首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerous studies have described the F-actin cytoskeleton; however, little information relevant to C-actin is available. The actin pools of bovine aortic endothelial cells were examined using in situ and in vitro conditions and fluorescent probes for G-(deoxyribonuclease I.0.3 μM) or F-actin (phalloidin, 0.2 μM). Cells in situ displayed a diffuse G-actin distribution, while F-actin was concentrated in the cell periphery and in fine stress fibers that traversed some cells. Cells of subconfluent or just confluent cultures demonstrated intense fluorescence, with many F-actin stress fibers. Postconfluent cultures resembled the condition in situ; peripheral F-actin was prominent, traversing actin stress fibers were greatly reduced and fluorescent intensity was diminished. Postconfluency had little influence on G-actin. with only an enhancement in the intensity of G-actin punctate fluorescence. When post-confluent cultures were incubated with cytochalasin D (15 min; 10--4 M), F-actin networks were disrupted and actin punctate and diffuse fluorescence increased. G-actin fluorescence was not altered by the incubation. Although its unstructured nature may account for the minor changes observed, the stability of the G-actin pool in the presence of notable F-actin modulations suggested that filamentous actin was the key constituent involved in these actin cytoskeletal alterations. A separate finding illustrated that the concomitant use of actin probes with image enhancement and fluorescent microscopy could reveal simultaneously the G- and F-actin pools within the same cell.  相似文献   

2.
This paper reports that water molecules around F-actin, a polymerized form of actin, are more mobile than those around G-actin or in bulk water. A measurement using pulse-field gradient spin-echo 1H NMR showed that the self-diffusion coefficient of water in aqueous F-actin solution increased with actin concentration by ∼5%, whereas that in G-actin solution was close to that of pure water. This indicates that an F-actin/water interaction is responsible for the high self-diffusion of water. The local viscosity around actin was also investigated by fluorescence measurements of Cy3, a fluorescent dye, conjugated to Cys 374 of actin. The steady-state fluorescence anisotropy of Cy3 attached to F-actin was 0.270, which was lower than that for G-actin, 0.334. Taking into account the fluorescence lifetimes of the Cy3 bound to actin, their rotational correlation times were estimated to be 3.8 and 9.1 ns for F- and G-actin, respectively. This indicates that Cy3 bound to F-actin rotates more freely than that bound to G-actin, and therefore the local water viscosity is lower around F-actin than around G-actin.  相似文献   

3.
This paper reports that water molecules around F-actin, a polymerized form of actin, are more mobile than those around G-actin or in bulk water. A measurement using pulse-field gradient spin-echo (1)H NMR showed that the self-diffusion coefficient of water in aqueous F-actin solution increased with actin concentration by ~5%, whereas that in G-actin solution was close to that of pure water. This indicates that an F-actin/water interaction is responsible for the high self-diffusion of water. The local viscosity around actin was also investigated by fluorescence measurements of Cy3, a fluorescent dye, conjugated to Cys 374 of actin. The steady-state fluorescence anisotropy of Cy3 attached to F-actin was 0.270, which was lower than that for G-actin, 0.334. Taking into account the fluorescence lifetimes of the Cy3 bound to actin, their rotational correlation times were estimated to be 3.8 and 9.1ns for F- and G-actin, respectively. This indicates that Cy3 bound to F-actin rotates more freely than that bound to G-actin, and therefore the local water viscosity is lower around F-actin than around G-actin.  相似文献   

4.
研究了醛糖还原酶抑制剂Tolrestat对高浓度葡萄糖(HG)所致肾小球系膜细胞(MC)肌动蛋白(actin)组装的影响。结果证明,与正常浓度葡萄糖(NG)相比,在HG培养的MC,F-actin失去束状外观呈不规则网状,显示F-actin部分去组装;F-actin荧光强度降低,G-actin荧光强度升高和F-/G-actin荧光强度比值下降。Tolrestat加入培养后,明显防止HG引起的F-actin去组装及F-和G-actin荧光强度的变化。提示多元醇通路激活在HG引起的MCactin去组装改变中起一定作用。  相似文献   

5.
The fast and transient polymerization of actin in nonmuscle cells after stimulation with chemoattractants requires strong nucleation activities but also components that inhibit this process in resting cells. In this paper, we describe the purification and characterization of a new actin-binding protein from Dictyostelium discoideum that exhibited strong F-actin capping activity but did not nucleate actin assembly independently of the Ca2+ concentration. These properties led at physiological salt conditions to an inhibition of actin polymerization at a molar ratio of capping protein to actin below 1:1,000. The protein is a monomer, with a molecular mass of approximately 100 kDa, and is present in growing and in developing amoebae. Based on its F-actin capping function and its apparent molecular weight, we designated this monomeric protein cap100. As shown by dilution-induced depolymerization and by elongation assays, cap100 capped the barbed ends of actin filaments and did not sever F-actin. In agreement with its capping activity, cap100 increased the critical concentration for actin polymerization. In excitation or emission scans of pyrene-labeled G-actin, the fluorescence was increased in the presence of cap100. This suggests a G-actin binding activity for cap100. The capping activity could be completely inhibited by phosphatidylinositol 4,5-bisphosphate (PIP2), and bound cap100 could be removed by PIP2. The inhibition by phosphatidylinositol and the Ca(2+)-independent down-regulation of spontaneous actin polymerization indicate that cap100 plays a role in balancing the G- and F-actin pools of a resting cell. In the cytoplasm, the equilibrium would be shifted towards G-actin, but, below the membrane where F-actin is required, this activity would be inhibited by PIP2.  相似文献   

6.
The distribution of and relationship between F-actin and G-actin were investigated in pollen grains and pollen tubes of Lilium davidii Duch. using a confocal laser scanning microscope after fluorescence and immunofluorescence labeling. Circular F-actin bundles were found to be the main form of microfilament cytoskeleton in pollen grains and pollen tubes. Consistent with cytoplasmic streaming in pollen tubes, there were no obvious F-actin bundles in the 10- to 20-microm tip region of long pollen tubes, only a few short F-actin fragments. Labeling with fluorescein isothiocyanate (FITC)-DNase I at first established the presence of a tip-focused gradient of intracellular G-actin concentration at the extreme apex of the tube, the concentration of G-actin being about twice as high in the 10- to 20-microm region of the tip as in other regions of the pollen tube. We also found that the distribution of G-actin was related negatively to that of the F-actin in pollen tubes of L. davidii. Caffeine treatment caused the G-actin tip-focused gradient to disappear, and F-actin to extend into the pollen tube tip. Based on these results, we speculate that the circular F-actin bundles may be the track for bidirectional cytoplasmic streaming in pollen tubes, and that in the pollen tube tip most of the F-actin is depolymerized into G-actin, leading to the absence of F-actin bundles in this region.  相似文献   

7.
An improved DNase I inhibition assay for the filamentous actin (F-actin) and monomeric actin (G-actin) in brain cells has been developed. Unlike other methods, the cell lysis conditions and postlysis treatments, established by us, inhibited the temporal inactivation of actin in the cell lysate and maintained a stable F-actin/G-actin ratio for at least 4-5 h after lysis. The new procedure allowed separate quantitation of the noncytoskeletal F-actin in the Triton-soluble fraction (12,000 g, 10 min supernatant) that did not readily sediment with the Triton-insoluble cytoskeletal F-actin (12,000 g, 10 min pellet). We have applied this modified assay system to study the effect of hypothyroidism on different forms of actin using primary cultures of neurons derived from cerebra of neonatal normal and hypothyroid rats. Our results showed a 20% increase in the Triton-insoluble cytoskeletal F-actin in cultures from hypothyroid brain relative to normal controls. In the Triton-soluble fraction, containing the G-actin and the noncytoskeletal F-actin, cultures from hypothyroid brain showed a 15% increase in G-actin, whereas the F-actin remained unaltered. The 10% increase in total actin observed in this fraction from hypothyroid brain could be totally accounted for by the enhancement of G-actin. The mean F-actin/G-actin ratio in this fraction was about 30% higher in the cultures from normal brain compared to that of the hypothyroid system, which indicates that hypothyroidism tends to decrease the proportion of noncytoskeletal F-actin relative to G-actin.  相似文献   

8.
The quantitation of G- and F-actin in cultured cells   总被引:6,自引:0,他引:6  
An improved method to quantitate the amounts of filamentous (F-actin) and monomeric (globular) actin (G-actin) in cultured cells was developed. Cells are lysed into a myosin-containing buffer and F-actin is removed by centrifugation. The pelleted F-actin is then depolymerized to G-actin in a 1 mM ATP-containing buffer for 1 h before measuring the levels of G-actin using the DNase I inhibition assay. Partitioning of G-actin in the supernatant (greater than 95%) and recovery of actin in both fractions (greater than 85%) were measured by adding [3H]actin to cultured cells. Actin in the separated fractions is stable for at least 72 h at 0 degree C. Asynchronous monolayer cultures of Chinese hamster ovary (CHO) cells contain 2.5 +/- 0.2% of the total protein as actin with 72.4 +/- 5.7% as F-actin. About 10% of this F-actin is not associated with the readily sedimented Triton-cytoskeleton. CHO cells grown in suspension contain 55.8% of the actin as F-actin; following plating about 90 min is required for these cells to flatten and for the F-actin level to reach the monolayer value of about 70%.  相似文献   

9.
Chemotactic peptide-induced changes in neutrophil actin conformation   总被引:27,自引:16,他引:11       下载免费PDF全文
The effect of the chemotatic peptide, N- formylmethionylleucylphenylalanine (FMLP), on actin conformation in human neutrophils (PMN) was studied by flow cytometry using fluorescent 7-nitrobenz-2-oxa-1,3-diazole (NBD)-phallacidin to quantitate cellular F-actin content. Uptake of NBD-phallacidin by fixed PMN was saturable and inhibited by fluid phase F-actin but not G-actin. Stimulation of PMN by greater than 1 nM FMLP resulted in a dose-dependent and reversible increase in F-actin in 70-95% of PMN by 30 s. The induced increase in F-actin was blocked by 30 microM cytochalasin B or by a t- BOC peptide that competitively inhibits FMLP binding. Under fluorescence microscopy, NBD-phallacidin stained, unstimulated PMN had faint homogeneous cytoplasmic fluorescence while cells exposed to FMLP for 30 s prior to NBD-phallacidin staining had accentuated subcortical fluorescence. In the continued presence of an initial stimulatory dose of FMLP, PMN could respond with increased F-actin content to the addition of an increased concentration of FMLP. Thus, FMLP binding to PMN induces a rapid transient conversion of unpolymerized actin to subcortical F-actin and repetitive stimulation of F-actin formation can be induced by increasing chemoattractant concentration. The directed movement of PMN in response to chemoattractant gradients may require similar rapid reversible changes in actin conformation.  相似文献   

10.
The possibility to reveal globular (G-) actin in cell cytosole by means of microscopy has been studied. The applicability of this method was in particular evaluated for diagnostics of malignant cells, whose main pathocytological feature is an anomalously high content of G-actin in cytosol. The cells of a common origin but with different states of cytosolic actin were analyzed by means of cytochemical reaction for biogenic amines using Falck-Hillarp method after 40-h incubation of the cells in dopamine-containing cultivation medium. Mouse embryo cell line BALB/3T3, clone A31 with differentiated actin cytoskeleton were used as a control cell line. The same cells infected with pathogenic virus SV-40 (cell line 3T3B-SV40) exhibited a malignant phenotype; their cytosol mainly consisted of G-actin. Manifold increase in fluorescence intensity of cytosol and karyoplasms, the loci with the highest G-actin concentration, was revealed in malignant cells in comparison with their healthy prototype. Thus, it was shown that G-actin of malignant cells is a diagnostic target for dopamine, which, as it was earlier shown, penetrates into the cytosol, polymerizes G-actin, incorporating into the filaments as integral component in the 100:1 ratio, and thus fluorescently labels G-actin due to conversion into isoquinoline by reaction with formaldehyde. Besides, dopamine exhibited a strong cytotoxicity that considerably reduced the viability of malignant cells. The data suggest that the content of Gactin in cytosol of living cells can be quantitatively estimated by fluorescence intensity of cytosol following incubation of the cells in dopamine-containing medium.  相似文献   

11.
E Kim  E Reisler 《Biophysical journal》1996,71(4):1914-1919
The recently reported structural connectivity in F-actin between the DNase I binding loop on actin (residues 38-52) and the C-terminus region was investigated by fluorescence and proteolytic digestion methods. The binding of copper to Cys-374 on F- but not G-actin quenched the fluorescence of dansyl ethylenediamine (DED) attached to Gin-41 by more than 50%. The blocking of copper binding to DED-actin by N-ethylmaleimide labeling of Cys-374 on actin abolished the fluorescence quenching. The quenching of DED-actin fluorescence was restored in copolymers (1:9) of N-ethylmaleimide-DED-actin with unlabeled actin. The quenching of DED-actin fluorescence by copper was also abolished in copolymers (1:4) of DED-actin and N-ethylmaleimide-actin. These results show intermolecular coupling between loop 38-52 and the C-terminus in F-actin. Consistent with this, the rate of subtilisin cleavage of actin at loop 38-52 was increased by the bound copper by more than 10-fold in F-actin but not in G-actin. Neither acto-myosin subfragment-1 (S1) ATPase activity nor the tryptic digestion of G-actin and F-actin at the Lys-61 and Lys-69 sites were affected by the bound copper. These observations suggest that copper binding to Cys-374 does not induce extensive changes in actin structure and that the perturbation of loop 38-52 environment results from changes in the intermolecular contacts in F-actin.  相似文献   

12.
The ability of actin to interact with hemin was studied. It was found that the Soret absorption band of hemin changes in the presence of actin and that hemin is capable of quenching the fluorescence intensity of actin. These findings were indicative of hemin binding to actin. The binding constant for the high affinity site was calculated to be 5.3 X 10(6) M-1. The amounts of native G- and F-actin were estimated by their DNAase I inhibition activity. It was observed that the binding of hemin to G-actin is followed by a slow decrease in the ability of actin to inhibit DNAase I activity and to polymerize upon addition of salts. Binding of hemin to F-actin resulted in a gradual depolymerization of the filaments, to an inactivated form, as expressed by a reduction in the ability of hemin-bound F-actin to inhibit DNAase I activity in the absence as well as in the presence of guanidine-HCl. Electron microscopy studies further corroborated these findings by demonstrating that: (1) hemin-bound G-actin failed to show formation of polymers when salts were added; (2) a marked reduction in the amount of actin polymers was observed in the specimens examined 24 h after mixing with hemin. It is suggested that the elevated amounts of free hemin formed under pathological conditions, might be toxic to cells by interfering with actin polymerization cycles.  相似文献   

13.
He X  Liu YM  Wang W  Li Y 《Annals of botany》2006,98(1):49-55
BACKGROUND AND AIMS: Actin distribution in root hair tips is a controversial topic. Although the relationship between Ca2+ gradient and actin dynamics in plant tip-growth has been a focus of study, there is still little direct evidence on the exact relationship in root hair tip-growth. METHODS: G-actin was labelled by fluorescein isothiocyanate-DNase I. F-actin was labelled by tetramethylrhodamine isothiocyanate-phalloidin. Actin in root hairs of Triticum aestivum (wheat) was investigated using confocal laser-scanning microscopy. KEY RESULTS: Thick F-actin bundles did not extend into a region of approx. 5-10 microm from the tip of the growing root hairs, although they gave off branches of fine actin filaments in the hair tips. A tip-focused G-actin gradient was shown at the extreme apex of growing root hairs. In full-grown wheat root hairs, the tip-focused G-actin gradient disappeared while the thick F-actin bundles extended into the tips. BAPTA-AM, a Ca2+ disruption agent, also caused the tip-focused G-actin gradient to disappear and the diffuse F-actin bundles to appear in the tips of wheat root hairs. CONCLUSIONS: These results suggest that the tip-focused gradient of intracellular G-actin concentration at the extreme apex may be essential for root hair growth, and that preserving the tip-focused gradient needs a high Ca2+ concentration in the root hair tips.  相似文献   

14.
The effects of crosslinking of monomeric and polymeric actin with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), disuccinimidyl suberate (DSS) and glutaraldehyde on the interaction with heavy meromyosin (HMM) in solution and on the sliding movement on glass-attached HMM were examined. The Vmax values of actin-activated HMM ATPase decreased in the following order: intact actin = EDC F-actin greater than DSS actin greater than glutaraldehyde F-actin = glutaraldehyde G-actin greater than EDC G-actin. The affinity of actin for HMM in the presence of ATP decreased in the following order: DSS actin greater than glutaraldehyde F-actin = glutaraldehyde G-actin greater than intact actin greater than EDC F-actin greater than EDC G-actin. However, sliding movement was inhibited only in the case of glutaraldehyde-crosslinked F and G-actin and EDC-crosslinked G-actin. Interestingly, after copolymerization of "non-motile" glutaraldehyde or EDC-crosslinked monomers with "motile" monomers of intact actin sliding of the copolymers was observed and its rate was independent of the type of crosslinked monomer, i.e. of the manner of their interaction with HMM. These data strongly indicate that inhibition of the sliding of actin by crosslinking cannot be explained entirely by changes in the Vmax value or affinity for myosin heads. We conclude that movement is generated by interaction of myosin with segments of F-actin containing a number of intact monomers, and the mechanism of inhibition involves an effect of the crosslinkers on the structure of F-actin itself.  相似文献   

15.
The cytoskeleton of eukaryotic cells is continuously remodeled by polymerization and depolymerization of actin. Consequently, the relative content of polymerized filamentous actin (F-actin) and monomeric globular actin (G-actin) is subject to temporal and spatial fluctuations. Since fluorescence correlation spectroscopy (FCS) can measure the diffusion of fluorescently labeled actin it seems likely that FCS allows us to determine the dynamics and hence indirectly the structural properties of the cytoskeleton components with high spatial resolution. To this end we investigate the FCS signal of GFP-actin in living Dictyostelium discoideum cells and explore the inherent spatial and temporal signatures of the actin cytoskeleton. Using the free green fluorescent protein (GFP) as a reference, we find that actin diffusion inside cells is dominated by G-actin and slower than diffusion in diluted cell extract. The FCS signal in the dense cortical F-actin network near the cell membrane is probed using the cytoskeleton protein LIM and is found to be slower than cytosolic G-actin diffusion. Furthermore, we show that polymerization of the cytoskeleton induced by Jasplakinolide leads to a substantial decrease of G-actin diffusion. Pronounced fluctuations in the distribution of the FCS correlation curves can be induced by latrunculin, which is known to induce actin waves. Our work suggests that the FCS signal of GFP-actin in combination with scanning or spatial correlation techniques yield valuable information about the local dynamics and concomitant cytoskeletal properties.  相似文献   

16.
Employing the DNase I inhibition assay, a decrease in G-actin is demonstrated in human mononuclear cells following stimulation with mitogenic lectins concanavalin A (Con A) and phytohemagglutinin (PHA), as well as a nonmitogenic lectin, wheat germ agglutinin (WGA). The decrease in G-actin can be prevented by pretreatment of cells with cytochalasin E, indicating that the decrease is likely due to conversion to F-actin. Thus, the receptor-mediated actin polymerization is common to both the mitogenic as well as the nonmitogenic lectins. The maximal decrease in G-actin with Con A and PHA occurs at the same concentrations of the lectins that give optimal mitogenic responses. It is a distinct possibility that actin polymerization could be one of the signals necessary for the initiation of mitogenesis. The difference between a mitogenic and a nonmitogenic lectin may lie in the fact that a second signal (or signals), derived from macrophages, may not be generated by a nonmitogenic lectin such as WGA.  相似文献   

17.
Intramonomer fluorescence energy transfer between the donor epsilon-ATP bound to the nucleotide-binding site and the acceptor 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole bound to Cys-373 in G-actin was measured by steady-state fluorimetry. Assuming for the orientation factor its dynamic limit K2 = 2/3, the donor and acceptor distance in a G-actin molecule was calculated to be about 3 nm. The intermonomer energy transfer in F-actin occurring between the donor bound to an actin monomer and the acceptor bound to the nearest-neighbour actin monomer was also measured and the distance was calculated to be about 4 nm. The kinetics of the actin polymerization process was studied by following the decrease in fluorescence intensity upon addition of salts to G-actin solution. The initial velocity of the fluorescence intensity change was proportional to the square of the initial G-actin concentration. The temperature dependence of the velocity was proportional to the square of the initial G-actin concentration. The temperature dependence of the velocity was proportional to exp(-10/RT). These results indicated that the initial fluorescence intensity change corresponds to monomer-dimer transformation and its activation enthalpy was 10 kcal/mol.  相似文献   

18.
A proteomic approach was used to identify 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) protein targets in human neuroblastoma SH-SY5Y cells. By using biotinylated 15d-PGJ2, beta-actin was found as the major adducted protein; at least 12 proteins were also identified as minor biotin-positive spots, falling in different functional classes, including glycolytic enzymes (enolase and lactate dehydrogenase), redox enzymes (biliverdin reductase), and a eukaryotic regulatory protein (14-3-3gamma). 15d-PGJ2 induced marked morphological changes in the actin filament network and in particular promoted F-actin depolymerization as confirmed by Western blot analysis. By using a mass spectrometric approach, we found that 15d-PGJ2 reacts with isolated G-actin in a 1:1 stoichiometric ratio and selectively binds the Cys374 site through a Michael adduction mechanism. Computational studies showed that the covalent binding of 15d-PGJ2 induces a significant unfolding of actin structure and in particular that 15d-PGJ2 distorts the actin subdomains 2 and 4, which define the nucleotide binding sites impeding the nucleotide exchange. The functional effect of 15d-PGJ2 on G-actin was studied by polymerization measurement: in the presence of 15d-PGJ2, a lower amount of F-actin forms, as followed by the increase in pyrenyl-actin fluorescence intensity, as the major effect of increasing 15d-PGJ2 concentrations occurs on the maximum extent of actin polymerization, whereas it is negligible on the initial rate of reaction. In summary, the results here reported give an insight into the role of 15d-PGJ2 as a cytotoxic compound in neuronal cell dysfunction. Actin is the main protein cellular target of 15d-PGJ2, which specifically binds through a Michael adduction to Cys374, leading to a protein conformational change that can explain the disruption of the actin cytoskeleton, F-actin depolymerization, and impairment of G-actin polymerization.  相似文献   

19.
研究了维生素E(VE)和伊那普利(EN)对高浓度葡萄糖(HG)所致肾小球系膜细胞(MC)肌动蛋白组装的影响。结果证明,MC在HG培养时,F-actin失去粗大束状外观呈不规则网状,显示F-actin部分去组装。与正常浓度葡萄糖(NG)培养的MC相比,HG引起F-actin荧光强度降低,G-actin荧光强度升高和F/G-actin荧光强度比值下降。VE和EN加入培养后,HG引起的F-actin部分去组装及F-和G-actin荧光强度的变化均恢复正常,提示,VE和EN可防止HG引起的MC actin去组装。  相似文献   

20.
G DasGupta  J White  P Cheung  E Reisler 《Biochemistry》1990,29(36):8503-8508
The role of the N-terminal segment of actin in myosin-induced polymerization of G-actin was studied by using peptide antibodies directed against the first seven N-terminal residues of alpha-skeletal actin. Light scattering, fluorescence, and analytical ultracentrifugation experiments showed that the Fab fragments of these antibodies inhibited the polymerization of G-actin by myosin subfragment 1 (S-1) by inhibiting the binding of these proteins to each other. Fluorescence measurements using actin labeled with pyrenyliodoacetamide revealed that Fab inhibited the initial step in the binding of S-1 to G-actin. It is deduced from these results and from other literature data that the initial contact between G-actin and S-1 involves residues 1-7 on actin and residues 633-642 on the S-1 heavy chain. This interaction appears to be of major importance for the binding of S-1 and G-actin. The presence of additional myosin contact sites on G-actin was indicated by concentration-dependent recovery of S-1 binding to G-actin without displacement of Fab. The reduced Fab inhibition of S-1 binding to polymerizing and polymerized actin is consistent with the tightening of acto-S-1 binding at these sites or the creation of new sites upon formation of F-actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号