首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nebivolol is a highly selective beta(1)-adrenoceptor blocker with additional vasodilatory properties, which may be due to an endothelial-dependent beta(3)-adrenergic activation of the endothelial nitric oxide synthase (eNOS). beta(3)-adrenergic eNOS activation has been described in human myocardium and is increased in human heart failure. Therefore, this study investigated whether nebivolol may induce an eNOS activation in cardiac tissue. Immunohistochemical stainings were performed using specific antibodies against eNOS translocation and eNOS serine(1177) phosphorylation in rat isolated cardiomyocytes, human right atrial tissue (coronary bypass-operation), left ventricular non-failing (donor hearts) and failing myocardium after application of the beta-adrenoceptor blockers nebivolol, metoprolol and carvedilol, as well as after application of BRL 37344, a specific beta(3)-adrenoceptor agonist. BRL 37344 (10 microM) significantly increased eNOS activity in all investigated tissues (either via translocation or phosphorylation or both). None of the beta-blockers (each 10 microM), including nebivolol, increased either translocation or phosphorylation in any of the investigated tissues. In human failing myocardium, nebivolol (10 microM) decreased eNOS activity. In conclusion, nebivolol shows a tissue-specific eNOS activation. Nebivolol does not activate the endothelial eNOS in end-stage human heart failure and may thus reduce inhibitory effects of NO on myocardial contractility and on oxidative stress formation. This mode of action may be of advantage when treating heart failure patients.  相似文献   

2.
Nebivolol, third-generation β-blocker, may activate β3-adrenergic receptor (AR), which has been emerged as a novel and potential therapeutic targets for cardiovascular diseases. However, it is not known whether nebivolol administration plays a cardioprotective effect against myocardial infarction (MI) injury. Therefore, the present study was designed to clarify the effects of nebivolol on MI injury and to elucidate the underlying mechanism. MI model was constructed by left anterior descending (LAD) artery ligation. Nebivolol, β3-AR antagonist (SR59230A), Nitro-L-arginine methylester (L-NAME) or vehicle was administered for 4 weeks after MI operation. Cardiac function was monitored by echocardiography. Moreover, the fibrosis and the apoptosis of myocardium were assessed by Masson''s trichrome stain and TUNEL assay respectively 4 weeks after MI. Nebivolol administration reduced scar area by 68% compared with MI group (p<0.05). Meanwhile, nebivolol also decreased the myocardial apoptosis and improved the heart function after MI (p<0.05 vs. MI). These effects were associated with increased β3-AR expression. Moreover, nebivolol treatment significantly increased the phosphorylation of endothelial NOS (eNOS) and the expression of neuronal NOS (nNOS). Conversely, the cardiac protective effects of nebivolol were abolished by SR and L-NAME. These results indicate that nebivolol protects against MI injury. Furthermore, the cardioprotective effects of nebivolol may be mediated by β3-AR-eNOS/nNOS pathway.  相似文献   

3.
Reserpine-induced orofacial dyskinesia is a model that shares some mechanists’ aspects with tardive dyskinesia whose pathophysiology has been related to oxidative stress. The present study was aimed to explore neuroprotective effects of nebivolol, an antihypertensive agent, on reserpine-induced neurobehavioral and biochemical alterations in rats. Reserpine (1 mg/kg, s.c.) was used to induce neurotoxicity. Administration of reserpine for 3 days every other day significantly increased the vacuous chewing movements (VCMs), tongue protrusions (TPs) and reduced the locomotor activity in rats. Pre-treatment with nebivolol (5 and 10 mg/kg, p.o. for 5 days) showed dose dependant decrease in VCMs and TP induced by reserpine. Nebivolol also showed significant improvement in locomotor activity. Reserpine significantly increased lipid peroxidation and reduced the levels of defensive antioxidant enzymes like catalase (CAT), superoxide dismutase (SOD) and reduced glutathione (GSH) in rat brain. Nebivolol reversed these effects of reserpine on oxidative stress indices; indicating amelioration of oxidative stress in rat brains. The results of the present study indicated that nebivolol has a protective role against reserpine-induced orofacial dyskinesia. Thus, the use of nebivolol as a therapeutic agent for the treatment of tardive dyskinesia may be considered.  相似文献   

4.
Nebivolol, a β(1)-adrenoceptor antagonist, exhibits vasodilatory and anti-oxidative properties that rendering it attractive candidate for protecting against gastric ulcer. The aim of this study therefore is to evaluate the protective effects of nebivolol against cold restraint stress (CRS)-induced gastric ulcer in rats. Rats were restrained, and maintained at 4°C for 3 h. Nebivolol (5 mg/kg, p.o.) was suspended in 0.5% aqueous solution of carboxymethyl cellulose and was administered 30 min before CRS. Nebivolol exhibited gastroprotective effects as evidenced by significant decreases in ulcer index as well as free and total acid output, and pepsin activity in gastric juice in addition to gastric mucosal malondialdehyde concentration, with concomitant increases in gastric juice pH and mucin concentration along with gastric mucosal reduced glutathione and nitric oxide (NO) concentrations compared with CRS rats. Moreover, immunohistochemical analysis demonstrated that nebivolol treatment markedly enhanced heme oxygenase-1 as well as cyclooxygenase-1 and cyclooxygenase-2 expressions. The protective effects of nebivolol were confirmed by gastric histopathological examination. Pretreatment with N(ω)-nitro-L-arginine, a NO synthase inhibitor, partly altered the protection afforded by nebivolol. In conclusion, nebivolol protected rats' gastric mucosa against CRS-induced gastric ulceration possibly through anti-oxidant activity, enhancement of gastric mucosal barrier and reduction in acid secretory parameters.  相似文献   

5.
Beta-adrenergic receptor antagonists are currently used as first-line therapy in the treatment of hypertension and angina pectoris, but are contraindicated or used with caution in patients with bronchospastic syndromes. In this study we evaluated in vivo the effects of nebivolol on airway responsiveness compared to atenolol, pindolol, and propranolol. In New Zealand white rabbits total lung resistance (R(L)) and dynamic compliance (Cdyn) were calculated. In acute protocol, the animals were intravenously injected with the beta-blockers at different doses while in the chronic protocol, animals were daily injected for 30 days. Furthermore, the changes induced by beta-blockers (higher doses) in R(L) and Cdyn after a treatment with salbutamol were calculated. In acute treatment, airway responsiveness to histamine was not modified by nebivolol at any dosage, but increased significantly following the exposure to the higher doses of the other beta-blockers. In chronic treatment, the thirty-day exposure to nebivolol, did not modify the airway responsiveness to histamine, whereas the other beta-blockers significantly increased airway responsiveness. Moreover, nebivolol affected the salbutamol-induced relaxation less markedly than other beta-blockers do. These data demonstrate that nebivolol respect the other beta-blockers used in this study, does not significantly affect the airway responsiveness, therefore it could be used in patients with both cardiovascular and bronchial diseases more safely than other beta-blockers drugs.  相似文献   

6.
Erectile function is critically dependent upon the activation of the endothelial nitric oxide synthase (eNOS) in the smooth muscle cells of penile corpus cavernosum tissue. Nebivolol is a β1-selective β-adrenoceptor blocker (β-ARB) with additional vasodilating properties, which have been attributed to eNOS-activation. Our study investigated whether nebivolol is able to increase eNOS activity in erectile tissue. Murine penile tissue was incubated in an organ bath under control conditions and in the presence of nebivolol or metoprolol. Immunofluorescence staining was performed using specific antibodies against eNOS-activation or eNOS-serine 1177 phosphorylation. Corpus cavernosum smooth muscle tissue was identified using a smooth muscle actin antibody. In addition, slices of murine erectile tissue were incubated with diaminofluorescein (DAF), a specific fluorescence marker for NO-liberation. Under control conditions and after application of metoprolol, we observed a small eNOS-activation and serine 1177-phosphorylation in murine corpus cavernosum tissue. A significant increase in eNOS-activation and serine 1177-phosphorylation of eNOS was observed only in the presence of nebivolol (10 μM). These alterations of the eNOS protein induced after application of nebivolol were associated with a time-dependent increase in DAF fluorescence in murine erectile tissue. We conclude that β-adrenoceptor blockers differentially influence erectile tissue. Since cardiovascular diseases are often associated with the development of erectile dysfunction, the nebivolol-induced eNOS-activation in corpus cavernosum may be beneficial when treating patients suffering from cardiovascular disease.  相似文献   

7.
Hypertension induces left-ventricular hypertrophy (LVH) by mechanisms involving oxidative stress and unbalanced cardiac matrix metalloproteinase (MMP) activity. We hypothesized that β1-adrenergic receptor blockers with antioxidant properties (nebivolol) could reverse hypertension-induced LVH more effectively than conventional β1-blockers (metoprolol) when used at doses that exert similar antihypertensive effects. Two-kidney one-clip (2K1C) hypertension was induced in male Wistar rats. Six weeks after surgery, hypertensive and sham rats were treated with nebivolol (10 mg kg−1 day−1) or metoprolol (20 mg kg−1 day−1) for 4 weeks. Systolic blood pressure was monitored weekly by tail-cuff plethysmography. LV structural changes and fibrosis were studied in hematoxylin/eosin- and picrosirius-stained sections, respectively. Cardiac MMP levels and activity were determined by in situ zymography, gel zymography, and immunofluorescence. Dihydroethidium and lucigenin-derived chemiluminescence assays were used to assess cardiac reactive oxygen species (ROS) production. Nitrotyrosine levels were determined in LV samples by immunohistochemistry and green fluorescence and were evaluated using the ImageJ software. Cardiac protein kinase B/Akt (AKT) phosphorylation state was assessed by Western blot. Both β-blockers exerted similar antihypertensive effects and attenuated hypertension-induced cardiac remodeling. Both drugs reduced myocyte hypertrophy and collagen deposition in 2K1C rats. These effects were associated with lower cardiac ROS and nitrotyrosine levels and attenuation of hypertension-induced increases in cardiac MMP-2 levels and in situ gelatinolytic activity after treatment with both β-blockers. Whereas hypertension increased AKT phosphorylation, no effects were found with β-blockers. In conclusion, we found evidence that two β1-blockers with different properties attenuate hypertension-induced LV hypertrophy and cardiac collagen deposition in association with significant cardiac antioxidant effects and MMP-2 downregulation, thus suggesting a critical role for β1-adrenergic receptors in mediating those effects. Nebivolol is not superior to metoprolol, at least with respect to their capacity to reverse hypertension-induced LVH.  相似文献   

8.
The synthesis and optimization of a cyclopentane-based hNK1 antagonist scaffold 3, having four chiral centers, will be discussed in the context of its enhanced water solubility properties relative to the marketed anti-emetic hNK1 antagonist EMEND (Aprepitant). Sub-nanomolar hNK1 binding was achieved and oral activity comparable to Aprepitant in two in vivo models will be described.  相似文献   

9.
The objective of this study was to elucidate the mechanisms by which nebivolol, a cardio-selective beta-adrenergic receptor antagonist, inhibits rat aortic smooth muscle cell (RASMC) proliferation. Nebivolol was compared with DETA-NO and S-nitroso-N-acetylpenicillamine (SNAP), two nitric oxide (NO) donor agents, and alpha-difluoromethylornithine (DFMO), a known inhibitor of ornithine decarboxylase (ODC). All four test agents inhibited RASMC proliferation in a concentration-dependent manner, with nebivolol being the most potent (IC(50) = 4.5 microM), whereas atenolol, another relatively selective beta(1)-blocker, was inactive. DFMO, nebivolol, and DETA-NO interfered with cell proliferation in a cell-density-dependent manner, the lower the cell density the greater the inhibition of cell proliferation. The cytostatic effects of nebivolol and DETA-NO were completely independent of cyclic GMP, as neither ODQ (cytosolic guanylyl cyclase inhibitor) nor zaprinast (cyclic GMP phosphodiesterase inhibitor) affected the antiproliferative action of nebivolol or DETA-NO. The cytostatic effects of nebivolol, SNAP, and DFMO were largely prevented by the addition of excess putrescine, but not ornithine, to cell cultures. Moreover, nebivolol caused a marked reduction in the intracellular levels of putrescine, spermidine, and spermine. Like DFMO, nebivolol and DETA-NO interfered with the G(1)-phase to S-phase cell cycle transition in RASMC. These observations confirm previous findings that DFMO and NO interfere with RASMC proliferation by inhibiting ODC and polyamine production and provide evidence that nebivolol works by the same mechanism.  相似文献   

10.
Nebivolol is a β(1)-adrenergic blocker that also elicits renal vasodilation and increases the glomerular filtration rate (GFR). However, its direct actions on the renal microvasculature and vasodilator mechanism have not been established. We used the in vitro blood-perfused juxtamedullary nephron technique to determine the vasodilator effects of nebivolol and to test the hypothesis that nebivolol induces vasodilation of renal afferent arterioles via an nitric oxide synthase (NOS)/nitric oxide (NO)/soluble guanylate cyclase (sGC)/cGMP pathway and the afferent arteriolar vasodilation effect may be mediated through the release of NO by activation of NOS via a β(3)-adrenoceptor-dependent mechanism. Juxtamedullary nephrons were superfused with nebivolol either alone or combined with the sGC inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) or the NOS inhibitor N(ω)-nitro-l-arginine (l-NNA) or the β-blockers metoprolol (β(1)), butoxamine (β(2)), and SR59230A (β(3)). Nebivolol (100 μmol/l) markedly increased afferent and efferent arteriolar diameters by 18.9 ± 3.0 and 15.8 ± 1.8%. Pretreatment with l-NNA (1,000 μmol/l) or ODQ (10 μmol/l) decreased afferent vasodilator diameters and prevented the vasodilator effects of nebivolol (2.0 ± 0.2 and 2.4 ± 0.6%). Metoprolol did not elicit significant changes in afferent vasodilator diameters and did not prevent the effects of nebivolol to vasodilate afferent arterioles. However, treatment with SR59230A, but not butoxamine, markedly attenuated the vasodilation responses to nebivolol. Using a monoclonal antibody to β(3)-receptors revealed predominant immunostaining on vascular and glomerular endothelial cells. These data indicate that nebivolol vasodilates both afferent and efferent arterioles and that the afferent vasodilator effect is via a mechanism that is independent of β(1)-receptors but is predominantly mediated via a NOS/NO/sGC/cGMP-dependent mechanisms initiated by activation of endothelial β(3)-receptors.  相似文献   

11.
Bromolasalocid (Ro 20-0006) is a calcium ionophore with antihypertensive activity that does not belong to any known class of antihypertensive agents. Bromolasalocid produces a relatively flat systolic blood pressure dose-response effect in the spontaneously hypertensive rat. An intensive cardiovascular evaluation of bromolasalocid at the highest dose used in the dose-response study showed full hemodynamic compensation; there was a significant decrease in both mean arterial blood pressure and peripheral resistance without a significant decrease in cardiac index. The antihypertensive action of bromolasalocid lasts many days after termination of dosing. Bromolasalocid is specifically antihypertensive and does not decrease arterial blood pressure in normotensive animals or in animal models of hypertensive cardiovascular disease with normal pulse pressures. Bromolasalocid is not a vasodilator and appears to mediate its antihypertensive action by restoring compliance of the large conduit arteries. Both the derived arterial compliance index and the blood pressure-pressor response to the carotid occlusion reflex are enhanced in the dog perinephritis model of hypertensive cardiovascular disease treated with bromolasalocid. Bromolasalocid appears to reverse the damage to cardiovascular tissue caused by prolonged hypertension via an action on calcium perturbations in large artery smooth muscle cells.  相似文献   

12.
The hypertensive patient with type 2 diabetes is especially at risk of adverse cardiovascular events. The United Kingdom Prospective Diabetes Study (UKPDS) and Hypertension Optimal Treatment (HOT) studies suggested that treatment to a lower target blood pressure resulted in better prevention of clinical disease in these patients. Most trials comparing antihypertensive drugs have shown only minimal differences between the various agents. The evidence from the trials suggests that diuretics, beta-blockers, calcium channel blockers (CCBs), angiotensin-converting enzyme (ACE) inhibitors, and the angiotensin-receptor antagonists (ARBs) will all successfully reduce adverse clinical events. The largest of the comparative hypertensive drug trials, the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT), demonstrated that a diuretic has a better hypotensive effect, and was more successful in preventing many aspects of cardiovascular disease compared with CCBs and ACE inhibitors. The importance of good blood pressure control and the general equivalence of antihypertensive drugs were again shown in the Valsartan Antihypertensive Long-term Use Evaluation (VALUE) trial, which compared an ARB with a CCB. Choice of antihypertensive agent should be individualized and guided by the presence of concomitant clinical disease and the need to protect any specific target organ system in the diabetic hypertensive. Diuretics, being potent hypotensive drugs with clearly demonstrated clinical benefit, should form part of the antihypertensive regimen of most diabetic hypertensives. ACE inhibitors and ARBs are especially useful in preventing nephropathy. Most patients will require a combination of antihypertensive drugs to achieve tight blood pressure control of under 130/80 mm Hg in the diabetic hypertensive. The clinician should concentrate on seeking this lower target blood pressure rather than be excessively concerned about which is the best antihypertensive agent.  相似文献   

13.
Tuberculostearic acid (10R-methyloctadecanoic acid) and its 10S-enantiomer were synthesised by a chiral pool strategy, in four steps from citronellyl bromide.  相似文献   

14.
Nebivolol is a highly selective beta(1)-adrenergic receptor antagonist that also possesses vasodilator properties that are attributed largely to nitric oxide (NO). The objective of the present study was to elucidate in more detail the mechanisms by which nebivolol relaxes vascular smooth muscle. In the canine species, nebivolol caused relaxation of isolated precontracted rings of coronary artery and pulmonary artery largely by endothelium-dependent, NO-dependent, and cyclic GMP-dependent mechanisms. Vasorelaxation was inhibited by N(G)-methylarginine, and this inhibition was reversed by addition of excess L-arginine. Moreover, the vasorelaxant responses to nebivolol were markedly inhibited by oxyhemoglobin, methylene blue, and 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ), whereas vasorelaxation was enhanced by zaprinast. Rat aortic ring preparations, however, relaxed in response to nebivolol by both endothelium-dependent and endothelium-independent mechanisms, both involving NO, and cyclic GMP. Endothelium-dependent and endothelium-independent vasorelaxation were inhibited by oxyhemoglobin, methylene blue, and ODQ. However, only endothelium-dependent vasorelaxation in response to nebivolol was inhibited by N(G)-methylarginine. Additional experiments ruled out other endothelium-independent vasorelaxant mechanisms. In conclusion, the vasodilator responses to nebivolol involve NO and cyclic GMP in both vascular endothelial and smooth muscle cells.  相似文献   

15.
A high-throughput screen (HTS) of the MLPCN library using a homogenous fluorescence polarization assay identified a small molecule as a first-in-class direct inhibitor of Keap1–Nrf2 protein–protein interaction. The HTS hit has three chiral centers; a combination of flash and chiral chromatographic separation demonstrated that Keap1-binding activity resides predominantly in one stereoisomer (SRS)-5 designated as ML334 (LH601A), which is at least 100× more potent than the other stereoisomers. The stereochemistry of the four cis isomers was assigned using X-ray crystallography and confirmed using stereospecific synthesis. (SRS)-5 is functionally active in both an ARE gene reporter assay and an Nrf2 nuclear translocation assay. The stereospecific nature of binding between (SRS)-5 and Keap1 as well as the preliminary but tractable structure–activity relationships support its use as a lead for our ongoing optimization  相似文献   

16.
《Free radical research》2013,47(2):109-118
Abstract

Nebivolol is a third generation beta blocker with endothelial nitric oxide synthase (eNOS) agonist properties. Considering the role of reactive oxygen species (ROS) in the uncoupling of eNOS, we hypothesized that the preadministration of an antioxidant as tempol, could improve the hypotensive response of nebivolol in normotensive animals increasing the nitric oxide (NO) bioavailability by a reduction of superoxide (O2??) basal level production in the vascular tissue.

Male Sprague Dawley rats were given tap water to drink (control group) or tempol (an antioxidant scavenger of superoxide) for 1 week. After 1 week, Nebivolol, at a dose of 3 mg/kg, was injected intravenously to the control group or to the tempol-treated group. Mean arterial pressure, heart rate, and blood pressure variability were evaluated in the control, tempol, nebivolol, and tempol nebivolol groups, as well as, the effect of different inhibitor as Nβ-nitro-l-arginine methyl ester (L-NAME, a Nitric oxide synthase blocker) or glybenclamide, a KATP channel inhibitor. Also, the expression of α,β soluble guanylate cyclase (sGC), phospho-eNOS, and phospho-vasodilator-stimulated phosphoprotein (P-VASP) were evaluated by Western Blot and cyclic guanosine monophosphate (cGMP) levels by an enzyme-linked immunosorbent assay (ELISA) commercial kit assay.

We showed that pretreatment with tempol in normotensive rats produces a hypotensive response after nebivolol administration through an increase in the NO bioavailability and sGC, improving the NO/cGMP/protein kinase G (PKG) pathway compared to that of the nebivolol group.

We demonstrated that tempol preadministration beneficiates the response of a third-generation beta blocker with eNOS stimulation properties, decreasing the basal uncoupling of eNOS, and improving NO bioavailability. Our results clearly open a possible new strategy therapeutic for treating hypertension.  相似文献   

17.
The enantiomers of α-phosphonosulfonic acids were completely resolved by capillary electrophoresis using β-cyclodextrin as a chiral selector in a borate electrolyte and HPLC using a chiral AGP column. The methods were used to quantitate the R-enantiomer present as an impurity in the S-enantiomer, a potential cardiovascular drug candiate. Chirality 9:104–108, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
OBJECTIVE AND BACKGROUND: Inflammation plays a critical role in all stages of atherogenesis. Proliferating vascular smooth muscle cells (SMC) and endothelial cells (EC) enhancing the inflammatory response, both contribute to the progression of atherosclerosis. Anti-proliferative, anti-inflammatory and anti-oxidative therapy seems to be a promising therapeutic strategy. The aim of this study was to assess the anti-proliferative and anti-inflammatory effect of the beta-blocker nebivolol in comparison to metoprolol in vitro and to find out whether nebivolol inhibits neointima formation in vivo. METHODS AND RESULTS: Real-time-RT-PCR revealed a decrease in VCAM-1, ICAM-1, PDGF-B, E-selectin and P-selectin mRNA expression in human coronary artery EC and SMC incubated with nebivolol for 72 hours while metoprolol did not have this effect. Nebivolol reduced MCP-1 and PDGF-BB protein in the culture supernatant of SMC and EC, respectively. Sprague-Dawley rats were treated with nebivolol for 0 or 35 days before and 28 days after carotid balloon injury. Immunohistological analyses showed that pre-treatment with nebivolol was associated with a decreased number of SMC layers and macrophages and an increased lumen area at the site of the arterial injury. The intima area was reduced by 43% after pre-treatment. CONCLUSION: We found that nebivolol reduced the expression of proinflammatory genes in endothelial cells and vascular smooth muscle cells in vitro whereas metoprolol did not. In vivo, nebivolol inhibited neointima formation by reducing SMC proliferation and macrophage accumulation.  相似文献   

19.
Cell growth and survival are potential therapeutic targets for the control of complications associated with hypertension. In most cardiovascular disorders, cardiac fibroblasts and large-vessel smooth muscle cells can replicate and thus contribute to the disease. We propose that cardiovascular hyperplasia may be reversed via therapeutic apoptosis induction with drugs that are safe and already used in the clinic. We first reported that, irrespective of the drug class, those drugs that are able to induce regression of cardiovascular hypertrophy are also able to reverse cardiovascular hyperplasia via apoptosis. Drugs active in this regard include inhibitors of the renin-angiotensin system, calcium channel blockers, and beta-blockers. Moreover, the effects of these drugs on cell survival is not merely secondary to blood pressure reduction. Therapeutic apoptosis in the cardiovascular system of the spontaneously hypertensive rat is characterized by a rapid and transient onset following initiation of antihypertensive treatment. Herein, the induction and termination of therapeutic apoptosis during drug treatment of hypertension will be briefly reviewed and supported by novel data suggesting that reversal of cardiovascular hyperplasia is associated with reduced cell growth and a resistance to further induction of therapeutic apoptosis, as shown in spontaneously hypertensive rats receiving an intermittent regime of nifedipine therapy. We propose that the presence of a cell subpopulation with defective cell cycle regulation may determine organ susceptibility to undergo therapeutic apoptosis.  相似文献   

20.
A rapid, sensitive and accurate liquid chromatographic-tandem mass spectrometry method is described for the simultaneous determination of nebivolol and valsartan in human plasma. Nebivolol and valsartan were extracted from plasma using acetonitrile and separated on a C18 column. The mobile phase consisting of a mixture of acetonitrile and 0.05 mM formic acid (50:50 v/v, pH 3.5) was delivered at a flow rate of 0.25 ml/min. Atmospheric pressure ionization (API) source was operated in both positive and negative ion mode for nebivolol and valsartan, respectively. Selected reaction monitoring mode (SRM) using the transitions of m/z 406.1-->m/z 150.9; m/z 434.2-->m/z 179.0 and m/z 409.4-->m/z 228.1 were used to quantify nebivolol, valsartan and internal standard (IS), respectively. The linearity was obtained over the concentration range of 0.01-50.0 ng/ml and 1.0-2000.0 ng/ml and the lower limits of quantitation were 0.01 ng/ml and 1.0 ng/ml for nebivolol and valsartan, respectively. This method was successfully applied to the pharmacokinetic study of fixed dose combination (FDC) of nebivolol and valsartan formulation product after an oral administration to healthy human subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号