首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The urea concentration in the renal cortex ([RC]), liver ([L]) and skeletal muscle ([SM]) of non-diuretic Wistar rats was measured chemically and after an i.m. injection of 14C-urea and was compared with the plasma urea concentration ([P]). [L]/[P] and [SM]/[P] always equalled 1, irrespective of whether they were measured chemically or by means of radioactivity. [RC]/[P] was 2.81, again without any difference between chemical and radioactive measurement. The ratio of the chemically measured urea concentration in the renal cortex and plasma of mongrel dogs was 5.71, i.e. significantly higher than in rats (p less than 0.01). The intrarenal infusion of KCN, iodoacetate and ouabain did not alter it significantly (5.52, p greater than 0.05). Active transport, in whatever form, does not seem to be the cause of the high urea concentration in rat and dog renal cortex.  相似文献   

2.
We tested the hypothesis that decreased fetal amino acid (AA) supply, produced by maternal hypoaminoacidemia (low AA) during hyperglycemia (HG), is reversible with maternal AA infusion and regulates fetal insulin concentration ([I]). We measured net uterine and umbilical AA uptakes during maternal HG/low AA concentration ([AA]) and after maternal intravenous infusion of a mixed AA solution. After 5 days HG, all maternal [AA] except glycine were decreased >50%, particularly essential [AA] (P < 0.00005). Most fetal [AA] also were decreased, especially branched-chain AA (P < 0.001). Maternal AA infusion increased net uterine uptakes of Val, Leu, Ile, Met, and Ser and net umbilical uptakes of Val, Leu, Ile, Met, Phe, and Arg but did not change net uteroplacental uptake of any AA. Fetal [I] increased 55 +/- 14%, P < 0.001, with correction of fetal [AA], despite the lack of change in fetal glucose concentration. Thus generalized maternal hypoaminoacidemia decreases uterine and umbilical uptakes of primarily the essential AA and decreases fetal branched-chain [AA]. These changes are reversed with correction of maternal [AA], which also increases fetal [I].  相似文献   

3.
The shuttling of intermediary metabolites such as lactate through the vasculature contributes to the dynamic energy and biosynthetic needs of tissues. Tracer kinetic studies offer a powerful tool to measure the metabolism of substrates like lactate that are simultaneously taken up from and released into the circulation by organs, but in each circulatory passage, the entire cardiac output traverses the pulmonary parenchyma. To determine whether transpulmonary lactate shuttling affects whole-body lactate kinetics in vivo, we examined the effects of a lactate load (via lactate clamp, LC) and epinephrine (Epi) stimulation on transpulmonary lactate kinetics in an anesthetized rat model using a primed-continuous infusion of [U-(13)C]lactate. Under all conditions studied, control 1.2 (SD 0.7) (Con), LC 1.9 (SD 2.5), and Epi 1.9 (SD 3.5) mg/min net transpulmonary lactate uptake occurred. Compared with Con, a lactate load via LC significantly increased mixed central venous ([v]) [1.9 mM (SD 0.5) vs. 4.7 (SD 0.4)] and arterial ([a]) [1.6 mM (SD 0.4) vs. 4.1 (SD 0.6)] lactate concentrations (P < 0.05). Transpulmonary lactate gradient ([v] - [a]) was highest during the lactate clamp condition [0.6 mM (SD 0.7)] and lowest during Epi [0.2 mM (SD 0.5)] stimulation (P < 0.05). Tracer measured lactate fractional extractions were similar for control, 16.6% (SD 15.3), and lactate clamp, 8.2% (SD 15.3) conditions, but negative during Epi stimulation, -25.3% (SD 45.5) when there occurred a transpulmonary production, the conversion of mixed central venous pyruvate to arterial lactate. Further, isotopic equilibration between L and P occurred following tracer lactate infusion, but depending on compartment (v or a) and physiological stimulus, [L]/[P] concentration and isotopic enrichment ratios ranged widely. We conclude that pulmonary arterial-vein concentration difference measurements across the lungs provide an incomplete, and perhaps misleading picture of parenchymal lactate metabolism, especially during epinephrine stimulation.  相似文献   

4.
To assess the importance of factors influencing the resolution of exercise-associated acidosis, measurements of acid-base variables were made in nine healthy subjects after 30 s of maximal exercise on an isokinetic cycle ergometer. Quadriceps muscle biopsies (n = 6) were taken at rest, immediately after exercise, and at 3.5 and 9.5 min of recovery; arterial and femoral venous blood were sampled (n = 3) over the same time. Intracellular and plasma inorganic strong ions were measured by neutron activation and ion-selective electrodes, respectively; lactate concentration ([La-]) was measured enzymatically, and plasma PCO2 and pH were measured by electrodes. Immediately after exercise, intracellular [La-] increased to 47 meq/l, almost fully accounting for a reduction in intracellular strong ion difference ([SID]) from 154 to 106 meq/l. At the same time, femoral venous PCO2 increased to 100 Torr and plasma [La-] to 9.7 meq/l; however, plasma [SID] did not change because of a concomitant increase in inorganic [SID] secondary to increases in [K+], [Na+], and [Ca2+]. During recovery, muscle [La-] fell to 26 meq/l by 9.5 min; [SID] remained low (101 and 114 meq/l at 3.5 and 9.5 min, respectively) due almost equally to the elevated [La-] (30 and 26 meq/l) and reductions in [K+] (from 142 meq/l at rest to 123 and 128 meq/l). Femoral venous PCO2 rose to 106 Torr at 0.5 min postexercise and fell to resting values at 9.5 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
In a previous study we showed that there were no differences in anaerobic metabolism between groups of 11-yr-old children living at high (3,700 m) and low (330 m) altitudes. The aim of this study is to investigate changes in this metabolism during pubertal development. We compare blood lactate concentration ([L]) after maximal bicycle exercise in 20 boys acclimatized to high altitude (HA, 12 yr old) and at low altitude in 14 boys (LA1, 12 yr old) and in 13 boys (LA2, 14 yr old). The subjects had the same level of physical fitness and the same nutritional and socioeconomic status. Pubertal development was identified by salivary testosterone concentration ([T]). Results (means +/- SE) showed 1) at the age of 12 years, [L] and [T] in HA were significantly higher than in LA1 ([L] was 9.2 +/- 0.5 vs. 6.8 +/- 0.5 mmol/l, [T] was 233 +/- 66 vs. 132 +/- 30 pmol/l), 2) [L] and [T] in HA were statistically the same as in LA2, and 3) a linear relationship between [L] and [T] was significant (P less than 0.05) in all HA and LA subjects. This suggests that the higher [L] in 12-yr-old boys living at HA could result in an enhanced anaerobic metabolism linked to an earlier gonadal maturation evaluated by testosterone level.  相似文献   

6.
We determined changes in rat plantaris, diaphragm, and intercostal muscle metabolites following exercise of various intensities and durations, in normoxia and hypoxia (FIO2 = 0.12). Marked alveolar hyperventilation occurred during all exercise conditions, suggesting that respiratory muscle motor activity was high. [ATP] was maintained at rest levels in all muscles during all normoxic and hypoxic exercise bouts, but at the expense of creatine phosphate (CP) in plantaris muscle and diaphragm muscle following brief exercise at maximum O2 uptake (VO2max) in normoxia. In normoxic exercise plantaris [glycogen] fell as exercise exceeded 60% VO2max, and was reduced to less than 50% control during exhaustive endurance exercise (68% VO2max for 54 min and 84% for 38 min). Respiratory muscle [glycogen] was unchanged at VO2max as well as during either type of endurance exercise. Glucose 6-phosphate (G6P) rose consistently during heavy exercise in diaphragm but not in plantaris. With all types of exercise greater than 84% VO2max, lactate concentration ([LA]) in all three muscles rose to the same extent as arterial [LA], except at VO2max, where respiratory muscle [LA] rose to less than half that in arterial blood or plantaris. Exhaustive exercise in hypoxia caused marked hyperventilation and reduced arterial O2 content; glycogen fell in plantaris (20% of control) and in diaphragm (58%) and intercostals (44%). We conclude that respiratory muscle glycogen stores are spared during exhaustive exercise in the face of substantial glycogen utilization in plantaris, even under conditions of extreme hyperventilation and reduced O2 transport. This sparing effect is due primarily to G6P inhibition of glycogen phosphorylase in diaphragm muscle. The presence of elevated [LA] in the absence of glycogen utilization suggests that increased lactate uptake, rather than lactate production, occurred in the respiratory muscles during exhaustive exercise.  相似文献   

7.
AMP-activated protein kinase (AMPK) is a cellular energy sensor whose activity responds to AMP concentration ([AMP]). An agent that activates AMPK in cells is 5-aminoimidazole-4-carboxamide-1-riboside (AICA-riboside). Phosphorylated AICA-riboside or AICA-ribotide (ZMP) is an AMP analog. It is generally assumed that ZMP accumulation does not alter [AMP]. Additionally, the effect of AICA-riboside on AMPK activity of the heart is uncertain. Two hypotheses were tested in the isolated mouse heart: 1) sufficient ZMP concentration ([ZMP]) forms to increase AMPK activity, and 2) [ZMP] accumulation increases [AMP]. Perfusion of isolated mouse hearts with Krebs-Henseleit buffer containing 0.15-2 mM AICA-riboside concentration resulted in [ZMP] of 2-8 mM. ZMP accumulation reduced phosphocreatine concentration, which increased cytosolic [AMP]. In hearts with [ZMP] less than approximately 3 mM, in vivo AMPK allosteric activity effects of ZMP were observed; AMPK phosphorylation and [AMP] were not increased. With [ZMP] between 3 and 5 mM, in vitro AMPK activity and phosphorylation increased with unchanged [AMP]. This occurred in hearts perfused with 0.25 mM AICA-riboside for 48 min and 0.5 mM AICA-riboside for 24 min. The [ZMP] resulting in 50% AMPK activity (covalent phosphorylation of AMPK) was 4.1 +/- 0.6 mM. Hearts with [ZMP] >5 mM displayed increased [AMP] and AMPK activity that was not different from hearts with similar [AMP] with no [ZMP]; the half-maximal activity of AMP was 5.6 +/- 1.6 microM. Thus, in mouse hearts, AICA-riboside was metabolized to [ZMP] adequately to increase AMPK activity. Higher [ZMP] also increased cytosolic [AMP], which affects AMPK activity.  相似文献   

8.
At the onset of a square-wave exercise of moderate intensity, in the absence of any detectable lactate production, the hydrolysis of phosphocreatine (PCr) fills the gap between energy requirement and energy yield by oxidative pathways, thus representing a readily available source of energy for the muscle. We verified experimentally the relationships between high-energy phosphates and/or their changes and the time constant of PCr concentration ([PCr]) kinetics in humans (tau(PCr)). High-energy phosphate concentration (by (31)P-NMR spectroscopy) in the calf muscles were measured during three repetitions of the rest-to-work transition of moderate aerobic square-wave exercise on nine healthy volunteers, while resting [PCr] was estimated from the appropriate spectroscopy data. PCr concentration decreased significantly (22 +/- 6%) from rest to steady-state exercise, without differences among the three repetitions. Absolute resting [PCr] and tau(PCr) were consistent with literature values, amounting to 27.5 +/- 2.2 mM and 23.9 +/- 2.9 s, respectively. No significant relationships were detected between individual tau(PCr) and mechanical power, fraction or absolute amount of PCr hydrolyzed, or change in ADP concentration. On the contrary, individual tau(PCr) (s) was linearly related to absolute resting [PCr] (mM), the relationship being described by: tau(PCr) = 0.656 + 0.841.[PCr] (n = 9, R = 0.708, P < 0.05). These data support the view that in humans PCr concentration sets the time course of the oxidative metabolism in skeletal muscle at the start of exercise, being one of the main controllers of oxidative phosphorylation.  相似文献   

9.
Previous work demonstrated that Na(+)-K(+) pump activity within skeletal muscle is attenuated in myocardial infarction (MI). This may lead to enhanced interstitial K(+) concentration ([K(+)](o)) in the muscle. We tested the hypothesis that [K(+)](o) rises with muscle contraction and that, in rats with MI, the rate of rise in [K(+)](o) is greater than it is in control animals. Microdialysis probes were inserted in the skeletal muscle of six healthy control and six MI rats. The ends of the probes were then attached to the K(+) electrodes, and [K(+)](o) was continuously measured. Muscle contraction was induced by electrical stimulation of the sciatic nerves for 1 min. Stimulation at 1 and 3 Hz increased muscle [K(+)](o) by 14.2% and 44.7% in controls and by 22.9% and 62.8% in MI rats (P < 0.05 vs. controls), respectively. When ouabain, an inhibitor of Na(+)-K(+) pump, was added to the perfusate, muscle [K(+)](o) rose significantly. This effect of ouabain was significantly attenuated in MI animals. In conclusion, when compared with that in control animals, an increase of [K(+)](o) in exercising muscle is augmented in MI rats, likely due to an attenuation of Na(+)-K(+) pump activity.  相似文献   

10.
Ten men and 11 women were studied to determine the effect of experimentally equating haemoglobin concentration ([Hb]) on the sex difference in maximal oxygen uptake (VO2max). VO2max was measured on a cycle ergometer using a continuous, load-incremented protocol. The men were studied under two conditions: 1) with normal [Hb] (153 g X L-1) and 2) two days following withdrawal of blood, which reduced their mean [Hb] to exactly equal the mean of the women (134 g X L-1). Prior to blood withdrawal, VO2max expressed in L X min-1 and relative to body weight and ride time on the cycle ergometer test were greater (p less than .01) in men by 1.11 L X min-1 (47%), 4.8 ml X kg-1 min-1 (11.5%) and 5.9 min (67%), respectively, whereas VO2max expressed relative to fat-free weight (FFW) was not significantly different. Equalizing [Hb] reduced (p less than .01) the mean VO2max of the men by 0.26 L X min-1 (7.5%), 3.2 ml X kg-1 min-1 (6.9%) or 4.1 ml X kg FFW-1 min-1 (7.7%), and ride time by 0.7 min (4.8%). Equalizing [Hb] reduced the sex difference for VO2max less than predicted from proportional changes in the oxygen content of the arterial blood and arteriovenous oxygen content difference during maximal exercise. It was concluded that the sex difference in [Hb] accounts for a significant, but relatively small portion of the sex difference in VO2max (L X min-1). Other factors such as the dimensions of the oxygen transport system and musculature are of greater importance.  相似文献   

11.
To assess the differential stimulus to central and intravascular osmoreceptors during recovery from thermal dehydration, we measured Na concentrations in cerebrospinal fluid ([Na]CSF) and plasma ([Na]p) continuously and compared these during simulated drinking by gastric water infusion (INF) in euhydrated and thermally dehydrated rats under anesthesia. Continuous measurement of [Na]CSF was obtained with a double-barreled Na electrode placed in the lateral ventricle. Continuous measurement of [Na]p was obtained from a flow cell Na electrode in an extracorporeal shunt. Measurements were made during 10 min of INF (2.5 ml/100 g body wt) into the stomach and during 20 min of recovery. Changes in [Na]CSF always lagged behind those in [Na]p and were quantitatively smaller after INF. The decrease in [Na]CSF occurred sooner in dehydrated than in euhydrated rats in response to the decrease in [Na]p (P < 0.01). These results suggest that water and/or Na movement between blood and CSF is accelerated during restitution from thermal dehydration, acting to prevent overhydration during the early phase of rehydration.  相似文献   

12.
The aim of this study was to determine the effects of 8 weeks of resistance training (RT) on the myoglobin concentration ([Mb]) in human skeletal muscle, and to compare the change in the [Mb] in two different RT protocols. The two types of protocol used were interval RT (IRT) of moderate to low intensity with a high number of repetitions and a short recovery time, and repetition RT (RRT) of high intensity with a low number of repetitions and a long recovery time. A group of 11 healthy male adults voluntarily participated in this study and were divided into IRT (n = 6) and RRT (n = 5) groups. Both training protocols were carried out twice a week for 8 weeks. At the completion of the training period, the one-repetition maximal force values and isometric force were increased significantly in all the subjects, by about 38.8% and 26.0%, respectively (P < 0.01). The muscle fibre composition was unchanged by the 8 weeks of training. The muscle fibre cross-sectional areas were increased significantly by both types of training in all fibre types (I, IIa and IIb, mean + 16.1 %, P < 0.05). The [Mb] showed no significant changes at the completion of the training [IRT from 4.63 (SD 0.63) to 4.48 (SD 0.72), RRT from 4.47 (SD 0.75) to 4.24 (SD 0.80) mg x g(-1) wet tissue] despite a significant decrease in citrate synthase activity [IRT from 5.27 (SD 1.45) to 4.49 (SD 1.48), RRT from 5.33 (SD 2.09) to 4.85 (SD 1.87) micromol x min(-1) x g(-1) wet tissue; P < 0.05] observed after both protocols. These results suggested that myoglobin and mitochondria enzymes were regulated by different mechanisms in response to either type of RT. Moreover, the maintained [Mb] in hypertrophied muscle should preserve oxygen transport from capillaries to mitochondria even when diffusion distance is increased.  相似文献   

13.
The spread and propagation of antibiotic resistance genes (ARGs) is a worldwide public health concern. Ionic liquids (ILs), considered as “environmentally friendly” replacements for industrial organic solvents, have been widely applied in modern industry. However, few data have been collected regarding the potential ecological and environmental risks of ILs, which are important for preparing for their potential discharge into the environment. In this paper, the IL 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]) (0.001-5.0 g/L) was tested for its effects on facilitating ARGs horizontal transfer mediated by plasmid RP4 in freshwater microcosms. In the horizontal transfer microcosms, the transfer frequency of plasmid RP4 was significantly enhanced (60-fold higher than untreated groups) by the IL [BMIm][PF6] (1.0 g/L). Meanwhile, two strains of opportunistic pathogen Acinetobacter spp. and Salmonella spp. were isolated among the transconjugants, illustrating plasmid RP4 mediated horizontal transfer of ARGs occurred in pathogen. This could increase the risk of ARGs dissemination to human pathogens and pose great threat to public health. The cause that [BMIm[PF6] enhanced the transfer frequency of plasmid RP4 was proposed by suppressed cell membrane barrier and enhanced cell membrane permeability, which was evidenced by flow cytometry (FCM). This is the first report that some ILs facilitate horizontal transfer of plasmid RP4 which is widely distributed in the environment and thus add the adverse effects of the environmental risk of ILs.  相似文献   

14.
Phosphorus translocation in salt-stressed cotton   总被引:6,自引:0,他引:6  
The effect of salinity on plants has usually been studied at high inorganic P concentration ([Pi]) in the nutrient solution, and salinity × Pi interactions have been examined at much higher [Pi] than found in soil solutions. Short-term 32Pi experiments were carried out to study the effect of salinity (150 m M NaCl) on phosphorus translocation in cotton plants ( Gossypium hirsutum L. cv. Acala SJ-2) grown in nutrient solutions containing 10 μ M [Pi]. The effect of additional Ca to a concentration of 10 μ M was also tested. Salinity inhibited 32P translocation from root to shoot. This inhibition was more evident at higher [Pi] in the root medium. Increasing [Pi] 33-fold in the solution resulted in a 4.3-fold increase in [32P] in the root under saline conditions, but only in a 1,8-fold increase in the shoot. In older shoot tissues total [P] was elevated in the salinized plants. In the young tissues, however, total P concentration was higher in control plants. Inhibition of 32P translocation by salinity was greater from root to young leaves than to mature shoot tissues. Salinity also decreased 32P recirculation from the cotyledons to the young leaf. Inhibition by salinity of both 32P translocation and recirculation to young leaves was fully reversed by increasing Ca supply from 1 to 10  相似文献   

15.
1. In amphipod crustaceans the ventral chamber plays an integral role in a number of physiological processes and in the female forms the marsupium in which eggs are brooded. The ventral chamber can be viewed as a pre-adaptation to the colonization of land by the family Talitridae. The hypothesis that the female of the terrestrial species, Mysticotalitrus cryptus , can control the osmotic concentration of the marsupial fluid ([MF]) bathing the eggs, thereby buffering the brood from potential physiological stresses presented by the terrestrial environment, is examined.
2. [MF] was maintained significantly higher than the concentration of the external medium ([Medium]) on both dechlorinated tap-water and 400 mOsm kg–1 media. In each case, [MF] was intermediate to [Medium] and the concentration of the female haemolymph ([Haem]): when [Medium] = 40 mOsm kg–1, [MF] = 277 mOsm kg–1 and [Haem] = 590 mOsm kg–1, respectively, and when [Medium] = 413 mOsm kg–1, [MF] = 516 mOsm kg–1 and [Haem] = 722 mOsm kg–1, respectively.
3. Evidence is provided that females produce urine that is isosmotic with the haemolymph and that the urine is directed, by capillarity, into the marsupium via cuticular channels. It is suggested that this urine plays a role in controlling [MF] in combination with other behavioural mechanisms.
4. Some preliminary observations are presented on the ontogeny of embryonic osmoregulation in M. cryptus which suggest that osmoregulatory ability improves with developmental stage. There is also limited evidence for the ability of the late embryonic stages to hypo-osmoregulate on concentrated media, even though adults lack this capacity.
5. The results are discussed in relation to the colonization of the terrestrial environment by the Talitridae.  相似文献   

16.
A general procedure is described for determining the dissociation constant of a receptor (or enzyme).unlabeled ligand complex (EI) by analyzing the I-dependent displacement of bound radioligand (A*) from EA*. The procedure (which involves measuring free A* in the presence of I) requires a knowledge of the total concentrations of receptor ([E]t), unlabeled ligand ([I]t) and radioligand ([A*]t), and the dissociation constant of the EA* complex. The unknown Kd is obtained from five simple, sequential calculations which are valid for either high or low affinity competitive unlabeled ligands and are independent of total receptor concentration or initial degree of saturation with A*. The procedure also provides the information needed to construct a distribution curve of all enzyme and ligand species (E, EA*, EI, A*, I) as [I]t is varied.  相似文献   

17.
Five healthy males performed four 30-s bouts of maximal isokinetic cycling with 4 min rest between each bout. Arterial and femoral venous blood was sampled during and for 90 min following exercise. During exercise, arterial erythrocyte [K+] increased from 117.0 +/- 6.6 mequiv./L at rest to 124.2 +/- 5.9 mequiv./L after the second exercise bout. Arterial erythrocyte [K+] returned to the resting values during the first 5 min of recovery. No significant change was observed in femoral venous erythrocyte [K+]. Arterial erythrocyte lactate concentration ([Lac-]) increased during exercise from 0.2 +/- 0.1 mequiv./L peaking at 9.5 +/- 1.5 mequiv./L at 5 min of recovery, after which the values returned to control. Femoral venous erythrocyte [Lac-] changed in a similar fashion. Arterial erythrocyte [Cl-] rose during exercise to 76 +/- 3 mequiv./L and returned to resting values (70 +/- 2 mequiv./L) by 25 min recovery. During exercise there was a net flux of Cl- into the erythrocyte. We conclude that erythrocytes are a sink for K+ ions leaving working muscles. Furthermore, erythrocytes function to transport Lac- from working muscle and reduce plasma acidosis by uptake of Cl-. The erythrocyte uptake of K+, Lac-, and Cl- helps to maintain a concentration difference between plasma and muscle, facilitating diffusion of Lac- and K+ from the interstitial space into femoral venous plasma.  相似文献   

18.
To differentiate the effects of high energy phosphates, pH, and [H2PO4-] on skeletal muscle fatigue, intracellular acidosis during handgrip exercise was attenuated by prolonged submaximal exercise. Healthy human subjects (n = 6) performed 5-min bouts of maximal rhythmic handgrip (RHG) before (CONTROL) and after prolonged (60-min) handgrip exercise (ATTEN-EX) designed to attenuate lactic acidosis in active muscle by partially depleting muscle glycogen. Concentrations of free intracellular phosphocreatine ([PCr]), adenosine triphosphate ([ATP]), and orthophosphate ([P(i)]) and pH were measured by 31P nuclear magnetic resonance spectroscopy and used to calculate adenosine diphosphate [ADP], [H2PO4-], and [HPO4(2-)]. Handgrip force output was measured with a dynamometer, and fatigue was determined by loss of maximal contractile force. After ATTEN-EX, the normal exercise-induced muscle acidosis was reduced. At peak CONTROL RHG, pH fell to 6.3 +/- 0.1 (SE) and muscle fatigue was correlated with [PCr] (r = 0.83), [P(i)] (r = 0.82), and [H2PO4-] (r = 0.81); [ADP] was 22.0 +/- 5.7 mumol/kg. At peak RHG after ATTEN-EX, pH was 6.9 +/- 0.1 and [ADP] was 116.1 +/- 18.2 mumol/kg, although [PCr] and [P(i)] were not different from CONTROL RHG (P greater than 0.05). After ATTEN-EX, fatigue correlated most closely with [ADP] (r = 0.84). The data indicate that skeletal muscle fatigue 1) is multifactorial, 2) can occur without decreased pH or increased [H2PO4-], and 3) is correlated with [ADP] after exercise-induced glycogen depletion.  相似文献   

19.
Experiments were designed to detect and determine differences between nitrite/nitrate concentration ([NOx]) in plasma across 15 species selected from seven classes of vertebrates. Blood collected in syringes was placed immediately into ethylenediaminetetraacetic acid (EDTA)-containing tubes and was centrifuged. Plasma [NOx] was determined by measurement of chemiluminescence. Across classes of vertebrates, baseline plasma [NOx] ranged from 0.6 to 171.3 nmol/ml. Mean +/- SD plasma [NOx] was highest in a fresh-water, jawless fish (lamprey, 95.5 +/- 9.1 nmol/ml) and lowest in a saltwater cartilaginous fish (skates, 1.1 +/- 0.4 nmol/ml). Both amphibians tested had a wide range in plasma [NOx], which was explained partly by temporal changes during the year. Within the mammalian class, plasma [NOx] ranged from 3.8 to 43.2 nmol/ml. Results of this study indicate that NO is detectable in plasma of all classes of vertebrates and that baseline concentration varies among species.  相似文献   

20.
To determine sex differences in osmoregulation of arginine vasopressin (AVP) and body water, we studied eight men (24 +/- 1 yr) and eight women (29 +/- 2 yr) during 3% NaCl infusion [hypertonic saline infusion (HSI); 120 min, 0.1 ml. kg body wt(-1). min(-1)]. Subjects then drank 15 ml/kg body wt over 30 min followed by 60 min of rest. Women were studied in the early follicular (F; 16.1 +/- 2.8 pg/ml plasma 17beta-estradiol and 0.6 +/- 0.1 ng/ml plasma progesterone) and midluteal (L; 80.6 +/- 11.4 pg/ml plasma 17beta-estradiol and 12.7 +/- 0.7 ng/ml plasma progesterone) menstrual phases. Basal plasma osmolality was higher in F (286 +/- 1 mosmol/kgH(2)O) and in men (289 +/- 1 mosmol/kgH(2)O) compared with L (280 +/- 1 mosmol/kgH(2)O, P < 0.05). Neither menstrual phase nor gender affected basal plasma AVP concentration (P([AVP]); 1.7 +/- 4, 1.9 +/- 0.4, and 2.2 +/- 0.5 pg/ml for F, L, and men, respectively). The plasma osmolality threshold for AVP release was lowest in L (x-intercept, 263 +/- 3 mosmol/kgH(2)O, P < 0.05) compared with F (273 +/- 2 mosmol/kgH(2)O) and men (270 +/- 4 mosmol/kgH(2)O) during HSI. Men had greater P([AVP])-plasma osmolality slopes (i.e., sensitivity) compared with F and L (slopes = 0.14 +/- 0.04, 0.09 +/- 0.01, and 0.24 +/- 0.07 for F, L, and men, respectively, P < 0.05). Despite similar Na+-regulating hormone responses, men excreted less Na+ during HSI (0.7 +/- 0.1, 0.7 +/- 0.1, and 0.5 +/- 0.1 meq/kg body wt for F, L, and men, respectively, P < 0.05). Furthermore, men had greater systolic blood pressure (119 +/- 5, 119 +/- 5, and 132 +/- 3 mmHg for F, L, and men, respectively, P < 0.05) than F and L. Our data indicate greater sensitivity in P([AVP]) response to changes in plasma osmolality as the primary difference between men and women during HSI. In men, this greater sensitivity was associated with an increase in systolic blood pressure and pulse pressure during HSI, most likely due to a shift in the pressure-natriuresis curve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号