首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a search for Schizosaccharomyces pombe mutants resistant to the antifungal agent papulacandin B, a morphological mutant was isolated. The mutant is round shaped in contrast to the rod shaped parental strain. This morphological defect segregated as a recessive Mendelian character and was not observed in other papulacandin B resistant mutants belonging to the same complementation group. The mutation mapped in the right arm of S. pombe chromosome III very close to pap1 marker. Mutant cell walls were more susceptible to alkali extraction and Novozyme degradation than those from the wild-type. A specific reduction in the cell wall galactomannan fraction was the only significant difference detected as compared to the wild-type strain. Levels of beta (1,3)-glucan and mannan synthases as well as other enzymic periplasmic mannoproteins were very similar in wild type and mutant strains.  相似文献   

2.
J C Ribas  M Diaz  A Duran    P Perez 《Journal of bacteriology》1991,173(11):3456-3462
Schizosaccharomyces pombe thermosensitive mutants requiring the presence of an osmotic stabilizer to survive and grow at a nonpermissive temperature were isolated. The mutants were genetically and biochemically characterized. In all of them, the phenotype segregated in Mendelian fashion as a single gene which coded for a recessive character. Fourteen loci were defined by complementation analysis. Studies of cell wall composition showed a reduction in the amount of cell wall beta-glucan in three strains (JCR1, JCR5, and JCR10) when growing at 37 degrees C. Galactomannan was diminished in two others. Strains JCR1 and JCR5, with mutant alleles cwg1-1 and cwg2-1, respectively, were further studied. The cwg1 locus was mapped on the right arm of chromosome III, 18.06 centimorgans (cM) to the left of the ade5 marker; cwg2 was located on the left arm of chromosome I, 34.6 cM away from the aro5 marker. (1-3)beta-D-Glucan synthase activities from cwg1-1 and cwg2-1 mutant strains grown at 37 degrees C were diminished, as measured in vitro, compared with the wild-type strain; however, Km values and activation by GTP were similar to the wild-type values. Mutant synthases behaved like the wild-type enzyme in terms of thermostability. Analyses of round shape, lytic behavior, and low (1-3)beta-D-glucan synthase activity in cultures derived from ascospores of the same tetrad showed cosegregation of all these characters. Detergent dissociation of (1-3)beta-D-glucan synthase into soluble and particulate fractions and subsequent reconstitution demonstrated that the cwg1-1 mutant was affected in the particulate fraction of the enzymatic activity while cwg2-1 was affected in the soluble component. The antifungal agents Papulacandin B and Aculeacin A had similar effects on the enzymatic activities of the wild type and the cwg2-1 mutant strain, whereas the cwg1-1 mutant, when growing at 37 degrees C, had a more inhibitor-resistant (1,3)beta-D-glucan synthase. It is concluded that the cwg1+ and cwg2+ genes are related to (1,3)beta-D-glucan biosynthesis.  相似文献   

3.
Three specific β(1,3)glucan synthase (GS) inhibitor families, papulacandins, acidic terpenoids, and echinocandins, have been analyzed in Schizosaccharomyces pombe wild-type and papulacandin-resistant cells and GS activities. Papulacandin and enfumafungin produced similar in vivo effects, different from that of echinocandins. Also, papulacandin was the strongest in vitro GS inhibitor (IC(50) 10(3)-10(4)-fold lower than with enfumafungin or pneumocandin), but caspofungin was by far the most efficient antifungal because of the following. 1) It was the only drug that affected resistant cells (minimal inhibitory concentration close to that of the wild type). 2) It was a strong inhibitor of wild-type GS (IC(50) close to that of papulacandin). 3) It was the best inhibitor of mutant GS. Moreover, caspofungin showed a special effect for two GS inhibition activities, of high and low affinity, separated by 2 log orders, with no increase in inhibition. pbr1-8 and pbr1-6 resistances are due to single substitutions in the essential Bgs4 GS, located close to the resistance hot spot 1 region described in Saccharomyces and Candida Fks mutants. Bgs4(pbr)(1-8) contains the E700V change, four residues N-terminal from hot spot 1 defining a larger resistance hot spot 1-1 of 13 amino acids. Bgs4(pbr)(1-6) contains the W760S substitution, defining a new resistance hot spot 1-2. We observed spontaneous revertants of the spherical pbr1-6 phenotype and found that an additional A914V change is involved in the recovery of the wild-type cell shape, but it maintains the resistance phenotype. A better understanding of the mechanism of action of the antifungals available should help to improve their activity and to identify new antifungal targets.  相似文献   

4.
M Arellano  A Durn    P Prez 《The EMBO journal》1996,15(17):4584-4591
The Schizosaccharomyces pombe Cdc42 and Rho1 GTPases were tested for their ability to complement the cwg2-1 mutant phenotype of a decrease in (1-3)beta-D-glucan synthase activity when grown at the non-permissive temperature. Only Rho1 is able to partly complement the defect in glucan synthase associated with the cwg2-1 mutation. Moreover, overexpression of the rho1 gene in wild-type S.pombe cells causes aberrant morphology with loss of polarity and cells with several septa. Under this condition (1-3)beta-D-glucan synthase activity is increased four times, but is still dependent on GTP. When S.pombe is transformed with constitutively active rho1 mutant alleles (rho1-G15V or rho1-Q64L), cells stop growing and show a very thick cell wall with hardly any septum. Under this condition the level of (1-3)beta-D-glucan synthase activity is at least 20 times higher than wild-type and is independent of GTP. Neither cdc42+ nor the cdc42-V12G or cdc42-Q61L constitutively active mutant alleles affect (1-3)beta-D-glucan synthase activity when overexpressed in S.pombe. Cells overproducing Rho1 are hypersensitive to inhibitors of cell wall biosynthesis or to cell wall degrading enzymes. We conclude that Rho1 GTPase directly activates (1-3)beta-D-glucan synthase and regulates S.pombe morphogenesis.  相似文献   

5.
The Schizosaccharomyces pombe cps1-12 (for chlorpropham supersensitive) mutant strain was originally isolated as hypersensitive to the spindle poison isopropyl N-3-chlorophenyl carbamate (chlorpropham) (J. Ishiguro and Y. Uhara, Jpn. J. Genet. 67:97-109, 1992). We have found that the cps1-12 mutation also confers (i) hypersensitivity to the immunosuppressant cyclosporin A (CsA), (ii) hypersensitivity to the drug papulacandin B, which specifically inhibits 1,3-beta-D-glucan synthesis both in vivo and in vitro, and (iii) thermosensitive growth at 37 degrees C. Under any of these restrictive treatments, cells swell up and finally lyse. With an osmotic stabilizer, cells do not lyse, but at 37 degrees C they become multiseptated and multibranched. The cps1-12 mutant, grown at a restrictive temperature, showed an increase in sensitivity to lysis by enzymatic cell wall degradation, in in vitro 1,3-beta-D-glucan synthase activity (173% in the absence of GTP in the reaction), and in cell wall biosynthesis (130% of the wild-type amount). Addition of Ca2+ suppresses hypersensitivity to papulacandin B and septation and branching phenotypes. All of these data suggest a relationship between the cps1+ gene and cell wall synthesis. A DNA fragment containing the cps1+ gene was cloned, and sequence analysis indicated that it encodes a predicted membrane protein of 1,729 amino acids with 15 to 16 transmembrane domains. S. pombe cps1p has overall 55% sequence identity with Fks1p or Fks2p, proposed to be catalytic or associated subunits of Saccharomyces cerevisiae 1,3-beta-D-glucan synthase. Thus, the cps1+ product might be a catalytic or an associated copurifying subunit of the fission yeast 1,3-beta-D-glucan synthase that plays an essential role in cell wall synthesis.  相似文献   

6.
Abstract The antifungal antibiotic papulacandin β inhibited B(1,3)glucan-synthase activity, in vitro, from Schizosaccharomyces pombe . Levels of β(1,3)glucan-synthase from antibiotic-treated cultures were lower than the control cultures whereas mannan-synthase and β(1,3)glucanase activities were almost unaffected. The presence of an osmotic stabilizer reduced the inhibition of growth caused by the antibiotic. Addition of papulacandin β to a culture of S. pombe specifically inhibited incorporation of glucose into the β-glucan cell wall fraction. The fatty acids as well as the hydroxyl groups on the phenol residue of the papulacandin β molecule were essential for the inhibitory activity.  相似文献   

7.
Several yeasts, such as Candida utilis, Dekkera bruxellensis, Hanseniaspora guilliermondii, Kloeckera apiculata, Saccharomyces cerevisiae and Schizosaccharomyces pombe, were found to coaggregate with Escherichia coli, but S. pombe showed much less coflocculation than the other yeasts (Peng et al. 2001)). S. pombe is known to have galactose-rich cell walls and we investigated whether this might be responsible for its different behavior by studying the wild-type TP4-1D, with a mannose to galactose ratio of 1 to 1.2, and the glycosylation mutant gms1delta (Man:Gal=1:0). The wild-type induced very low levels of coflocculation (3%) while gms1delta induced a remarkable amount of coflocculation (48%). Coflocculation of the mutant was inhibited by mannose but not affected by galactose or glucose. The S. cerevisiae mnn2 mutant, with a mannan structure similar to gms1delta, also showed a high degree of coflocculation (40%). However, S. cerevisiae mutant mnn9, with a mature core similar to S. pombe, showed decreased coflocculation (21.3%). Both these S. cerevisae mutants were sensitive to mannose inhibition. Coflocculation of E. coli and gms1delta also could be inhibited by gms1delta mannan and plant lectins, such as HHA, GNA and NPA, specific to either alpha-1-3- or alpha-1-6-linked mannosyl units. From these results we conclude that the E. coli lectins may have specificity for alpha-1-6- and alpha-1-3-linked mannose residues either in the outer chain or in the core of S. pombe, but in wild-type strains these mannose residues are shielded by galactose residues.  相似文献   

8.
The cell wall is important for maintenance of the structural integrity and morphology of fungal cells. Besides beta-glucan and chitin, alpha-glucan is a major polysaccharide in the cell wall of many fungi. In the fission yeast Schizosaccharomyces pombe, cell wall alpha-glucan is an essential component, consisting mainly of (1,3)-alpha-glucan with approximately 10% (1,4)-linked alpha-glucose residues. The multidomain protein Ags1p is required for alpha-glucan biosynthesis and is conserved among cell wall alpha-glucan-containing fungi. One of its domains shares amino acid sequence motifs with (1,4)-alpha-glucan synthases such as bacterial glycogen synthases and plant starch synthases. Whether Ags1p is involved in the synthesis of the (1,4)-alpha-glucan constituent of cell wall alpha-glucan had remained unclear. Here, we show that overexpression of Ags1p in S. pombe cells results in accumulation of (1,4)-alpha-glucan. To determine whether the synthase domain of Ags1p is responsible for this activity, we overexpressed Ags1p-E1526A, which carries a mutation in a putative catalytic residue of the synthase domain, but observed no accumulation of (1,4)-alpha-glucan. Compared with wild-type Ags1p, this mutant Ags1p showed a markedly reduced ability to complement the cell lysis phenotype of the temperature-sensitive ags1-1 mutant. Therefore, we conclude that, in S. pombe, the production of (1,4)-alpha-glucan by the synthase domain of Ags1p is important for the biosynthesis of cell wall alpha-glucan.  相似文献   

9.
Dolichol phosphate mannose (DPM) synthase activity, which is required in N:-glycosylation, O-mannosylation, and glycosylphosphatidylinositol membrane anchoring of protein, has been postulated to regulate the Trichoderma reesei secretory pathway. We have cloned a T.reesei cDNA that encodes a 243 amino acid protein whose amino acid sequence shows 67% and 65% identity, respectively, to the Schizosaccharomyces pombe and human DPM synthases, and which lacks the COOH-terminal hydrophobic domain characteristic of the Saccharomyces cerevisiae class of synthase. The Trichoderma dpm1 (Trdpm1) gene complements a lethal null mutation in the S.pombe dpm1(+) gene, but neither restores viability of a S.cerevisiae dpm1-disruptant nor complements the temperature-sensitivity of the S. cerevisiae dpm1-6 mutant. The T.reesei DPM synthase is therefore a member of the "human" class of enzyme. Overexpression of Trdpm1 in a dpm1(+)::his7/dpm1(+) S.pombe diploid resulted in a 4-fold increase in specific DPM synthase activity. However, neither the wild type T. reesei DPM synthase, nor a chimera consisting of this protein and the hydrophobic COOH terminus of the S.cerevisiae DPM synthase, complemented an S.cerevisiae dpm1 null mutant or gave active enzyme when expressed in E.coli. The level of the Trdpm1 mRNA in T.reesei QM9414 strain was dependent on the composition of the culture medium. Expression levels of Trdpm1 were directly correlated with the protein secretory capacity of the fungus.  相似文献   

10.
The Pkc1-mediated cell wall integrity-signaling pathway is highly conserved in fungi and is essential for fungal growth. We thus explored the potential of targeting the Pkc1 protein kinase for developing broad-spectrum fungicidal antifungal drugs through a Candida albicans Pkc1-based high-throughput screening. We discovered that cercosporamide, a broad-spectrum natural antifungal compound, but previously with an unknown mode of action, is actually a selective and highly potent fungal Pkc1 kinase inhibitor. This finding provides a molecular explanation for previous observations in which Saccharomyces cerevisiae cell wall mutants were found to be highly sensitive to cercosporamide. Indeed, S. cerevisiae mutant cells with reduced Pkc1 kinase activity become hypersensitive to cercosporamide, and this sensitivity can be suppressed under high-osmotic growth conditions. Together, the results demonstrate that cercosporamide acts selectively on Pkc1 kinase and, thus, they provide a molecular mechanism for its antifungal activity. Furthermore, cercosporamide and a beta-1,3-glucan synthase inhibitor echinocandin analog, by targeting two different key components of the cell wall biosynthesis pathway, are highly synergistic in their antifungal activities. The synergistic antifungal activity between Pkc1 kinase and beta-1,3-glucan synthase inhibitors points to a potential highly effective combination therapy to treat fungal infections.  相似文献   

11.
Pediococcus damnosus can coflocculate with Saccharomyces cerevisiae and cause beer acidification that may or may not be desired. Similar coflocculations occur with other yeasts except for Schizosaccharomyces pombe which has galactose-rich cell walls. We compared coflocculation rates of S. pombe wild-type species TP4-1D, having a mannose-to-galactose ratio (Man:Gal) of 5 to 6 in the cell wall, with its glycosylation mutants gms1-1 (Man:Gal = 5:1) and gms1Delta (Man:Gal = 1:0). These mutants coflocculated at a much higher level (30 to 45%) than that of the wild type (5%). Coflocculation of the mutants was inhibited by exogenous mannose but not by galactose. The S. cerevisiae mnn2 mutant, with a mannan content similar to that of gms1Delta, also showed high coflocculation (35%) and was sensitive to mannose inhibition. Coflocculation of P. damnosus and gms1Delta (or mnn2) also could be inhibited by gms1Delta mannan (with unbranched alpha-1,6-linked mannose residues), concanavalin A (mannose and glucose specific), or NPA lectin (specific for alpha-1,6-linked mannosyl units). Protease treatment of the bacterial cells completely abolished coflocculation. From these results we conclude that mannose residues on the cell surface of S. pombe serve as receptors for a P. damnosus lectin but that these receptors are shielded by galactose residues in wild-type strains. Such interactions are important in the production of Belgian acid types of beers in which mixed cultures are used to improve flavor.  相似文献   

12.
S Clemens  E J Kim  D Neumann    J I Schroeder 《The EMBO journal》1999,18(12):3325-3333
Phytochelatins play major roles in metal detoxification in plants and fungi. However, genes encoding phytochelatin synthases have not yet been identified. By screening for plant genes mediating metal tolerance we identified a wheat cDNA, TaPCS1, whose expression in Saccharomyces cerevisiae results in a dramatic increase in cadmium tolerance. TaPCS1 encodes a protein of approximately 55 kDa with no similarity to proteins of known function. We identified homologs of this new gene family from Arabidopsis thaliana, Schizosaccharomyces pombe, and interestingly also Caenorhabditis elegans. The Arabidopsis and S.pombe genes were also demonstrated to confer substantial increases in metal tolerance in yeast. PCS-expressing cells accumulate more Cd2+ than controls. PCS expression mediates Cd2+ tolerance even in yeast mutants that are either deficient in vacuolar acidification or impaired in vacuolar biogenesis. PCS-induced metal resistance is lost upon exposure to an inhibitor of glutathione biosynthesis, a process necessary for phytochelatin formation. Schizosaccharomyces pombe cells disrupted in the PCS gene exhibit hypersensitivity to Cd2+ and Cu2+ and are unable to synthesize phytochelatins upon Cd2+ exposure as determined by HPLC analysis. Saccharomyces cerevisiae cells expressing PCS produce phytochelatins. Moreover, the recombinant purified S.pombe PCS protein displays phytochelatin synthase activity. These data demonstrate that PCS genes encode phytochelatin synthases and mediate metal detoxification in eukaryotes.  相似文献   

13.
Koo BH  Chung KH  Hwang KC  Kim DS 《FEBS letters》2002,511(1-3):85-89
Dissection of complex processes using model organisms such as yeasts relies heavily upon the use of conditional mutants. We have generated a collection of fission yeast mutants sensitive to dimethylsulphoxide (DMSO). Among these we have found a mutant in the Schizosaccharomyces pombe orthologue of the Saccharomyces cerevisiae SEC13 gene, which fails to cleave the division septum. Generation of a null allele demonstrates that the S. pombe sec13 gene is essential.  相似文献   

14.
We have characterized Schizosaccharomyces pombe open reading frames encoding potential orthologues of constituents of the evolutionarily conserved Saccharomyces cerevisiae Nup84 vertebrate Nup107-160 nuclear pore subcomplex, namely Nup133a, Nup133b, Nup120, Nup107, Nup85, and Seh1. In spite of rather weak sequence conservation, in vivo analyses demonstrated that these S. pombe proteins are localized at the nuclear envelope. Biochemical data confirmed the organization of these nucleoporins within conserved complexes. Although examination of the S. cerevisiae and S. pombe deletion mutants revealed different viability phenotypes, functional studies indicated that the involvement of this complex in nuclear pore distribution and mRNA export has been conserved between these highly divergent yeasts. Unexpectedly, microscopic analyses of some of the S. pombe mutants revealed cell division defects at the restrictive temperature (abnormal septa and mitotic spindles and chromosome missegregation) that were reminiscent of defects occurring in several S. pombe GTPase Ran (Ran(Sp))/Spi1 cycle mutants. Furthermore, deletion of nup120 moderately altered the nuclear location of Ran(Sp)/Spi1, whereas overexpression of a nonfunctional Ran(Sp)/Spi1-GFP allele was specifically toxic in the Deltanup120 and Deltanup133b mutant strains, indicating a functional and genetic link between constituents of the S. pombe Nup107-120 complex and of the Ran(Sp)/Spi1 pathway.  相似文献   

15.
McCready SJ  Osman F  Yasui A 《Mutation research》2000,451(1-2):197-210
This review is concerned with repair and tolerance of UV damage in the fission yeast, Schizosaccharomyces pombe and with the differences between Sch. pombe and budding yeast, Saccharomyces cerevisiae in their response to UV irradiation. Sch. pombe is not as sensitive to ultra-violet radiation as Sac. cerevisiae nor are any of its mutants as sensitive as the most sensitive Sac. cerevisiae mutants. This can be explained in part by the fact that Sch. pombe, unlike budding yeast or mammalian cells, has an extra pathway (UVER) for excision of UV photoproducts in addition to nucleotide excision repair (NER). However, even in mutants lacking this additional pathway, there are significant differences between the two yeasts. Sch. pombe mutants that lack the alternative pathway are still more UV-resistant than wild-type Sac. cerevisiae; recombination mutants are significantly UV sensitive (unlike their Sac. cerevisiae equivalents); mutants lacking the second pathway are sensitized to UV by caffeine; and checkpoint mutants are relatively more sensitive than the budding yeast equivalents. In addition, Sch. pombe has no photolyase. Thus, the response to UV in the two yeasts has a number of significant differences, which are not accounted for entirely by the existence of two alternative excision repair pathways. The long G2 in Sch. pombe, its well-developed recombination pathways and efficient cell cycle checkpoints are all significant components in survival of UV damage.  相似文献   

16.
The CAL1 gene was cloned by complementation of the defect in Calcofluor-resistant calR1 mutants of Saccharomyces cerevisiae. Transformation of the mutants with a plasmid carrying the appropriate insert restored Calcofluor sensitivity, wild-type chitin levels and normal spore maturation. Southern blots using the DNA fragment as a probe showed hybridization to a single locus. Allelic tests indicated that the cloned gene corresponded to the calR1 locus. The DNA insert contains a single open-reading frame encoding a protein of 1,099 amino acids with a molecular mass of 124 kD. The predicted amino acid sequence shows several regions of homology with those of chitin synthases 1 and 2 from S. cerevisiae and chitin synthase 1 from Candida albicans. calR1 mutants have been found to be defective in chitin synthase 3, a trypsin-independent synthase. Transformation of the mutants with a plasmid carrying CAL1 restored chitin synthase 3 activity; however, overexpression of the enzyme was not achieved even with a high copy number plasmid. Since Calcofluor-resistance mutations different from calR1 also result in reduced levels of chitin synthase 3, it is postulated that the products of some of these CAL genes may be limiting for expression of the enzymatic activity. Disruption of the CAL1 gene was not lethal, indicating that chitin synthase 3 is not an essential enzyme for S. cerevisiae.  相似文献   

17.
The analysis of the structure and function of long chain-producing polyprenyl diphosphate synthase, which synthesizes the side chain of ubiquinone, has largely focused on the prokaryotic enzymes, and little is known about the eukaryotic counterparts. Here we show that decaprenyl diphosphate synthase from Schizosaccharomyces pombe is comprised of a novel protein named Dlp1 acting in partnership with Dps1. Dps1 is highly homologous to other prenyl diphosphate synthases but Dlp1 shares only weak homology with Dps1. We showed that the two proteins must be present simultaneously in Escherichia coli transformants before ubiquinone-10, which is produced by S. pombe but not by E. coli, is generated. Furthermore, the two proteins were shown to form a heterotetrameric complex. This is unlike the prokaryotic counterparts, which are homodimers. The deletion mutant of dlp1 lacked the enzymatic activity of decaprenyl diphosphate synthase, did not produce ubiquinone-10 and had the typical ubiquinone-deficient S. pombe phenotypes, namely hypersensitivity to hydrogen peroxide, the need for antioxidants for growth on minimal medium and an elevated production of H2S. Both the dps1 (formerly dps) and dlp1 mutants could generate ubiquinone when they were transformed with a bacterial decaprenyl diphosphate synthase, which functions in its host as a homodimer. This indicates that both dps1 and dlp1 are required for the S. pombe enzymatic activity. Thus, decaprenyl diphosphate from a eukaryotic origin has a heterotetrameric structure that is not found in prokaryotes.  相似文献   

18.
Calcofluor is a fluorochrome that exhibits antifungal activity and a high affinity for yeast cell wall chitin. We isolated Saccharomyces cerevisiae mutants resistant to Calcofluor. The resistance segregated in a Mendelian fashion and behaved as a recessive character in all the mutants analyzed. Five loci were defined by complementation analysis. The abnormally thick septa between mother and daughter cells caused by Calcofluor in wild-type cells were absent in the mutants. The Calcofluor-binding capacity, observed by fluorescence microscopy, in a S. cerevisiae wild-type cells during alpha-factor treatment was also absent in some mutants and reduced in others. Staining of cell walls with wheat germ agglutinin-fluorescein complex indicated that the chitin uniformly distributed over the whole cell wall in vegetative or in alpha-factor-treated cells was almost absent in three of the mutants and reduced in the two others. Cell wall analysis evidenced a five- to ninefold reduction in the amount of chitin in mutants compared with that in the wild-type strain. The total amounts of cell wall mannan and beta-glucan in wild-type and mutant strains were similar; however, the percentage of beta-glucan that remained insoluble after alkali extraction was considerably reduced in mutant cells. The susceptibilities of the mutants and the wild-type strains to a cell wall enzymic lytic complex were rather similar. The in vitro levels of chitin synthase 2 detected in all mutants were similar to that in the wild type. The significance of these results is discussed in connection with the mechanism of chitin synthesis and cell wall morphogenesis in S. cerevisiae.  相似文献   

19.
The Schizosaccharomyces pombe mutant ehs1-1 mutant was isolated on the basis of its hypersensitivity to Echinocandin and Calcofluor White, which inhibit cell wall synthesis. The mutant shows a thermosensitive growth phenotype that is suppressed in the presence of an osmotic stabiliser. The mutant also showed other cell wall-associated phenotypes, such as enhanced sensitivity to enzymatic cell wall degradation and an imbalance in polysaccharide synthesis. The ehs1 + gene encodes a predicted integral membrane protein that is 30% identical to Saccharomyces cerevisiae Mid1p, a protein that has been proposed to form part of a calcium channel. As expected for such a function, we found that ehs1+ is involved in intracellular Ca2+ accumulation. High external Ca2+ concentrations suppressed all phenotypes associated with the ehs1 null mutation, suggesting that the cell integrity defects of ehs1 mutants result from inadequate levels of calcium in the cell. We observed a genetic relationship between ehs1+ and the protein kinase C homologue pck2+. pck2+ suppressed all phenotypes of ehs1-1 mutant cells. Overproduction of pck2p is deleterious to wild-type cells, increasing 1,3-beta-D-glucan synthase activity and promoting accumulation of extremely high levels of Ca2+. The lethality associated with pck2p, the increase in 1,3-beta-D-glucan synthase production and the strong Ca2+ accumulation are all dependent on the presence of ehs1p. Our results suggest that in fission yeast ehs1p forms part of a calcium channel that is involved in the cell wall integrity pathway that includes the kinase pck2p.  相似文献   

20.
The structural gene pma+1 for the H+-ATPase from the fission yeast Schizosaccharomyces pombe has been isolated and sequenced. The intron-less gene encodes for a protein of Mr = 99,769 which is 75% homologous to those of Saccharomyces cerevisiae and Neurospora crassa. The S. pombe pma+1 gene complements not only S. pombe pma-1-1 but also S. cerevisiae pma-1-4 mutants selected for in vitro vanadate-resistant ATPase activity. The sequence of the S. pombe mutant pma-1-1 allele reveals that the glycine residue 268, which is perfectly conserved in the transduction domain of all animal and fungal transport ATPases sequenced so far, is modified into an aspartate residue by the mutation. Replacement of glycine 268 by aspartate has been monitored by the appearance of a new PvuI restriction site in the mutant DNA. Mitotic cosegregation has been observed between the PvuI site and vanadate-resistant ATPase activity in a growing population of S. pombe transformants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号