首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of succinate (SDH) and lactate (LDH) dehydrogenases were determined in single muscle fibres in unfixed sections of the gastrocnemius of dystrophic mdx mice (with an X-linked genetic disorder lacking a cytoskeletal protein, dystrophin) and age-matched C57BL/10 control mice. Quantitative gel substrate-film techniques and a real-time image analysis system were used. Three main fibre types were observed in regenerated mdx gastrocnemius and in corresponding controls: small fibres (S) with high SDH and LDH initial reaction velocities and activities, large fibres (L) with low activities of these dehydrogenases and intermediate-sized fibres (I) with intermediate enzyme activities. The small and intermediate fibres in both mdx and control muscles exhibited respectively high and moderate subsarcolemmal SDH and LDH activities attributable to accumulated mitochondria. The ratios of the initial velocities of the intrinsic enzyme reactions in the sarcoplasm, excluding the subsarcolemmal regions, of mdx muscle fibres compared to those in control fibres were 0.958 (S), 1.09 (I) and 0.959 (L) for SDH, and 1.03 (S), 1.06 (I) and 1.07 (L) for LDH. A parameter a, a measure of the diffusion of LDH out of muscle sections during incubation on gel substrate films, was found to be 0.981 and 1.00 in mdx and control muscles, respectively. Thus there are no significant differences in the activities and microenvironments of the enzymes between regenerated mdx muscle fibres and normal control muscle fibres. These data suggest that dystrophin deficiency in mdx muscles has no effects on the interactions of LDH with cytoskeletal proteins or on SDH activities in mitochondria whose number and morphology differ in mdx muscle fibres compared to those in normal controls. SDH and LDH activities were also found in the mitochondria clustered on two longitudinally directed poles of each central nucleus in regenerated mdx muscle fibres. They were proportional to the activities in the sarcoplasm excluding the subsarcolemmal regions. Accepted: 12 October 1999  相似文献   

2.
Dystrophic muscles suffer from enhanced oxidative stress. We have investigated whether administration of an antioxidant, epigallocatechin-3-gallate (EGCG), a component of green tea, reduces their oxidative stress and pathophysiology in mdx mice, a mild phenotype model of human Duchenne-type muscular dystrophy. EGCG (5 mg/kg body weight in saline) was injected subcutaneously 4× a week into the backs of C57 normal and dystrophin-deficient mdx mice for 8 weeks after birth. Saline was injected into normal and mdx controls. EGCG had almost no observable effects on normal mice or on the body weights of mdx mice. In contrast, it produced the following improvements in the blood chemistry, muscle histology, and electrophysiology of the treated mdx mice. First, the activities of serum creatine kinase were reduced to normal levels. Second, the numbers of fluorescent lipofuscin granules per unit volume of soleus and diaphragm muscles were significantly decreased by about 50% compared to the numbers in the corresponding saline-treated controls. Third, in sections of diaphragm and soleus muscles, the relative area occupied by histologically normal muscle fibres increased significantly 1.5- to 2-fold whereas the relative areas of connective tissue and necrotic muscle fibres were substantially reduced. Fourth, the times for the maximum tetanic force of soleus muscles to fall by a half increased to almost normal values. Fifth, the amount of utrophin in diaphragm muscles increased significantly by 17%, partially compensating for the lack of dystrophin expression.  相似文献   

3.
Thymosin beta-4 (Tβ4) is a ubiquitous protein with many properties relating to cell proliferation and differentiation that promotes wound healing and modulates inflammatory mediators. We studied the effects of chronic administration of Tβ4 on the skeletal and cardiac muscle of dystrophin deficient mdx mice, the mouse model of Duchenne muscular dystrophy. Female wild type (C57BL10/ScSnJ) and mdx mice, 8–10 weeks old, were treated with 150 µg of Tβ4 twice a week for 6 months. To promote muscle pathology, mice were exercised for 30 minutes twice a week. Skeletal and cardiac muscle function were assessed via grip strength and high frequency echocardiography. Localization of Tβ4 and amount of fibrosis were quantified using immunohistochemistry and Gomori''s tri-chrome staining, respectively. Mdx mice treated with Tβ4 showed a significant increase in skeletal muscle regenerating fibers compared to untreated mdx mice. Tβ4 stained exclusively in the regenerating fibers of mdx mice. Although untreated mdx mice had significantly decreased skeletal muscle strength compared to untreated wild type, there were no significant improvements in mdx mice after treatment. Systolic cardiac function, measured as percent shortening fraction, was decreased in untreated mdx mice compared to untreated wild type and there was no significant difference after treatment in mdx mice. Skeletal and cardiac muscle fibrosis were also significantly increased in untreated mdx mice compared to wild type, but there was no significant improvement in treated mdx mice. In exercised dystrophin deficient mice, chronic administration of Tβ4 increased the number of regenerating fibers in skeletal muscle and could have a potential role in treatment of skeletal muscle disease in Duchenne muscular dystrophy.  相似文献   

4.
Recently, we have shown that nitric oxide synthase-1 (NOS-1) and thus its product NO are present in the sarcolemma region of a subpopulation of atrial cardiomyocytes in the rat heart. In order to find out whether this newly discovered sarcolemma-associated NOS/NO system represents a general signalling mechanism in the murine rodent heart and whether its properties are comparable to those in skeletal muscle fibres, immunohistochemical and catalytic histochemical methods (including image analysis) were applied to the heart and extensor digitorum longus (EDL) and tongue muscles of wild type and mutant mice. In different strains of wild type mice and NOS-3 knockouts, urea-resistant (and therefore specific) NOS NADPH diaphorase histochemistry and NOS-1 immunohistochemistry revealed that NOS-1 activity and protein were present in the sarcolemma region of a subpopulation of atrial and ventricular working cardiomyocytes, but not in those of the impulse conducting system. Using image analysis, NOS-1 showed similar activities in the sarcolemma region of cardiomyocytes and in EDL type I myofibres. In mdx and NOS-1 knockout mice, NOS-1 was absent from the sarcolemma region of atrial and ventricular cardiomyocytes and of EDL and tongue muscle fibres, whereas NOS-1 was present in the hearts of NOS-3 knockouts. Atrial natriuretic peptide immunohistochemistry identified part of the atrial NOS-1-expressing cardiomyocytes as myoendocrine cells. In mdx mice as well as in NOS-1- and NOS-3-deficient animals, the peptide was found in greater abundance than in wild type mice. These data suggest that NOS-1 is expressed in a subpopulation of working cardiomyocytes in the murine rodent heart, that the myoendocrine cells may be negatively modulated by NOS-1- and NOS-3-produced NO, and that the anchoring mechanisms for NOS-1 in these cells (i.e. their confinement to the sarcolemma region) are comparable to those in skeletal muscle fibres.  相似文献   

5.
Duchenne muscular dystrophy (DMD), one of the most common and lethal genetic disorders, and the mdx mouse myopathies are caused by a lack of dystrophin protein. These dystrophic muscles contain sporadic clusters of dystrophin-expressing revertant fibers (RFs), as detected by immunohistochemistry. RFs are known to arise from muscle precursor cells with spontaneous exon skipping (alternative splicing) and clonally expand in size with increasing age through the process of muscle degeneration/regeneration. The expansion of revertant clusters is thought to represent the cumulative history of muscle regeneration and proliferation of such precursor cells. However, the precise mechanisms by which RFs arise and expand are poorly understood. Here, to test the effects of mutation types and aging on RF expansion and muscle regeneration, we examined the number of RFs in mdx mice (containing a nonsense mutation in exon 23) and mdx52 mice (containing deletion mutation of exon 52) with the same C57BL/6 background at 2, 6, 12, and 18months of age. Mdx mice displayed a significantly higher number of RFs compared to mdx52 mice in all age groups, suggesting that revertant fiber expansion largely depends on the type of mutation and/or location in the gene. A significant increase in the expression and clustering levels of RFs was found beginning at 6months of age in mdx mice compared with mdx52 mice. In contrast to the significant expansion of RFs with increasing age, the number of centrally nucleated fibers and embryonic myosin heavy chain-positive fibers (indicative of cumulative and current muscle regeneration, respectively) decreased with age in both mouse strains. These results suggest that mutation types and aging differently affect revertant fiber expansion in mdx and mdx52 mice.  相似文献   

6.
We demonstrated that the susceptibility of skeletal muscle to injury from lengthening contractions in the dystrophin-deficient mdx mouse is directly linked with the extent of fiber branching within the muscles and that both parameters increase as the mdx animal ages. We subjected isolated extensor digitorum longus muscles to a lengthening contraction protocol of 15% strain and measured the resulting drop in force production (force deficit). We also examined the morphology of individual muscle fibers. In mdx mice 1–2 mo of age, 17% of muscle fibers were branched, and the force deficit of 7% was not significantly different from that of age-matched littermate controls. In mdx mice 6–7 mo of age, 89% of muscle fibers were branched, and the force deficit of 58% was significantly higher than the 25% force deficit of age-matched littermate controls. These data demonstrated an association between the extent of branching and the greater vulnerability to contraction-induced injury in the older fast-twitch dystrophic muscle. Our findings demonstrate that fiber branching may play a role in the pathogenesis of muscular dystrophy in mdx mice, and this could affect the interpretation of previous studies involving lengthening contractions in this animal. skeletal muscle; mdx mouse; lengthening contraction; Duchenne muscular dystrophy  相似文献   

7.
The phenotypic differences among Duchenne muscular dystrophy patients, mdx mice, and mdx5cv mice suggest that despite the common etiology of dystrophin deficiency, secondary mechanisms have a substantial influence on phenotypic severity. The differential response of various skeletal muscles to dystrophin deficiency supports this hypothesis. To explore these differences, gene expression profiles were generated from duplicate RNA targets extracted from six different skeletal muscles (diaphragm, soleus, gastrocnemius, quadriceps, tibialis anterior, and extensor digitorum longus) from wild-type, mdx, and mdx5cv mice, resulting in 36 data sets for 18 muscle samples. The data sets were compared in three different ways: (1) among wild-type samples only, (2) among all 36 data sets, and (3) between strains for each muscle type. The molecular profiles of soleus and diaphragm separate significantly from the other four muscle types and from each other. Fiber-type proportions can explain some of these differences. These variations in wild-type gene expression profiles may also reflect biomechanical differences known to exist among skeletal muscles. Further exploration of the genes that most distinguish these muscles may help explain the origins of the biomechanical differences and the reasons why some muscles are more resistant than others to dystrophin deficiency. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. Judith N. Haslett, Peter B. Kang These authors contributed equally to this work.  相似文献   

8.
There is substantial evidence indicating that disruption of Ca2+ homeostasis and activation of cytosolic proteases play a key role in the pathogenesis and progression of Duchenne Muscular Dystrophy (DMD). However, the exact nature of the Ca2+ deregulation and the Ca2+ signaling pathways that are altered in dystrophic muscles have not yet been resolved. Here we examined the contribution of the store-operated Ca2+ entry (SOCE) for the pathogenesis of DMD. RT-PCR and Western blot found that the expression level of Orai1, the pore-forming unit of SOCE, was significantly elevated in the dystrophic muscles, while parallel increases in SOCE activity and SR Ca2+ storage were detected in adult mdx muscles using Fura-2 fluorescence measurements. High-efficient shRNA probes against Orai1 were delivered into the flexor digitorum brevis muscle in live mice and knockdown of Orai1 eliminated the differences in SOCE activity and SR Ca2+ storage between the mdx and wild type muscle fibers. SOCE activity was repressed by intraperitoneal injection of BTP-2, an Orai1 inhibitor, and cytosolic calpain1 activity in single muscle fibers was measured by a membrane-permeable calpain substrate. We found that BTP-2 injection for 2 weeks significantly reduced the cytosolic calpain1 activity in mdx muscle fibers. Additionally, ultrastructural changes were observed by EM as an increase in the number of triad junctions was identified in dystrophic muscles. Compensatory changes in protein levels of SERCA1, TRP and NCX3 appeared in the mdx muscles, suggesting that comprehensive adaptations occur following altered Ca2+ homeostasis in mdx muscles. Our data indicates that upregulation of the Orai1-mediated SOCE pathway and an overloaded SR Ca2+ store contributes to the disrupted Ca2+ homeostasis in mdx muscles and is linked to elevated proteolytic activity, suggesting that targeting Orai1 activity may be a promising therapeutic approach for the prevention and treatment of muscular dystrophy.  相似文献   

9.
10.
Objective: Duchenne muscular dystrophy (DMD) is a devastating muscle disease caused by a mutation in DMD encoding dystrophin. Oxidative stress accounts for dystrophic muscle pathologies in DMD. We examined the effects of molecular hydrogen in mdx mice, a model animal for DMD.

Methods: The pregnant mother started to take supersaturated hydrogen water (>5?ppm) ad libitum from E15.5 up to weaning of the offspring. The mdx mice took supersaturated hydrogen water from weaning until age 10 or 24 weeks when they were sacrificed.

Results: Hydrogen water prevented abnormal body mass gain that is commonly observed in mdx mice. Hydrogen improved the spontaneous running distance that was estimated by a counter-equipped running-wheel, and extended the duration on the rota-rod. Plasma creatine kinase activities were decreased by hydrogen at ages 10 and 24 weeks. Hydrogen also decreased the number of central nuclei of muscle fibers at ages 10 and 24 weeks, and immunostaining for nitrotyrosine in gastrocnemius muscle at age 24 weeks. Additionally, hydrogen tended to increase protein expressions of antioxidant glutathione peroxidase 1, as well as anti-apoptotic Bcl-2, in skeletal muscle at age 10 weeks.

Discussion: Although molecular mechanisms of the diverse effects of hydrogen remain to be elucidated, hydrogen potentially improves muscular dystrophy in DMD patients.  相似文献   

11.
In Duchenne muscular dystrophy (DMD), a genetic disruption of dystrophin protein expression results in repeated muscle injury and chronic inflammation. Magnetic resonance imaging shows promise as a surrogate outcome measure in both DMD and rehabilitation medicine that is capable of predicting clinical benefit years in advance of functional outcome measures. The mdx mouse reproduces the dystrophin deficiency that causes DMD and is routinely used for preclinical drug testing. There is a need to develop sensitive, non-invasive outcome measures in the mdx model that can be readily translatable to human clinical trials. Here we report the use of magnetic resonance imaging and spectroscopy techniques for the non-invasive monitoring of muscle damage in mdx mice. Using these techniques, we studied dystrophic mdx muscle in mice from 6 to 12 weeks of age, examining both the peak disease phase and natural recovery phase of the mdx disease course. T2 and fat-suppressed imaging revealed significant levels of tissue with elevated signal intensity in mdx hindlimb muscles at all ages; spectroscopy revealed a significant deficiency of energy metabolites in 6-week-old mdx mice. As the mdx mice progressed from the peak disease stage to the recovery stage of disease, each of these phenotypes was either eliminated or reduced, and the cross-sectional area of the mdx muscle was significantly increased when compared to that of wild-type mice. Histology indicates that hyper-intense MRI foci correspond to areas of dystrophic lesions containing inflammation as well as regenerating, degenerating and hypertrophied myofibers. Statistical sample size calculations provide several robust measures with the ability to detect intervention effects using small numbers of animals. These data establish a framework for further imaging or preclinical studies, and they support the development of MRI as a sensitive, non-invasive outcome measure for muscular dystrophy.  相似文献   

12.
In our recent study was shown a significant recovery of damaged skeletal muscle of mice with X-linked muscular dystrophy (mdx) following low-intensity endurance exercise, probably by reducing the degeneration of dystrophic muscle. Consequently, in the present work, we aimed to identify proteins involved in the observed reduction in degenerating fibres. To this end, we used proteomic analysis to evaluate changes in the protein profile of quadriceps dystrophic muscles of exercised compared with sedentary mdx mice. Four protein spots were found to be significantly changed and were identified as three isoforms of carbonic anhydrase 3 (CA3) and superoxide dismutase [Cu-Zn] (SODC). Protein levels of CA3 isoforms were significantly up-regulated in quadriceps of sedentary mdx mice and were completely restored to wild–type (WT) mice values, both sedentary and exercised, in quadriceps of exercised mdx mice. Protein levels of SODC were down-regulated in quadriceps of sedentary mdx mice and were significantly restored to WT mice values, both sedentary and exercised, in quadriceps of exercised mdx mice. Western blot data were in agreement with those obtained using proteomic analysis and revealed the presence of one more CA3 isoform that was significantly changed. Based on data found in the present study, it seems that low-intensity endurance exercise may in part contribute to reduce cell degeneration process in mdx muscles, by counteracting oxidative stress.  相似文献   

13.
Longo, M.V. and Díaz, A.O. (2011). The claw closer muscle of two estuarine crab species, Cyrtograpsus angulatus and Neohelice granulata (Grapsoidea, Varunidae): histochemical fibre type composition. —Acta Zoologica (Stockholm) 00 : 1–7. This study permitted the characterization of four types of muscle fibres in the claw closer muscles of Cyrtograpsus angulatus and Neohelice granulata. Succinic dehydrogenase (SDH) for mitochondria, periodic acid Schiff (PAS) for glycogen, Sudan Black B for lipids and myosin‐adenosine triphosphatase (m‐ATPase) preincubated at alkaline and acid pHs were used for that purpose. The mean fibre diameters, the relative areas and frequencies of each muscle fibre type were calculated. Types I and IV would be considered ‘extreme’ groups with type I fibres large, weak and acid/alkaline‐labile m‐ATPase, weak SDH, PAS and Sudan, and type IV fibres small, very strong and acid/alkaline‐resistant m‐ATPase, strong SDH and PAS, and moderate Sudan. Types II and III would belong to a predominant ‘intermediate’ group. Type IV fibres were scarce in C. angulatus but represented 25% of the total fibre population in N. granulata. In C. angulatus, the relative area occupied by type I fibres was bigger than its relative proportion, whereas in N. granulata, types I and II had similar patterns. Concluding, variations in fibre type composition in the claw closer muscles of C. angulatus and N. granulata would be linked to different habitats and feeding behaviours.  相似文献   

14.
Summary A heat-sensitive mutant of Neurospora crassa, strain 4M(t), was isolated using ultraviolet-light mutagenesis followed by the inositol-less death enrichment technique. The heat-sensitivity is the result of a single gene mutation which maps to the distal end of the right arm of linkage group II. The mutation defines the rip-1 gene locus. Both conidial germination and mycelial extension are inhibited in the mutant at 35°C and above (the nonpermissive temperature) but prolonged incubation at that temperature is not lethal to either cell type. Analysis of the lateral mycelial growth rates of wild type and of the rip-1 mutant at a variety of temperatures between 10 and 40°C indicated that the maximal growth rate occurs at 35°C in the wild type, and at 25°C in the rip-1 strain. The rip-1 mutant grows 239-times slower at 35°C than at 25°C, whereas the wild type grows 1.4-times faster. Temperature shift-up experiments showed that even 3 h at 20°C is not sufficient to allow germination at 37°C, thereby showing that the mutant cannot accumulate enough heat-sensitive product at the permissive temperature to contribute to germination at 37°C. The reciprocal temperature shift-down experiments showed that the molecular events at 37°C may be qualitatively useful for germination after shifting to 20°C. Studies of macromolecular synthesis showed that the biochemical defect in the heat-sensitive strain appears to affect RNA synthesis before protein synthesis, although there were differences in the relative effects depending on the age of the germinating conidia and the inhibition of the two processes was never complete. Messenger RNA synthesis is normal in the mutant at 37°C. Previous work has shown that the rip-1 mutant strain has a conditional defect in the accumulation of 25S rRNA and, hence, in 60S ribosomal subunit production (Loo et al. 1981). There are also indications from those studies that the 60S ribosomal subunit may be functionally impaired at the higher temperature. Thus, the growth and macromolecular synthesis phenotypes may result as a consequence of a conditional, ribosome function defect and leads to the hypothesis that the mutation in the rip-1 strain may be in a gene for a 60S ribosomal subunit component, perhaps a ribosomal protein.  相似文献   

15.
Summary We examined the expression of dystrophin by immunohistochemical and immunoblot analyses in the skeletal and cardiac muscles of Xmdx/X+ heterozygous mice, which were obtained by mating male mdx mice (Xmdx/Y) with female wild type mice (X+/X+). Dystrophin was expressed on the surface membrane in both muscles, but the mode of expression was different between the two muscles. In cardiac muscle, dystrophin positive and negative cells were present in roughly equal numbers intermingled in a mosaic pattern; this was considered to reflect the random inactivation of X-chromosomes in early development. In skeletal muscle, most of the surface membrane was dystrophin positive. There were little signs of fiber necrosis or regeneration, and serum creatine kinase levels were normal. We are at present of opinion that the predominance of dystrophin-positive area in skeletal muscle is due to intracellular diffusion of dystrophin. On leave from The Department of Pediatrics, Tokyo Women's Medical College  相似文献   

16.
Three new anamorphic ascomycetous yeasts are described: Candida anglica (type strain NRRL Y-27079, CBS 4262), Candida cidri (type strain NRRL Y-27078, CBS 4241), and Candida pomicola (type strain NRRL Y-27083, CBS 4242). These three species were isolated from cider produced in the United Kingdom, and their identification was determined from unique nucleotide sequences in the species-specific D1/D2 domain of large subunit (26S) ribosomal DNA. Phylogenetic analysis of D1/D2 sequences placed C. anglica near Candida fragi, C. cidri near Pichia capsulata, and C. pomicola in the Pichia holstii clade.  相似文献   

17.
The majority of patients afflicted with Duchenne muscular dystrophy develop cardiomyopathic complications, warranting large‐scale proteomic studies of global cardiac changes for the identification of new protein markers of dystrophinopathy. The aged heart from the X‐linked dystrophic mdx mouse has been shown to exhibit distinct pathological aspects of cardiomyopathy. In order to establish age‐related alterations in the proteome of dystrophin‐deficient hearts, cardiomyopathic tissue from young versus aged mdx mice was examined by label‐free LC‐MS/MS. Significant age‐dependent alterations were established for 67 proteins, of which 28 proteins were shown to exhibit a lower abundance and 39 proteins were found to be increased in their expression levels. Drastic changes were demonstrated for 17 proteins, including increases in Ig chains and transferrin, and drastic decreases in laminin, nidogen and annexin. An immunblotting survey of young and old wild‐type versus mdx hearts confirmed these proteomic findings and illustrated the effects of natural aging versus dystrophin deficiency. These proteome‐wide alterations suggest a disintegration of the basal lamina structure and cytoskeletal network in dystrophin‐deficient cardiac fibres, increased levels of antibodies in a potential autoimmune reaction of the degenerating heart, compensatory binding of excess iron and a general perturbation of metabolic pathways in dystrophy‐associated cardiomyopathy.  相似文献   

18.
The evolution of the locomotor apparatus in vertebrates is marked by major reorganizations in trunk's musculature. The hypothesized functions of mammalian back muscles in the literature are discussed under consideration of the distribution and proportion of oxidative, type‐I‐fibres, oxidative‐glycolytic, type‐IIa‐fibres and glycolytic, type‐IIb‐fibres in paravertebral muscles of a small mammal. The fibre type distribution was examined from a complete series of histological sections maintaining topographical relationships between the muscles as well as within the muscle, in order to establish the overall distribution pattern. The deep and short muscles showed the highest percentage of oxidative fibres. The larger, superficial paravertebral muscles contained the highest percentage of glycolytic fibres. Two muscles were intermediate in their proportion of fibre types. All epaxial muscles together can be interpreted as an antigravity muscle–complex counteracting enduringly against the rebound tendency caused by gravitation, comparable with antigravity muscles in limbs. A gradient from deep to superficial, or a clear regionalization of oxidative muscle fibres in central deep regions around a large intramuscular tendon was found in the m. spinalis and the m. quadratus lumborum, respectively. Concepts of the function of human back muscles as those of A. Bergmark (1989: Acta Orthop. Scand. 230 , 1) or S.G.T. Gibbons & M.J. Comerford (2001: Orthop. Division Rev. March/April, 21) were exposed to be more general within mammals. Functional specializations of different muscles and muscle parts are discussed under the consideration of evolutionary reorganization of the paravertebral musculature in tetrapods. Along the cranio‐caudal axis, the percentage of oxidative fibres was decreased in caudal direction within the same muscles, whereas the proportion of glycolytic fibres was increased. Therefore, classifications of muscles as ‘glycolytic’ or ‘oxidative’ based on biopsies or analyses of single cross‐sections may result in wrong interpretations. Changes in the proportions of the fibre type distribution pattern were mostly due to oxidative and glycolytic fibre types, whereas the percentage of oxidative‐glycolytic fibres had only minor influence. A significant positive correlation between the cross‐sectional area of the single fibre and its percentage in the area investigated were observed for oxidative fibres, whereby the size was positive correlated to the proportion of the oxidative fibres.  相似文献   

19.
Oldmdx mice display a severe myopathyalmost identical to Duchenne's muscular dystrophy. This study examinedthe contractile properties of old mdxmuscles and investigated any effects of low-intensity exercise.Isometric contractile properties of the extensor digitorum longus (EDL)and soleus muscles were tested in adult (8-10 mo) and old (24 mo,split into sedentary and exercised groups)mdx mice. The EDL and soleus from oldmdx mice exhibited decreased absolutetwitch and tetanic forces, and the soleus exhibited a >50% decreasein relative forces (13.4 ± 0.4 vs. 6.0 ± 0.9 N/cm2) compared with adult mice.Old mdx muscles also showed longer contraction times and a higher percentage of type I fibers. Normal andmdx mice completed 10 wk of swimming,but mdx mice spent significantly lesstime swimming than normal animals (7.8 ± 0.4 vs. 15.8 ± 1.1 min, respectively). However, despite their severe dystrophy,mdx muscles responded positively tothe low-intensity exercise. Relative tetanic tensions were increased(~25% and ~45% for the EDL and soleus, respectively) after theswimming, although absolute forces were unaffected. Thus these resultsindicate that, even with a dystrophin-deficient myopathy,mdx muscles can still respond to low-intensity exercise. This study shows that the contractile functionof muscles of old mdx mice displaysmany similarities to that of human dystrophic patients and providesfurther evidence that the use of non-weight-bearing, low-intensityexercises, such as swimming, has no detrimental effect on dystrophicmuscle and could be a useful therapeutic aid for sufferers of musculardystrophy.

  相似文献   

20.
Duchenne muscular dystrophy (DMD) is the most common inherited neuromuscular disease and is characterized by absence of the cytoskeletal protein dystrophin, muscle wasting, and fibrosis. We previously demonstrated that systemic infusion or oral administration of angiotensin-(1-7) (Ang-(1-7)), a peptide with opposing effects to angiotensin II, normalized skeletal muscle architecture, decreased local fibrosis, and improved muscle function in mdx mice, a dystrophic model for DMD. In this study, we investigated the presence, activity, and localization of ACE2, the enzyme responsible for Ang-(1-7) production, in wild type (wt) and mdx skeletal muscle and in a model of induced chronic damage in wt mice. All dystrophic muscles studied showed higher ACE2 activity than wt muscle. Immunolocalization studies indicated that ACE2 was localized mainly at the sarcolemma and, to a lesser extent, associated with interstitial cells. Similar results were observed in the model of chronic damage in the tibialis anterior (TA) muscle. Furthermore, we evaluated the effect of ACE2 overexpression in mdx TA muscle using an adenovirus containing human ACE2 sequence and showed that expression of ACE2 reduced the fibrosis associated with TA dystrophic muscles. Moreover, we observed fewer inflammatory cells infiltrating the mdx muscle. Finally, mdx gastrocnemius muscles from mice infused with Ang-(1-7), which decreases fibrosis, contain less ACE2 associated with the muscle. This is the first evidence supporting ACE2 as an important therapeutic target to improve the dystrophic skeletal muscle phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号