首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thylakoids of pea chloroplasts isolated from plants grown during various time intervals from June to August were subjected to fragmentation. Using a modified procedure, a fraction of larger particles was separated from those previously considered as fragments of intergranal thylakoids. The particles of the fraction isolated were identified as fragments of marginal regions of granal thylakoids (margins). The relative yield of these fragments depended on the time interval of plant growth. Two types of low-temperature fluorescence spectra corresponding to a high and low yield of the fraction were detected. The characteristics of the first one were a high fluorescence intensity in the short-wave region and the presence of bands with maxima at 687 and 696 nm emitted by photosystem II (PSII). The ratio of PSII to PSI complexes (PSII/PSI) in the fractions characterized by a low and high yield varied from 1 to 5. The analysis of excitation spectra of long-wave fluorescence of PSI showed that PSI complexes in the margin fragments obtained at a low fraction yield were depleted in chlorophyll forms with a 682-nm absorption maximum and enriched in those with a 668-nm maximum. Since an increase in the yield of the margin-fragment fraction is due to an increased unstacking of granal thylakoids, the differences in the characteristics of fragments obtained with a low and a high yield reflect the changes in the composition of granal thylakoids in the direction from the margin to the centrum, that is, a decrease in the relative content of PSI complexes and alterations in the composition and size of its light-harvesting antenna. The consistency between the data obtained and the present view concerning the different functions of PSI located in different thylakoid regions is discussed.  相似文献   

2.
Two fractions of the light fragments enriched in the photosystem I (PSI) complexes were obtained from pea (Pisum sativum L.) thylakoids by digitonin treatment and subsequent differential centrifugation. The ratio of chlorophyll a to chlorophyll b, chlorophyll/P700 spectra of low-temperature fluorescence, and excitation spectra of long-wave fluorescence were measured. These characteristics were shown to be different due to variation in the size and composition of the light-harvesting antenna of PSI complexes present in the particles obtained. The larger antenna size of one of the fractions was related to the incorporation of the pool of light-harvesting complex II (LHCII). A comparison with the data available allowed us to identify these particles as fragments of intergranal thylakoids and end membranes of granal thylakoids. The suggestion that an increase in the PSI light-harvesting antenna in intergranal thylakoids is related to the attachment of phosphorylated LHCII is discussed.  相似文献   

3.
Two fractions of membrane fragments—the pellets precipitated at 1300 and 20000 g (fractions G1.3 and G20, respectively)—were isolated from pea (Pisum sativum L.) chloroplasts after solubilization with digitonin. These fragments assigned to grana displayed the following differences: (1) in spectra of low-temperature fluorescence, the ratio of short-wave and long-wave band intensities, as well as integrated intensity of the whole spectrum, were higher for G1.3 than for G20 fraction; (2) in excitation spectra of long-wave fluorescence, the ratio of peaks at 650 and 680 nm and integrated intensity of the spectrum were higher for G1.3 than for G20 fraction; and (3) the shapes of fluorescence excitation spectra differed for G1.3 and G20. These results indicate that the two fractions examined differed in proportion of photosystem I and photosystem II complexes, as well as in organization of these complexes. The size of light-harvesting antenna was larger in PSI complexes of G1.3 fraction, owing, in particular, to a higher content of chlorophyll a/b-protein complexes in this fraction. After repeated digitonin fragmentation of G1.3 and G20 preparations, more than 80% of G1.3 fraction was decomposed into lighter fragments, whereas G20 fraction was resistant to fragmentation (it lost about 10% of its material). Analysis of the data suggests the presence of two structurally different types of thylakoids in grana. The yield of G20 fraction (about 20%) is comparable to the ratio between the number of intergranal thylakoids, connected to granum in pea chloroplasts, and the total number of thylakoids in this granum. Based on these data, we assume that G20 fraction represent the fragments of intergranal thylakoids that extend into the granum.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 4, 2005, pp. 499–506.Original Russian Text Copyright © 2005 by Kochubei, Shevchenko, Bondarenko.  相似文献   

4.
Chlorophyll-protein complexes of barley photosystem I   总被引:11,自引:0,他引:11  
Photosystem I (PSI) preparations with a chlorophyll a/b ratio of 6.0 were isolated from barley thylakoids using two different methods. The high-molecular-mass complex (CP1a) which is resolved by non-denaturing gel electrophoresis had the same properties as a PSI preparation (PSI-200) isolated by Triton X-100 solubilisation of thylakoids followed by sucrose gradient ultracentrifugation. This material had a chlorophyll:P700 ratio of 208:1 and was composed of three different chlorophyll-protein complexes which could be separated from each other by solubilising the PSI preparation in dodecyl maltoside followed by sucrose gradient ultracentrifugation. Approximately half of the chlorophyll, including all the chlorophyll b, was located in two antenna complexes designated LHCI-680 and LHCI-730, which were identified by their characteristic low-temperature fluorescence emission spectra. The rest of the chlorophyll a was associated with the PSI reaction centre, P700 Chla-P1, which fluoresced at 720 nm. Each chlorophyll-protein complex had a unique polypeptide composition and characteristic circular dichroic and absorption spectra. The use of dodecyl maltoside instead of dodecyl sulphate resulted in a less denatured form of LHCI-680, which fluoresced at 690 nm at 77 K. One of the sucrose gradient fractions contained a complex consisting of only LHCI-730 and P700 Chla-P1 which fluoresced at 731 nm, indicating that LHCI-730 is structurally associated with P700 Chla-P1 and quenches its fluorescence. Approximately three-quarters of the light-harvesting antenna chlorophyll was in LHCI-730, but only about one-quarter of the normal complement of LHCI-730 was required to quench the reaction centre. By reducing the amount of Triton relative to the chlorophyll concentration, a PSI preparation (chlorophyll a/b ratio of 3.5) with a chlorophyll:P700 ratio of 300:1 was isolated. It contained no photosystem II, but a significant amount of LHCII which was functionally connected to the PSI reaction centre. Reconstitution studies demonstrated that excitation energy transfer from LHCII to PSI requires the presence of LHCI-680, and we propose that, in PSI, the following linear excitation energy transfer sequence occurs: LHCII----LHCI-680----LHCI-730----P700 Chla-P1.  相似文献   

5.
Distribution of phycobilisomes between photosystem I (PSI) and photosystem II (PSII) complexes in the cyanobacterium Spirulina platensis has been studied by analysis of the action spectra of H2 and O2 photoevolution and by analysis of the 77 K fluorescence excitation and emission spectra of the photosystems. PSI monomers and trimers were spectrally discriminated in the cell by the unique 760 nm low-temperature fluorescence, emitted by the trimers under reductive conditions. The phycobilisome-specific 625 nm peak was observed in the action spectra of both PSI and PSII, as well as in the 77 K fluorescence excitation spectra for chlorophyll emission at 695 nm (PSII), 730 nm (PSI monomers), and 760 nm (PSI trimers). The contributions of phycobilisomes to the absorption, action, and excitation spectra were derived from the in vivo absorption coefficients of phycobiliproteins and of chlorophyll. Analyzing the sum of PSI and PSII action spectra against the absorption spectrum and estimating the P700:P680 reaction center ratio of 5.7 in Spirulina, we calculated that PSII contained only 5% of the total chlorophyll, while PSI carried the greatest part, about 95%. Quantitative analysis of the obtained data showed that about 20% of phycobilisomes in Spirulina cells are bound to PSII, while 60% of phycobilisomes transfer the energy to PSI trimers, and the remaining 20% are associated with PSI monomers. A relevant model of organization of phycobilisomes and chlorophyll pigment-protein complexes in Spirulina is proposed. It is suggested that phycobilisomes are connected with PSII dimers, PSI trimers, and coupled PSI monomers.  相似文献   

6.
Cells of pigment mutant C-6D of the green alga Scenedesmus obliquus synthesize only Chl a and precursors of carotenoids during heterotrophic growth in the dark. These cells exhibit high PSI-activity per Chl and a low Chl/P700-ratio. After transfer to light, Chl a, Chl b and carotenoids are formed with different kinetics. Analysis of chlorophyll fluorescence emission and excitation spectra revealed a sevenfold increase in the amount of the long wavelength antenna of PSI (720 nm) resulting in an increase in the absorption cross section of PSI during illumination. The underlying changes in molecular organization of PSI were investigated by sucrose density centrifugation of solubilized thylakoids after digitonin treatment and subsequent identification of the components by gel electrophoresis, HPLC and fluorescence. In dark grown cells one blue-green band (0-II) could be resolved. This band contained only Chl a and the reaction center complex of PSI, CPI. After 24 hours of illumination three pigmented zones and a small amount of free pigment were observed. One of the zones (24-I) was identified as a light-harvesting fraction containing the pigment-protein complexes LHCP1 and LHCP3. In the second fraction (24-II) the reaction center complexes of PSI and PSII were found. The highest molecular weight fraction (24-III) was enriched in PSI-complexes of higher molecular weight and contained a high amount of long wavelength fluorescence antenna (720 nm) attributed to PSI. In contrast to band 24-II which contained a high percentage of β-carotene and a high Chl a/b-ratio, the Chl a/b-ratio of fraction 24-III was lower and the xanthophyll content increased. Our data demonstrate an increase in the PSI-unit size during chloroplast development in mutant C-6D of Scenedesmus obliquus. Dark-grown cultures have small functional PSI-units composed of the chlorophylls involved in charge separation and the core antenna. This unit contains only Chl a and no carotenoids. After transfer to light Chl b and carotenoids are formed. Simultaneously with the appearance of carotenoids and Chl b, PSI-complexes of higher molecular weight are synthesized indicating the addition of a LHC to the reaction center complex of PSI.  相似文献   

7.
Structural and functional characteristics of the photosynthetic apparatus in 15-day old Brassica rapa plants grown aboard the space shuttle Columbia (STS-87) have been studied. Maintaining of the same growth conditions for control plants was realized using the Orbiter Environmental Simulator in Kennedy Space Center. The main differences in spaceflight plants in comparison with control ones have been shown to be the following. An average volume of one mesophyll palisade cell increased approximately twice and the chloroplast number per cell by 69.8%. Partial volumes of stromal thylakoids, starch grains and plastoglobuli also increased by 19.4%, 20.6% and 2 times accordingly. At the same time, the grana number per chloroplast decreased. Greater diversity of the thylakoid length in grana and a decrease in thylakoid membrane stacking were revealed. A decrease of PSII and PSI light-harvesting antennae has been detected, for PSII by an increase of Chl a/b ratio and kinetics delay in chlorophyll fluorescence induction, and for PSI by a decrease of integral intensity in the excitation spectrum of fluorescence at 735?nm, which indicated a decline of PSI absorption cross-section. Some distortion of PSI complexes have been displayed by fluorescence spectra. A slight decrease in PSII photochemistry yield was detected for the spaceflight material. PSI is concluded to be more susceptible to the microgravity conditions.  相似文献   

8.
Phycobilisomes (PBS) are the major photosynthetic antenna complexes in cyanobacteria and red algae. In the red microalga Galdieria sulphuraria, action spectra measured separately for photosynthetic activities of photosystem I (PSI) and photosystem II (PSII) demonstrate that PBS fraction attributed to PSI is more sensitive to stress conditions and upon nitrogen starvation disappears from the cell earlier than the fraction of PBS coupled to PSII. Preillumination of the cells by actinic far-red light primarily absorbed by PSI caused an increase in the amplitude of the PBS low-temperature fluorescence emission that was accompanied by the decrease in PBS region of the PSI 77 K fluorescence excitation spectrum. Under the same conditions, fluorescence excitation spectrum of PSII remained unchanged. The amplitude of P700 photooxidation in PBS-absorbed light at physiological temperature was found to match the fluorescence changes observed at 77 K. The far-red light adaptations were reversible within 2-5min. It is suggested that the short-term fluorescence alterations observed in far-red light are triggered by the redox state of P700 and correspond to the temporal detachment of the PBS antenna from the core complexes of PSI. Furthermore, the absence of any change in the 77 K fluorescence excitation cross-section of PSII suggests that light energy transfer from PBS to PSI in G. sulphuraria is direct and does not occur through PSII. Finally, a novel photoprotective role of PBS in red algae is discussed.  相似文献   

9.
The effects of drought on photosynthesis have been extensively studied, whereas those on thylakoid organization are limited. We observed a significant decline in gas exchange parameters of pea (Pisum sativum) leaves under progressive drought stress. Chl a fluorescence kinetics revealed the reduction of photochemical efficiency of photosystem (PS)II and PSI. The non-photochemical quenching (NPQ) and the levels of PSII subunit PSBS increased. Furthermore, the light-harvesting complexes (LHCs) and some of the PSI and PSII core proteins were disassembled in drought conditions, whereas these complexes were reassociated during recovery. By contrast, the abundance of supercomplexes of PSII-LHCII and PSII dimer were reduced, whereas LHCII monomers increased following the change in the macro-organization of thylakoids. The stacks of thylakoids were loosely arranged in drought-affected plants, which could be attributed to changes in the supercomplexes of thylakoids. Severe drought stress caused a reduction of both LHCI and LHCII and a few reaction center proteins of PSI and PSII, indicating significant disorganization of the photosynthetic machinery. After 7 days of rewatering, plants recovered well, with restored chloroplast thylakoid structure and photosynthetic efficiency. The correlation of structural changes with leaf reactive oxygen species levels indicated that these changes were associated with the production of reactive oxygen species.  相似文献   

10.
Summary Inside-out thylakoid vesicles were isolated from spinach chloroplasts, and fragmented by sonication. Different fragments were separated by counter-current distribution and analyzed for chlorophyll and P700. The inside-out vesicles had a chlorophyll a/b ratio of 2.2–2.4 (original chloroplasts 2.8–3.0). After further fragmentation of the inside-out vesicles by sonication and separation by countercurrent distribution three populations of vesicles were obtained having chlorophyll a/b ratios of 1.7, 1.9 and 2.5 respectively. The P-700 was depleted in fractions with lower chlorophyll a/b ratio and was nearly absent in the fraction having a chlorophyll a/b ratio of 1.7 (chlorophyll/P700 > 4500 mol/mol). That PSII membrane vesicles, with such a low chlorophyll a/b ratio and lacking PSI, can be prepared by a non-detergent method provides strong support for the notion that PSI and PSII are segregated along the thylakoid membrane.A plot of P700 per chlorophyll against chlorophyll b/(a+b) fits a straight line connecting the pure PSI membrane (chlorophyll a/b = 6; P700/chlorophyll = 5.6 mmol/mol) with the pure PSII membrane (chlorophyll a/b = 1.7; P700 = 0). These two membranes can be considered as separate phases of a two-dimensional phase system. Models for the thylakoid membrane are discussed.Abbreviations PSI Photosystem I - PSII Photosystem II - PEG Polyethylene Glycol - P700 Reaction Center of PSI  相似文献   

11.
The light environment during plant growth determines the structural and functional properties of higher plant chloroplasts, thus revealing a dynamically regulated developmental system. Pisum sativum plants growing under intermittent illumination showed chloroplasts with fully functional photosystem (PS) II and PSI reaction centers that lacked the peripheral chlorophyll (Chi) a/b and Chl a light-harvesting complexes (LHC), respectively. The results suggest a light flux differential threshold regulation in the biosynthesis of the photosystem core and peripheral antenna complexes. Sun-adapted species and plants growing under far-red-depleted illumination showed grana stacks composed of few (3–5) thylakoids connected with long intergrana (stroma) thylakoids. They had a PSII/PSI reaction center ratio in the range 1.3–1.9. Shade-adapted species and plants growing under far-red-enrichcd illumination showed large grana stacks composed of several thylakoids, often extending across the entire chloroplast body, and short intergrana stroma thylakoids. They had a higher PSII/PSI reaction center ratio, in the range of 2.2–4.0. Thus, the relative extent of grana and stroma thylakoid formation corresponds with the relative amounts of PSII and PSI in the chloroplast, respectively. The structural and functional adaptation of the photosynthetic membrane system in response to the quality of illumination involves mainly a control on the rate of PSII and PSI complex biosynthesis.  相似文献   

12.
The chlorophyll-protein complexes of the thylakoid membrane from Prochlorothrix hollandica were identified following electrophoresis under nondenaturing conditions. Five complexes, CP1-CP5, were resolved and these green bands were analyzed by spectroscopic and immunological methods. CP1 contains the photosystem I (PSI) reaction center, as this complex quenched fluorescence at room temperature, and had a 77 K fluorescence emission peak at 717 nm. CP4 contains the major chlorophyll-a-binding proteins of the photosystem II (PSII) core, because this complex contained polypeptides which cross-reacted to antibodies raised against Chlamydomonas PSII proteins 5 and 6. Furthermore, fluorescence excitation studies at 77 K indicated that only a Chl a is bound to CP4. Complexes CP2, CP3 and CP5 contained functionally bound Chl a and b as judged by absorption spectroscopy at 20 degrees C and fluorescence excitation spectra at 77 K. CP2, CP3 and CP5 all contain polypeptides of 30-33 kDa which are immunologically distinct from the LHC-II complex of higher plant thylakoids.  相似文献   

13.
Clark L1, a normal green soybean [ Glycine max (L.) Merrill] and Clark y9y9, a backross-developed isoline exhibiting pigment deficiency, were grown under continuous red (11 W m−2 and far-red (9 W m−2) light. Chloroplast thylakoids from the unifoliolate leaf (9–10 days old) were isolated and analyzed for pigments, pigment-protein, membrane polypeptides, electron transport and ultrastructural differences. Chloroplasts of soybean plants grown under far-red light have decreased chlorophyll a to chlorophyll b ratio, increased light-harvesting complexes, and grana structure with few stroma-type thylakoids. Photosystem II/photosystem I ratios (PSII/PSI) are higher in far-red due to decreased synthesis of PSI reaction center and/or less antenna associated with PSI.  相似文献   

14.
Karapetian NV 《Biofizika》2004,49(2):212-226
The structure of a complex of photosystem I (PSI) of cyanobacteria and the mechanisms of the functioning of the antenna and PSI reaction site were described. The complex of PSI in thylakoids of cyanobacteia is organized as a trimer whose antenna is enriched in long-wave chlorophylls. The energy absorbed by these chlorophyls migrates to P700, inducing its oxidation. Long-wave chlorophyls are also involved in the dissipation of excessive energy; both the cation radical of P700 and the triplet of P700 effectively quench the fluorescence of long-wave chlorophyll of PSI. The energy exchange between the antennas of monomers in the trimer of PSI stimulates the dissipation of electron excitation energy, protecting the complex against photodestruction. The kinetics of energy migration in the antenna and charge separation in the reaction site of PSI trimers was studied using subpicosecond spectroscopy. Long-wave chlorophylls of PSI do not substantially affect the energy migration in the heterogeneous antenna of PSI but slow down the capture of energy of P700. The separation of changes in the reaction site of PSI is the most rapid among the known reaction sites.  相似文献   

15.
Tobacco rbcL deletion mutant, which lacks the key enzyme Rubisco for photosynthetic carbon assimilation, was characterized with respect to thylakoid functional properties and protein composition. The Delta rbcL plants showed an enhanced capacity for dissipation of light energy by non-photochemical quenching which was accompanied by low photochemical quenching and low overall photosynthetic electron transport rate. Flash-induced fluorescence relaxation and thermoluminescence measurements revealed a slow electron transfer and decreased redox gap between Q(A) and Q(B), whereas the donor side function of the Photosystem II (PSII) complex was not affected. The 77 K fluorescence emission spectrum of Delta rbcL plant thylakoids implied a presence of free light harvesting complexes. Mutant plants also had a low amount of photooxidisible P700 and an increased ratio of PSII to Photosystem I (PSI). On the other hand, an elevated level of plastid terminal oxidase and the lack of F0 'dark rise' in fluorescence measurements suggest an enhanced plastid terminal oxidase-mediated electron flow to O2 in Delta rbcL thylakoids. Modified electron transfer routes together with flexible dissipation of excitation energy through PSII probably have a crucial role in protection of PSI from irreversible protein damage in the Delta rbcL mutant under growth conditions. This protective capacity was rapidly exceeded in Delta rbcL mutant when the light level was elevated resulting in severe degradation of PSI complexes.  相似文献   

16.
Owens TG 《Plant physiology》1986,80(3):739-746
The distribution of excitation energy between photosystems I and II (PSI and PSII) was investigated in the marine diatom Phaeodactylum tricornutum (Bohlin) using light-induced changes in fluorescence yield and rate of modulated O2 evolution. The intensity dependence of the fast fluorescence rise in dark adapted cells (±DCMU) suggests that light absorbed by the major antenna complex was not delivered preferentially to PSII but is more equally distributed between the photosystems. Reversible, slow fluorescence yield changes measured in the absence of DCMU were correlated with decreased initial fluorescence and rate constants for PSII photochemistry, increased variable fluorescence, alteration of the fluorescence excitation and emission spectra, and could be effected by either 510 nm (PSII) or 704 nm (PSI) light. Slow, reversible fluorescence yield changes were also observed in the presence of DCMU, but were characterized by a loss of both initial and variable fluorescence and could not be induced by PSI light. The absence of slow changes in the yield of fluorescence and rate of modulated O2 evolution, following addition or removal of PSI background light to modulated PSII excitation, does not support regulation of excitation energy density in PSI at the expense of PSII. The results suggest that adjustments are made at the level of excitation energy transfer to the PSII reaction center which prevent prolonged loss of photosynthetic capacity. Energy distribution is regulated by ionic distributions independently of the plastoquinone pool redox state. These differences in light-harvesting function are probably a response to the aquatic light field and may account for the success of diatoms in low and variable light environments.  相似文献   

17.
《BBA》2022,1863(1):148509
Heterocysts are formed in filamentous heterocystous cyanobacteria under nitrogen-starvation conditions, and possess a very low amount of photosystem II (PSII) complexes than vegetative cells. Molecular, morphological, and biochemical characterizations of heterocysts have been investigated; however, excitation-energy dynamics in heterocysts are still unknown. In this study, we examined excitation-energy-relaxation processes of pigment-protein complexes in heterocysts isolated from the cyanobacterium Anabaena sp. PCC 7120. Thylakoid membranes from the heterocysts showed no oxygen-evolving activity under our experimental conditions and no thermoluminescence-glow curve originating from charge recombination of S2QA?. Two dimensional blue-native/SDS-PAGE analysis exhibits tetrameric, dimeric, and monomeric photosystem I (PSI) complexes but almost no dimeric and monomeric PSII complexes in the heterocyst thylakoids. The steady-state fluorescence spectrum of the heterocyst thylakoids at 77 K displays both characteristic PSI fluorescence and unusual PSII fluorescence different from the fluorescence of PSII dimer and monomer complexes. Time-resolved fluorescence spectra at 77 K, followed by fluorescence decay-associated spectra, showed different PSII and PSI fluorescence bands between heterocysts and vegetative thylakoids. Based on these findings, we discuss excitation-energy-transfer mechanisms in the heterocysts.  相似文献   

18.
We have constructed a tobacco psbA gene deletion mutant that is devoid of photosystem II (PSII) complex. Analysis of thylakoid membranes revealed comparable amounts, on a chlorophyll basis, of photosystem I (PSI), the cytochrome b6f complex and the PSII light-harvesting complex (LHCII) antenna proteins in wild-type (WT) and Δ psbA leaves. Lack of PSII in the mutant, however, resulted in over 10-fold higher relative amounts of the thylakoid-associated plastid terminal oxidase (PTOX) and the NAD(P)H dehydrogenase (NDH) complex. Increased amounts of Ndh polypeptides were accompanied with a more than fourfold enhancement of NDH activity in the mutant thylakoids, as revealed by in-gel NADH dehydrogenase measurements. NADH also had a specific stimulating effect on P700+ re-reduction in the Δ psbA thylakoids. Altogether, our results suggest that enhancement of electron flow via the NDH complex and possibly other alternative electron transport routes partly compensates for the loss of PSII function in the Δ psbA mutant. As mRNA levels were comparable in WT and Δ psbA plants, upregulation of the alternative electron transport pathways (NDH complex and PTOX) occurs apparently by translational or post-translational mechanisms.  相似文献   

19.
P700 enriched fractions were isolated from two brown algae and one diatom using sucrose density centrifugation after digitinin solubilization. They had a Chl a/P700 ratio of about 250 to 375 according to the species, they were enriched in long-wavelength absorbing Chl a and exhibited a fluorescence emission maximum at 77 K near 720 nm. They all presented a major polypeptide component at 66±2 kDa, but their polypeptide composition was rather complex and somewhat different from one species to another. Further solubilization with dodecylmaltoside of those native PSI particles allowed the separation of two or three fractions. The lightest, xanthophyll-rich, fraction was identified to be a light-harvesting complex. It contained no P700 and had a major polypeptide of molecular weight near 20 kDa (at the same molecular weight than the respective LH native fraction of each species) and exhibited a 77 K peak fluorescence emission at 685 nm. The other fractions were enriched in P700 and almost entirely depleted in xanthophylls. When two of them are present, they both exhibited a major polypeptide at 66±2 kDa and were totally devoid of the LH polypeptide, but the two fractions widely differed one from another in the abundance and molecular weight of the other polypeptide components. The most purified of these two fractions presented a composition similar to PSI core complex from green plants.Abbreviations LH light-harvesting - LHCII light-harvesting complex II of green plants - P700 reaction center chlorophyll of PSI  相似文献   

20.
Thylakoids isolated from winter rye (Secale cereale L. cv Puma) grown at 20°C (nonhardened rye, RNH) or 5°C (cold-hardened rye, RH) were characterized using chlorophyll (Chl) fluorescence. Low temperature fluorescence emission spectra of RH thylakoids contained emission bands at 680 and 695 nanometers not present in RNH thylakoids which were interpreted as changes in the association of light-harvesting Chl a/b proteins and photosystem II (PSII) reaction centers. RH thylakoids also exhibited a decrease in the emission ratio of 742/685 nanometers relative to RNH thylakoids.

Room temperature fluorescence induction revealed that a larger proportion of Chl in RH thylakoids was inactive in transferring energy to PSII reaction centers when compared with RNH thylakoids. Fluorescence induction kinetics at 20°C indicated that RNH and RH thylakoids contained the same proportions of fast (α) and slow (β) components of the biphasic induction curve. In RH thylakoids, however, the rate constant for α components increased and the rate constant for β components decreased relative to RNH thylakoids. Thus, energy was transferred more quickly within a PSII reaction center complex in RH thylakoids. In addition, PSII reaction centers in RH thylakoids were less connected, thus reducing energy transfers between reaction center complexes. We concluded that both PSII reaction centers and light-harvesting Chl a/b proteins had been modified during development of rye chloroplasts at 5°C.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号