首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Prolyl hydroxylation is a critical posttranslational modification that affects structure, function, and turnover of target proteins. Prolyl 3-hydroxylation occurs at only one position in the triple-helical domain of fibrillar collagen chains, and its biological significance is unknown. CRTAP shares homology with a family of putative prolyl 3-hydroxylases (P3Hs), but it does not contain their common dioxygenase domain. Loss of Crtap in mice causes an osteochondrodysplasia characterized by severe osteoporosis and decreased osteoid production. CRTAP can form a complex with P3H1 and cyclophilin B (CYPB), and Crtap-/- bone and cartilage collagens show decreased prolyl 3-hydroxylation. Moreover, mutant collagen shows evidence of overmodification, and collagen fibrils in mutant skin have increased diameter consistent with altered fibrillogenesis. In humans, CRTAP mutations are associated with the clinical spectrum of recessive osteogenesis imperfecta, including the type II and VII forms. Hence, dysregulation of prolyl 3-hydroxylation is a mechanism for connective tissue disease.  相似文献   

3.
Ankyrin defects are the most common cause of hereditary spherocytosis (HS). In several kindreds with recessive, ankyrin-deficient HS, mutations have been identified in the ankyrin promoter that have been proposed to decrease ankyrin synthesis. We analyzed the effects of two mutations, -108T to C and -108T to C in cis with -153G to A, on ankyrin expression. No difference between wild type and mutant promoters was demonstrated in transfection or gel shift assays in vitro. Transgenic mice with a wild type ankyrin promoter linked to a human (A)gamma-globin gene expressed gamma-globin in 100% of erythrocytes in a copy number-dependent, position-independent manner. Transgenic mice with the mutant -108 promoter demonstrated variegated gamma-globin expression, but showed copy number-dependent and position-independent expression similar to wild type. Severe effects in ankyrin expression were seen in mice with the linked -108/-153 mutations. Three transgenic lines had undetectable levels of (A)gamma-globin mRNA, indicating position-dependent expression, and four lines expressed significantly lower levels of (A)gamma-globin mRNA than wild type. Two of four expressing lines showed variegated gamma-globin expression, and there was no correlation between transgene copy number and RNA level, indicating copy number-independent expression. These data are the first demonstration of functional defects caused by HS-related, ankyrin gene promoter mutations.  相似文献   

4.
Emery-Dreifuss muscular dystrophy (EMD) is a condition characterized by the clinical triad of early-onset contractures, progressive weakness in humeroperoneal muscles, and cardiomyopathy with conduction block. The disease was described for the first time as an X-linked muscular dystrophy, but autosomal dominant and autosomal recessive forms were reported. The genes for X-linked EMD and autosomal dominant EMD (AD-EMD) were identified. We report here that heterozygote mutations in LMNA, the gene for AD-EMD, may cause diverse phenotypes ranging from typical EMD to no phenotypic effect. Our results show that LMNA mutations are also responsible for the recessive form of the disease. Our results give further support to the notion that different genetic forms of EMD have a common pathophysiological background. The distribution of the mutations in AD-EMD patients (in the tail and in the 2A rod domain) suggests that unique interactions between lamin A/C and other nuclear components exist that have an important role in cardiac and skeletal muscle function.  相似文献   

5.
6.
7.
8.
Extremely low concentrations of high density lipoprotein (HDL)-cholesterol and apolipoprotein (apo) AI are features of Tangier disease caused by autosomal recessive mutations in ATP-binding cassette transporter A1 (ABCA1). Less deleterious, but dominantly inherited mutations cause HDL deficiency. We investigated causes of severe HDL deficiency in a 42-year-old female with progressive coronary disease. ApoAI-mediated efflux of cholesterol from the proband's fibroblasts was less than 10% of normal and nucleotide sequencing revealed inheritance of two novel mutations in ABCAI, V1704D and L1379F. ABCA1 mRNA was approximately 3-fold higher in the proband's cells than in control cells; preincubation with cholesterol increased it 5-fold in control and 8-fold in the proband's cells, but similar amounts of ABCA1 protein were present in control and mutant cells. When transiently transfected into HEK293 cells, confocal microscopy revealed that both mutant proteins were retained in the endoplasmic reticulum, while wild-type ABCA1 was located at the plasma membrane. Severe HDL deficiency in the proband was caused by two novel autosomal recessive mutations in ABCA1, one (V1704D) predicted to lie in a transmembrane segment and the other (L1379F) in a large extracellular loop. Both mutations prevent normal trafficking of ABCA1, thereby explaining their inability to mediate apoA1-dependent lipid efflux.  相似文献   

9.
Hereditary sensory neuropathy type I (HSN I) is an axonal form of autosomal-dominant hereditary motor and sensory neuropathy distinguished by prominent sensory loss that leads to painless injuries. Unrecognized, these can result in delayed wound healing and osteomyelitis, necessitating distal amputations. To elucidate the genetic basis of an HSN I subtype in a family in which mutations in the few known HSN I genes had been excluded, we employed massive parallel exon sequencing of the 14.3 Mb disease interval on chromosome 14q. We detected a missense mutation (c.1065C>A, p.Asn355Lys) in atlastin-1 (ATL1), a gene that is known to be mutated in early-onset hereditary spastic paraplegia SPG3A and that encodes the large dynamin-related GTPase atlastin-1. The mutant protein exhibited reduced GTPase activity and prominently disrupted ER network morphology when expressed in COS7 cells, strongly supporting pathogenicity. An expanded screen in 115 additional HSN I patients identified two further dominant ATL1 mutations (c.196G>C [p.Glu66Gln] and c.976 delG [p.Val326TrpfsX8]). This study highlights an unexpected major role for atlastin-1 in the function of sensory neurons and identifies HSN I and SPG3A as allelic disorders.  相似文献   

10.
Acrocapitofemoral dysplasia is a recently delineated autosomal recessive skeletal dysplasia, characterized clinically by short stature with short limbs and radiographically by cone-shaped epiphyses, mainly in hands and hips. Genomewide homozygosity mapping in two consanguineous families linked the locus to 2q35-q36 with a maximum two-point LOD score of 8.02 at marker D2S2248. Two recombination events defined the minimal critical region between markers D2S2248 and D2S2151 (3.74 cM). Using a candidate-gene approach, we identified two missense mutations in the amino-terminal signaling domain of the gene encoding Indian hedgehog (IHH). Both affected individuals of family 1 are homozygous for a 137C-->T transition (P46L), and the three patients in family 2 are homozygous for a 569T-->C transition (V190A). The two mutant amino acids are strongly conserved and predicted to be located outside the region where brachydactyly type A-1 mutations are clustered.  相似文献   

11.
Peripheral myelin protein22 (PMP22), a membrane glycoprotein, plays a significant role in the formation and/or maintenance of compact myelin in the peripheral nervous system. We studied two pedigrees with Dejerine-Sottas disease and identified two novel mutations in the PMP22 gene: one a 2-bp deletional mutation at nucleotide positions426 and 427 of exon4 (this is predicted to alter the reading frame at leucine80 and thus to lead to frame-shifted translation), and the other a guanine to thymine substitution at nucleotide position636 leading to a cysteine substitution for glycine150. Both mutations were located in the putative transmembrane domains reported in many cases of Charcot-Marie-Tooth neuropathy, Dejerine-Sottas disease, and hereditary neuropathy with liability to pressure palsies. The results suggest an important role for the putative transmembrane domains of PMP22 in its function. Received: 1 September 1997 / Accepted: 4 November 1997  相似文献   

12.
13.
14.
Tumor suppressors: recessive mutations that lead to cancer   总被引:7,自引:0,他引:7  
M F Hansen  W K Cavenee 《Cell》1988,53(2):173-174
Several lines of evidence point to the involvement of recessive mutations in the predisposition to, and hence initiation of, cancer in vivo. Analyses of the genetic behavior of transformed cells suggest that at least one way to explain these events is to invoke loci which suppress the tumorous phenotype and which are inactivated by mutation. These suppressors are the subject of much speculation, but whether or not they are ultimately determined to be the regulators of differentiation antigens, growth factors, or proto-oncogenes, it is certain that the investigation of such loci will allow yet another glimpse at the inner mysteries of organismal development.  相似文献   

15.
Ocular coloboma is a developmental defect of the eye and is due to abnormal or incomplete closure of the optic fissure. This disorder displays genetic and clinical heterogeneity. Using a positional cloning approach, we identified a mutation in the ATP-binding cassette (ABC) transporter ABCB6 in a Chinese family affected by autosomal-dominant coloboma. The Leu811Val mutation was identified in seven affected members of the family and was absent in six unaffected members from three generations. A LOD score of 3.2 at θ = 0 was calculated for the mutation identified in this family. Sequence analysis was performed on the ABCB6 exons from 116 sporadic cases of microphthalmia with coloboma (MAC), isolated coloboma, and aniridia, and an additional mutation (A57T) was identified in three patients with MAC. These two mutations were not present in the ethnically matched control populations. Immunostaining of transiently transfected, Myc-tagged ABCB6 in retinal pigment epithelial (RPE) cells showed that it localized to the endoplasmic reticulum and Golgi apparatus of RPE cells. RT-PCR of ABCB6 mRNA in human cell lines and tissue indicated that ABCB6 is expressed in the retinae and RPE cells. Using zebrafish, we show that abcb6 is expressed in the eye and CNS. Morpholino knockdown of abcb6 in zebrafish produces a phenotype characteristic of coloboma and replicates the clinical phenotype observed in our index cases. The knockdown phenotype can be corrected with coinjection of the wild-type, but not mutant, ABCB6 mRNA, suggesting that the phenotypes observed in zebrafish are due to insufficient abcb6 function. Our results demonstrate that ABCB6 mutations cause ocular coloboma.  相似文献   

16.
Forward genetic mutation screens in mice are typically begun by mutagenizing the germline of male mice with N-ethyl-N-nitrosourea (ENU). Genomewide recessive mutations transmitted by these males can be rendered homozygous after three generations of breeding, at which time phenotype screens can be performed. An alternative strategy for randomly mutagenizing the mouse genome is by chemical treatment of embryonic stem (ES) cells. Here we demonstrate the feasibility of performing genomewide mutation screens with only two generations of breeding. Mice potentially homozygous for mutations were obtained by crossing chimeras derived from ethylmethane sulfonate (EMS)–mutagenized ES cells to their daughters, or by intercrossing offspring of chimeras. This strategy was possible because chimeras transmit variations of the same mutagenized diploid genome, whereas ENU-treated males transmit numerous unrelated genomes. This also results in a doubling of screenable mutations in a pedigree compared to germline ENU mutagenesis. Coupled with the flexibility to treat ES cells with a variety of potent mutagens and the ease of producing distributable, quality-controlled, long-term supplies of cells in a single experiment, this strategy offers a number of advantages for conducting forward genetic screens in mice.  相似文献   

17.
Mutations in the connexin 26 (Cx26) gene (GJB2) are associated with the type of autosomal recessive nonsyndromic neurosensory deafness known as "DFNB1." Studies indicate that DFNB1 (13q11-12) causes 20% of all childhood deafness and may have a carrier rate as high as 2. 8%. This study describes the analysis of 58 multiplex families each having at least two affected children diagnosed with autosomal recessive nonsyndromic deafness. Twenty of the 58 families were observed to have mutations in both alleles of Cx26. Thirty-three of 116 chromosomes contained a 30delG allele, for a frequency of .284. This mutation was observed in 2 of 192 control chromosomes, for an estimated gene frequency of .01+/-.007. The homozygous frequency of the 30delG allele is then estimated at .0001, or 1/10,000. Given that the frequency of all childhood hearing impairment is 1/1,000 and that half of that is genetic, the specific mutation 30delG is responsible for 10% of all childhood hearing loss and for 20% of all childhood hereditary hearing loss. Six novel mutations were also observed in the affected population. The deletions detected cause frameshifts that would severely disrupt the protein structure. Three novel missense mutations, Val84Met, Val95Met, and Ser113Pro, were observed. The missense mutation 101T-->C has been reported to be a dominant allele of DFNA3, a dominant nonsyndromic hearing loss. Data further supporting the finding that this mutation does not cause dominant hearing loss are presented. This allele was found in a recessive family segregating independently from the hearing-loss phenotype and in 3 of 192 control chromosomes. These results indicate that 101T-->C is not sufficient to cause hearing loss.  相似文献   

18.
9-beta-D-Arabinosyladenine (araA)-resistant mutants of baby hamster kidney (BHK) cells can be classified into 3 classes. In order to gain a better understanding of the mechanism(s) of resistance and the biochemical basis of cytotoxicity of various purine nucleosides, cell hybrids of the mutant and wild-type cells were made and analyzed. The class I araA-resistant, adenosine-kinase-deficient (AK-) allele was shown to be recessive to the wild-type araA-sensitive (AK+) gene. The class II mutant allele, which encodes an altered ribonucleoside diphosphate reductase, was shown to be codominant. The class III mutants show multiple phenotypes, araAr/dAdor/adenosine sensitive (Ados) and alteration in AK activity. The araA- and dAdo-resistant alleles of araS10d, ara-16c, and ara-19a in class III mutant/wild-type hybrid cells are all recessive to the wild-type allele, consistent with a common mechanism of resistance. In contrast the Ados allele of ara-S10d is dominant while those of ara-16c and ara-19a are recessive. The difference may be a reflection of two distinct mechanisms of enhanced Ado sensitivity or, alternatively, it suggests that the sensitivity of the hybrids to Ado is highly dependent on the level of AK activity.  相似文献   

19.
In the ‘doubling-dose’ method currently used in genetic risk evaluation, two principle assumptions are made and these are: (1) there is proportionality between spontaneous and induced mutations and (2) the lesions that lead to spontaneous and induced mutations are essentially similar. The studies reported in this paper were directed at examining the validity of these two assumptions in Drosophila. An analysis was made of the distribution of sex-linked recessive lethals induced by MR, one of the well-studied mutator systems in Drosophila.

Appropriate genetic complementation tests with 15 defined X-chromosome duplications showed that MR-induced lethals occurred at many sites along the X-chromosome (in contrast to the known locus specificity of MR-induced visible-mutations); some, but not all these sites at which recessive lethals arose in the MR-system are the same as those known to be hot-spots for X-ray-induced lethals. With in situ hybridization we were able to demonstrate that a majority of MR-induced lethals is associated with a particular mobile DNA sequence, the P-element, i.e. they arose as a result of transposition.

The differences between the profiles of MR-induced and X-ray-induced recessive lethals, and the nature of MR-induced and X-ray-induced mutations, thus raise questions about the validity of the assumptions involved in the use of the ‘doubling-dose’ method.  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号