryptic sensilla placodea and suggest that these perceive a broad range of secondary plant metabolites together with CO2. Responses to olfactory stimulation of the labial and maxillary palps indicate that typical contact chemo-sensilla have a dual gustatory and olfactory function.  相似文献   

8.
The sensilla on labial palps in Locusta migratoria were observed and mapped using light microscopy, scanning and transmission electron microscopy. A dome region on the tip of the fourth segment (distal segment) of labial palps is mainly covered with sensilla chaetica (about 98%), and few sensilla basiconica (2%). The total number of both types of sensilla is significantly higher in females than in males. Sensilla chaetica can be further subdivided into three groups containing 6, 7 or 10 neurons. Immunocytochemical localization of odorant-binding protein (OBP) and chemosensory proteins (CSPs) was performed on ultrathin sections of sensilla on labial palps. The antiserum against odorant-binding protein from Locusta migratoria (LmigOBP) only labelled sensilla basiconica, with gold granules only found in the sensillum lymph. Chemosensory protein instead was specifically present in the outer sensillum lymph of all three subgroups of sensilla chaetica with antiserum against CSP-I from Schistocerca gregaria (SgreCSP-I). In contrast these three subgroups were never labelled with antiserum against CSP-II from Locusta migratoria (LmigCSP-II). In addition, a few sensilla chaetica could not be stained with any of the antisera used.  相似文献   

9.
In the species‐specific and obligate mutualism between the fig (Moraceae: Ficus spp.) and its pollinator (Hymenoptera: Agaonidae), the continuity of lifecycle of both partners completely depends on the female pollinator's ability to detect receptive figs. To better understand the chemical location mechanism, we examined the antennae and their sensilla of the female fig pollinator Eupristina sp. using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The antennae of female Eupristina sp. are geniculated, and in total, there were seven types of sensilla found on the antennae: two types of multiporous placoid sensilla (type 1 is sausage‐like and type 2 is rounded), sensilla trichodea (ST), basiconic sensilla (BS), chaetica sensilla (ChS), coeloconic sensilla (CoS), and one specialized sensillum classified as sensillum obscurum (SO). We described external morphology, abundance, distribution, ultrastructure and discussed putative functions. We inferred from their ultrastructures as chemoreceptors that two types of multiporous placoid sensilla, BS and CoS, were innervated by sensory neurons. The aporous type ST, ChS, and SO were not innervated by dendrites which may function as mechanoreceptor/proprioceptor. These results were also discussed in relation to the interaction between Eupristina sp. and its host fig.  相似文献   

10.
Mouthparts of unfed larvae Piona carnea (Koch, 1836) (Acariformes: Pionidae) were studied on whole-mount preparations, semi-thin sections and with TEM and SEM methods. The mouth apparatus is incorporated within the pseudotagma, gnathosoma, composed of the infracapitulum and of the chelicerae resting on the roof of the latter. The gnathosoma inclines to the long axis of the body and is inserted at its base into the idiosoma by the circumcapitular fold. The basal cheliceral segments are long and fused. An anterior projection, the proposed fused fixed digits, protrudes from the distal end of the basal cheliceral segment forward between the movable digits. The movable digits are always found in protruded position, strongly curved upward and show a groove on their inner sides. The ventral wall of the infracapitulum is made of the mentum posterior and the malapophyses anterior to the palp articulation. The malapophyses are squeezed between the large palps and envelope the distal portion of the chelicerae from the sides. The ventral portion of the fused malapophyses are provided with a characteristic ventral cuticular fork of unknown function. Each malapophysis terminates by a flexible lateral lip provided by several rigid jags looking posterad. The palps face downward and backward, and bear on the tibia the large curved palpal claws turned laterad. The palp femur bears on the ventral aspect a characteristic wide spade-like projection provided with its own muscles originating on the dorsal wall of the femur. The labrum is a thick cuticular arrow-like structure protruding forward into the preoral cavity, whereas the cervix is a thin weakly sclerotized plate. The particular labral valve projects forward from the dorsal basis of the labrum into the preoral cavity. The labrum and the cervix are provided by their own small labral and cervical muscles originating on the cervical apodemes. The pharynx is totally separated from the ventral wall of the infracapitulum and is devoid of ventral dilators. The dorsal pharyngeal dilators originate on the thick and sclerotized capitular apodeme and, posteriorly, on the paired cuticular branches, capitular apodemes, which end freely in the body cavity and are combined with the common salivary duct. The short sigmoid pieces serve for origin of the levator muscles of the chelicerae. Retraction of the gnathosoma and the chelicerae is mediated by several sets of muscles originating on the dorsal plate.  相似文献   

11.
The functional morphology of the thecogen cell of the contact chemosensitive sensilla of the ventral sensory field on the maxillary palps of Periplaneta americana (Blattodea : Blattidae) was studied. There were electron-dense granules, which were examined using light and electron microscopy. Ultrastructural findings and acid phosphatase cytochemistry showed that these granules are lysosomes. The plasma membrane of the thecogen cell bordering the inner sensillum lymph also showed numerous coated pits. Intense fluid-phase endocytosis from the inner sensillum lymph into the thecogen cell was observed using Lucifer yellow as a fluorescent dye for infiltration. The endocytosed material is transported proximally and seems to be digested via the endosome-lysosome pathway. Lysosomes and endocytosis may serve the following functions: (1) the cleaning of the sensillum lymph from impurities entering via the tip porus; (2) the catabolic turnover during late embryonic development and before molting; (3) the continuous removal of stimulus molecules from the inner sensillum lymph after stimulation.  相似文献   

12.
王颖娟  李子忠 《昆虫知识》2012,49(6):1636-1642
利用扫描电镜对锈翅蚁蛉Myrmeleon ferrugineipennis Bao&Wang雌雄成虫头部触角及口器感器的形态进行观察,描述了感器的种类、数量和分布,以期解析其取食机制。结果表明:锈翅蚁蛉触角上存在10种感器,即毛形感器、锥形感器、刺形感器、腔形感器、钟状感器、鳃形感器、耳形感器、盘形感器、舌形感器和Bhm氏鬃毛,其中毛形感器有3种亚型,数量最多;耳形感器、腔形感器和钟状感器仅在雌成虫触角上发现,而舌形感器和鳃形感器仅在雄成虫触角上发现;在锈翅蚁蛉触角鞭节近末端扁平匙状处各有1枚盘形感器,其形状和位置在雌雄虫上有差异。鳃形感器和盘形感器在已有的昆虫感器研究中未见报道,是新发现的昆虫触角感器。下颚须、下唇须上均发现锥形感器,下唇须上的数量多于下颚须;此外,下颚须上还存在钟状感器。  相似文献   

13.
Keil TA 《Tissue & cell》1996,28(6):703-717
The ultrastructure of sensilla on the maxillary palps of helicoverpa armigera caterpillars has been investigated in order ot find candidates for CO(2)-receptors. The following sensilla are found on the palps: a) 8 chemosensory pegs at the tip; b), a large distal pore plate; c), a smaller proximal pore plate; d), a digitiform organ; e), a campaniform sensillum; and f), 3 scolopidia. Each chemosensory peg at the tip is innervated by 4-5 sensory neurons. Five of these pegs are most probably contact chemoreceptors, because each has a dendrite with a tubular body. The distal pore plate has a porous cuticle and is innervated by 3 sensory neurons, each of which sends a highly branched dendrite into a large cuticular cavity. The proximal pore plate is made up from two fused organs, has also a porous cuticle, and is innervated by two sensory neurons which send their dendrites into a narrow cuticular channel. The digitiform organ is innervated by one sensory cell which sends a highly lamellated dendrite into a narrow channel within a chip-shaped protrusion of the porous cuticle. For several reasons, the digitiform organ is the most probable candidate for the CO(2)-receptor. Another possible candidate is the distal pore plate.  相似文献   

14.
The main complication sensory organs (the palpal organ and the tarsal sensory complex) of several species of gamasid mites were studied in scanning electron microscope. The species examined included permanent ectoparasites (Laelaps agilis, Laelaptidae), parasites of the nasal cavity and respiratory tract of birds (Sternostoma tracheocolum and Ptilonyssus reguli, Rhinonyssidae), dwellers of the sea littoral zone (Parasitus kempersi, Parasitus immanis, Parasitidae), and mites found on soil and on plants (Amblyseius barkeri, Parasitidae). Similar sensillar types, including olfactory SW-WP sensilla, contact chemo-mechanosensory (SW-UP and DW-UP) sensilla, termo-chemo-mechanosensitive (DW-WP) sensilla of two types, and tactile (NP) sensilla were found in all these species, excluding endoparasites, where some sensillar types (in particular, DW-WP sensilla with slit-like pores) are absent. It was shown that the topography of olfactory SW-WP sensilla of the tarsal complex reflects taxonomic position and phylogenetic history of mite genera, whereas the number of certain sensillar types and the degree of their development reflect ecological specialization of species. The palpal organ is characterized by rather uniform structure in mites of different families, dwellers of different environments, except for the endoparasites of the family Rhinonyssidae, where this organ is strongly reduced.  相似文献   

15.
Ricinulei possess movable, slender pedipalps with small chelae. When ricinuleids walk, they occasionally touch the soil surface with the tips of their pedipalps. This behavior is similar to the exploration movements they perform with their elongated second legs. We studied the distal areas of the pedipalps of the cavernicolous Mexican species Pseudocellus pearsei with scanning and transmission electron microscopy. Five different surface structures are characteristic for the pedipalps: (1) slender sigmoidal setae with smooth shafts resembling gustatory terminal pore single-walled (tp-sw) sensilla; (2) conspicuous long, mechanoreceptive slit sensilla; (3) a single, short, clubbed seta inside a deep pit representing a no pore single walled (np-sw) sensillum; (4) a single pore organ containing one olfactory wall pore single-walled (wp-sw) sensillum; and (5) gustatory terminal pore sensilla in the fingers of the pedipalp chela. Additionally, the pedipalps bear sensilla which also occur on the other appendages. With this sensory equipment, the pedipalps are highly effective multimodal short range sensory organs which complement the long range sensory function of the second legs. In order to present the complete sensory equipment of all appendages of the investigated Pseudocellus a comparative overview is provided.  相似文献   

16.
Studies by SEM and TEM revealed 6 types of integumental appendages on female uromeres VIII-X in Lasioptera rubi: microtrichia, not innervated; spines, probably without sensory function; nonporous sensory hairs, each containing one dendrite ending with a tubular body indicating a tactile function; uniporous sensory hairs, each innervated partly by 3 dendrites indicating a chemosensory function, partly by an additional dendrite with a tubular body indicating a tactile function; scoop-like sensilla, each containing partly a branched structure of dendrites in the distal half of the sensillum indicating an olfactory function, partly an unbranched dendrite ending at a pore near the base of the sensillum, most probably registrating chemical stimuli by contact or gustation; finally, nonporous bristles, all or some of them innervated, in a manner indicating a tactile function. In addition, two scolopophorous proprioceptors were found inside uromere X. The nonporous sensory hairs, the uniporous sensory hairs and the scolopophores may be used by the midge to determine the mechanical and chemical properties of potential oviposition sites. The spines and nonporous bristles may function as conidia carriers.  相似文献   

17.
《Journal of Asia》2020,23(4):1165-1180
Drosophila suzukii is a serious horticultural and quarantine pest, damaging various berry crops. Although the active use of olfactory communication in D. suzukii is well-known, their olfactory sensory system has not been comprehensively reported. Therefore, the present study was carried out to understand the morphology, distribution and ultrastructure of olfactory sensilla present in the antennae and maxillary palps of D. suzukii, through scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The olfactory sensilla on the antennae of D. suzukii in both sexes could be classified into three major morphological types, basiconic, trichoid and coeloconic sensilla, according to their shapes. The antennal basiconic sensilla were further divided into three subtypes and the antennal trichoid sensilla into two subtypes, respectively, according to the size of individual sensillum. In contrast to the antennal olfactory sensilla showing diverse morphology, basiconic sensilla was the only type of olfactory sensilla in the maxillary palps of D. suzukii. The basiconic sensilla in the maxillary palps could be further classified into three subtypes, based on their size. Our SEM and TEM observations indicated that multiple nanoscale pores are present on the surface of all types of olfactory sensilla in the antennae and maxillary palps, except coeloconic sensilla. The difference in the morphological types and the distribution of olfactory sensilla suggests that their olfactory functions are different between antennae and maxillary palps in D. suzukii. The results of this study provide useful information for further studies to determine the function of olfactory sensilla in D. suzukii and to understand their chemical communication system.  相似文献   

18.
The ultramorphology of the antennae and mouthparts of the adult Loxocephala perpunctata Jacobi was studied through a scanning electron microscope. Seven types of sensilla were found on antennomeres, including a Böhm bristle on the scape, sensillum trichoideum and plaque organ on the pedicel, two subtypes of sensilla chaetica and two subtypes of sensilla campaniformia on these two antennomeres; and Bourgoin's organ with sensory pegs and sensilla basiconicum on the basal bulb of the flagellum. The mouthparts of L. perpunctata are of the typical piercing-sucking type, similar to mouthparts found in other hemipteran insects. In general, six types of sensilla (i.e., four subtypes of sensilla chaetica, sensillum basiconicum, subapical labial sensillum, uniporous peg-like sensillum, multiporous peg-like sensillum and two subtypes of bristle-like sensilla) were detected on different locations of the labium, with the last three, and numerous cuticular processes, present on the labial tip. The potential functions of these sensilla are discussed.  相似文献   

19.
The cuticular sensory receptors that are found on the apex of the labium of hemipterans play an important role in their feeding behavior. In this study we describe the ultrastructure, number, and distribution of sensilla on the labium apex of the chinch bug, Blissus leucopterus leucopterus. Each apical field of sensilla on the labium contains 11 uniporous peg sensilla and one sensillum chaeticum. The uniporous peg sensilla are innervated by 4–5 bipolar neurons that send dendrites in the lumen of each peg. Three neurons are associated with each sensillum chaeticum, two neurons have dendrites in the lumen of the sensillum, and the third dendrite ends in a tubular body at the base of the sensillum. Behavioral tests that involve chemical blockage of the sensory receptors show the importance of the labial sensilla in feeding behavior. Both morphological and behavioral evidence indicate that the labial sensilla have a chemosensitive function.  相似文献   

20.
This review surveys the organization of the olfactory and gustatory systems in the imago and in the larva of Drosophila melanogaster, both at the sensory and the central level. Olfactory epithelia of the adult are located primarily on the third antennal segment (funiculus) and on the maxillary palps. About 200 basiconic (BS), 150 trichoid (TS) and 60 coeloconic sensilla (CS) cover the surface of the funiculus, and an additional 60 BS are located on the maxillary palps. Males possess about 30% more TS but 20% fewer BS than females. All these sensilla are multineuronal; they may be purely olfactory or multimodal with an olfactory component. Antennal and maxillary afferents converge onto approximately 35 glomeruli within the antennal lobe. These projections obey precise rules: individual fibers are glomerulus-specific, and different types of sensilla are associated with particular subsets of glomeruli. Possible functions of antennal glomeruli are discussed. In contrast to olfactory sensilla, gustatory sensilla of the imago are located at many sites, including the labellum, the pharynx, the legs, the wing margin and the female genitalia. Each of these sensory sites has its own central target. Taste sensilla are usually composed of one mechano-and three chemosensory neurons. Individual chemosensory neurons within a sensillum respond to distinct subsets of molecules and project into different central target regions. The chemosensory system of the larva is much simpler and consists essentially of three major sensillar complexes on the cephalic lobe, the dorsal, terminal and ventral organs, and a series of pharyngeal sensilla.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号