首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spectropolarimetric analysis of the core histone octamer and its subunits   总被引:3,自引:0,他引:3  
The secondary structure of the calf thymus core histone octamer, (H2A-H2B-H3-H4)2, and its two physiological subunits, the H2A-H2B dimer and (H3-H4)2 tetramer, was analyzed by ORD spectropolarimetry as a function of temperature and solvent ionic strength within the ranges of these experimental parameters where assembly of the core histone octamer exhibits pronounced sensitivity. While the secondary structure of the dimer is relatively stable from 0.1 to 2.0 M NaCl, the secondary structure of the tetramer exhibits complex changes over this range of NaCl concentrations. Both complexes exhibit only modest responses to temperature changes. ORD spectra of very high and very low concentrations of stoichiometric mixtures of the core histones revealed no evidence of changes in the ordered structure of the histones as a result of the octamer assembly process at NaCl concentrations above 0.67 M, nor were time-dependent changes detected in the secondary structure of tetramer dissolved in low ionic strength solvent. The secondary structure of the chicken erythrocyte octamer dissolved in high concentrations of ammonium sulfate, including those of our crystallization conditions, was found to be essentially unchanged from that in 2 M NaCl when examined by both ORD and CD spectropolarimetry. The two well-defined cleaved products of the H2A-H2B dimer, cH2A-H2B and cH2A-cH2B, exhibited reduced amounts of ordered structure; in the case of the doubly cleaved moiety cH2A-cH2B, the reductions were so pronounced as to suggest marked structural rearrangements.  相似文献   

2.
Singh N  Jabeen T  Somvanshi RK  Sharma S  Dey S  Singh TP 《Biochemistry》2004,43(46):14577-14583
Phospholipase A(2) (PLA(2); EC 3.1.1.4) is a key enzyme involved in the production of proinflammatory mediators known as eicosanoids. The binding of the substrate to PLA(2) occurs through a well-formed hydrophobic channel. To determine the viability of PLA(2) as a target molecule for the structure-based drug design against inflammation, arthritis, and rheumatism, the crystal structure of the complex of PLA(2) with a known anti-inflammatory compound oxyphenbutazone (OPB), which has been determined at 1.6 A resolution. The structure has been refined to an R factor of 0.209. The structure contains 1 molecule each of PLA(2) and OPB with 2 sulfate ions and 111 water molecules. The binding studies using surface plasmon resonance show that OPB binds to PLA(2) with a dissociation constant of 6.4 x 10(-8) M. The structure determination has revealed the presence of an OPB molecule at the binding site of PLA(2). It fits well in the binding region, thus displaying a high level of complementarity. The structure also indicates that OPB works as a competitive inhibitor. A large number of hydrophobic interactions between the enzyme and the OPB molecule have been observed. The hydrophobic interactions involving residues Tyr(52) and Lys(69) with OPB are particularly noteworthy. Other residues of the hydrophobic channel such as Leu(3), Phe(5), Met(8), Ile(9), and Ala(18) are also interacting extensively with the inhibitor. The crystal structure clearly reveals that the binding of OPB to PLA(2) is specific in nature and possibly suggests that the basis of its anti-inflammatory effects may be due to its binding to PLA(2) as well.  相似文献   

3.
Human cytochrome P450 2D6 contributes to the metabolism of >15% of drugs used in clinical practice. This study determined the structure of P450 2D6 complexed with a substrate and potent inhibitor, prinomastat, to 2.85 ? resolution by x-ray crystallography. Prinomastat binding is well defined by electron density maps with its pyridyl nitrogen bound to the heme iron. The structure of ligand-bound P450 2D6 differs significantly from the ligand-free structure reported for the P450 2D6 Met-374 variant (Protein Data Bank code 2F9Q). Superposition of the structures reveals significant differences for β sheet 1, helices A, F, F', G", G, and H as well as the helix B-C loop. The structure of the ligand complex exhibits a closed active site cavity that conforms closely to the shape of prinomastat. The closure of the open cavity seen for the 2F9Q structure reflects a change in the direction and pitch of helix F and introduction of a turn at Gly-218, which is followed by a well defined helix F' that was not observed in the 2F9Q structure. These differences reflect considerable structural flexibility that is likely to contribute to the catalytic versatility of P450 2D6, and this new structure provides an alternative model for in silico studies of substrate interactions with P450 2D6.  相似文献   

4.
alpha-Amylases (EC 3.2.1.1) secreted by the aleurone layer of barley grains are Ca2+-containing metalloenzymes. We studied the effect of Ca2+ on the activity and structure of the two major groups of aleurone alpha-amylase by incubating affinity purified enzyme in solutions containing Ca2+ from pCa 4 to 7. Both groups of isoforms required one atom of Ca2+/molecule of enzyme as determined by isotope exchange, but the two groups differed by more than 10-fold in their affinity for Ca2+. Both groups of alpha-amylase were irreversibly inactivated by incubation in low Ca2+ (pCa 7). This inactivation was not due to changes in primary structure, as measured by molecular weight, but appeared to be the result of changes in secondary and tertiary structure as indicated by circular dichroism spectra, serology, lability in the presence of protease, and fluorescence spectra. Analysis of the predicted secondary structure of barley aleurone alpha-amylase indicates that the Ca2+-binding region of barley amylases is structurally similar to that of mammalian alpha-amylases. Our data indicate that micromolar levels of Ca2+ are required to stabilize the structure of barley alpha-amylases in the endoplasmic reticulum of the aleurone layer where these enzymes are synthesized.  相似文献   

5.
Deep S  Walker KP  Shu Z  Hinck AP 《Biochemistry》2003,42(34):10126-10139
Isoforms of transforming growth factor beta (TGFbeta) are 25 kDa homodimeric polypeptides that signal by binding and bringing together two related, functionally distinct cell surface receptors designated as TbetaR1 and TbetaR2. Here, we report the solution structure of the 13.8 kDa extracellular domain of human TbetaR2 (ecTbetaR2) as calculated from N(N)-H(N), C(alpha)-H(alpha), and C(alpha)-C(O) residual dipolar coupling restraints in conjunction with NOE distance, dihedral angle, and scalar coupling restraints. Comparison of the free ecTbetaR2 solution structure with the TGFbeta3-bound ecTbetaR2 crystal structure reveals backbone conformations that superimpose with RMSDs of 1.0 A over the regions of regular secondary structure and 1.4 A overall. The differences in structure fall mainly in loop regions that are either poorly defined by the available NMR data or are involved in crystal contacts. The noted similarities between the NMR structure of the free form and the crystal structure of the TGFbeta-bound form are also consistent with the close correspondence, 0.16 A RMSD for regions of secondary structure and 0.51 A RMSD overall, for the crystal structure of free ecTbetaR2 as compared to the crystal structure of TGFbeta3-bound ecTbetaR2. Despite the apparent similarities between the free and the bound forms, there appears to be small but significant differences in structure involving the interfacial contact region of the receptor. Measurements of backbone (15)N relaxation times and interpretation of these by the model-free formalism with axial diffusional anisotropy further reveal significant ms to micros time scale motions centered about two of the conserved disulfide bonds and in several residues that comprise the TGFbeta binding surface. Together, these observations indicate that binding likely occurs through a mechanism with a small component of induced fit character, whereby flexibility within the receptor facilitates the transition to the TGFbeta-bound state.  相似文献   

6.
Two-dimensional nuclear Overhauser effect (2D NOE) spectra have been used as the experimental basis for determining the solution structure of the duplex [d(GTATATAC)]2 employing restrained molecular dynamics (rMD) simulations. The MARDIGRAS algorithm has been employed to construct a set of 233 interproton distance constraints via iterative complete relaxation matrix analysis utilizing the peak intensities from the 2D NOE spectra obtained for different mixing times and model structures. The upper and lower bounds for each of the constraints, defining size of a flat-well potential function term used in the rMD simulations, were conservatively chosen as the largest or smallest value calculated by MARDIGRAS. Three different starting models were utilized in several rMD calculations: energy-minimized A-DNA, B-DNA, and a structure containing wrinkled D-DNA in the interior. Considerable effort was made to define the appropriate force constants to be employed with the NOE terms in the AMBER force field, using as criteria the average constraints deviation, the constraints violation energy and the total energy. Of the 233 constraints, one was generated indirectly, but proved to be crucial in defining the structure: the cross-strand A5-H2 A5-H2 distance. As those two protons resonate isochronously for the self-complementary duplex, the distance cannot be determined directly. However, the general pattern of 2D NOE peak intensities, spin-lattice relaxation time (T1) values, and 31P nuclear magnetic resonance spectra lead to use of the A3-H2 A7-H2 distance for A5-H2 A5-H2 as well. Five rMD runs, with different random number seeds, were made for each of the three starting structures with the full distance constraint set. The average structure from all 15 runs and the five-structure averages from each starting structure were all quite similar. Two rMD runs for each starting structure were made with the A5-H2 A5-H2 constraint missing. The average of these six rMD runs revealed differences in structure, compared to that with the full set of constraints, primarily for the middle two base-pairs involving the missing cross-strand constraint but global deviations also were found. Conformational analysis of the resulting structures revealed that the inner four to six base-pairs differed in structure from the termini. Furthermore, an alternating structure was suggested with features alternating for the A-T and T-A steps.  相似文献   

7.
GM2-activator protein (GM2-AP) is a lipid transfer protein that has the ability to stimulate the enzymatic processing of gangliosides as well as T-cell activation through lipid presentation. Our previous X-ray crystallographic studies of GM2-AP have revealed a large lipid binding pocket as the central overall feature of the structure with non-protein electron density within this pocket suggesting bound lipid. To extend these studies, we present here the 2A crystal structure of GM2-AP complexed with platelet activating factor (PAF). PAF is a potent phosphoacylglycerol whose toxic patho-physiological effects can be inhibited by GM2-AP. The structure shows an ordered arrangement of two bound lipids and a fatty acid molecule. One PAF molecule binds in an extended conformation within the hydrophobic channel that has an open and closed conformation, and was seen to contain bound phospholipid in the low pH apo structure. The second molecule is submerged inside the pocket in a U-shaped conformation with its head group near the single polar residue S141. It was refined as lyso-PAF as it lacks electron density for the sn-2 acetate group. The alkyl chains of PAF interact through van der Waals' contacts, while the head groups bind in different environments with their phosphocholine moieties in contact with aromatic rings (Y137, F80). The structure has revealed further insights into the lipid binding properties of GM2-AP, suggesting an unexpected unique mode of lipid packaging that may explain the efficiency of GM2-AP in inhibiting the detrimental biological effects of PAF.  相似文献   

8.
N Kato  M Ohta  N Kido  H Ito  S Naito    T Kuno 《Journal of bacteriology》1985,162(3):1142-1150
We extracted an R-form lipopolysaccharide (LPS) by the phenol-water method from Klebsiella sp. strain LEN-111 (O3-:KI-) and followed the changes in ultrastructure of the LPS during the extraction procedure. When the LPS was obtained from the water phase of an extract by addition of 2 volumes of 10 mM MgCI2-ethanol, it consisted of membrane pieces with a hexagonal lattice structure with a lattice constant of 14 to 15 nm. The lattice structure of the LPS was disrupted into short rods with sodium dodecyl sulfate, but the same hexagonal lattice structure was again formed by precipitation with 2 volumes of 10 mM MgCI2-ethanol. The LPS preparation after two cycles of treatment by the phenol-water method, which contained no detectable amounts of proteins, kept an unaltered ability to form the hexagonal lattice structure. Extensive treatment with pronase and extraction with chloroform did not impair the ability of the LPS preparation to form the lattice structure. When the other salts, NaCI, CaCI2 or Zn(CH3COO)2, were used for precipitation of the LPS with ethanol in place of MgCI2, the LPS did not form the hexagonal lattice structure. However, if the LPS precipitated with NaCI-ethanol was converted to the magnesium salt form after it was electrodialyzed, it formed the same hexagonal lattice structure as the LPS precipitated with MgCI2-ethanol. From these results, it was concluded that the R-form LPS has the ability of in vitro self-assembly into a hexagonal lattice structure in the presence of Mg2+ without the help of other components such as proteins and free lipids from outer membrane.  相似文献   

9.
The exopolysaccharide of Pseudomonas solanacearum, which is believed to play an important role in bacterial virulence, was considered by most authors as a homogeneous entity essentially composed of N-acetylgalactosamine. The present work demonstrates the high degree of heterogeneity of this exopolysaccharidic material, which consists of a high molecular weight acidic polysaccharide and a mainly noncarbohydrate structure as major subfractions. Rhamnose-rich polyoside and glucan fractions are also present as minor components. We report the complete structure of the acidic heteropolymer involving, in addition to N-acetylgalactosamine, equimolar ratios of two rare amino sugars, 2-N-acetyl-2-deoxy-L-galacturonic acid and 2-N-acetyl-4-N-(3-hydroxybutanoyl)-2,4,6-trideoxy-D-glucose. The structure of this acidic exopolysaccharide provides the first precise basis for the analysis of the correlation exopolysaccharide structure with pathogenicity in P. solanacearum.  相似文献   

10.
2-Enoyl-CoA hydratase 2 is the middle part of the mammalian peroxisomal multifunctional enzyme type 2 (MFE-2), which is known to be important in the beta-oxidation of very-long-chain and alpha-methyl-branched fatty acids as well as in the synthesis of bile acids. Here, we present the crystal structure of the hydratase 2 from the human MFE-2 to 3A resolution. The three-dimensional structure resembles the recently solved crystal structure of hydratase 2 from the yeast, Candida tropicalis, MFE-2 having a two-domain subunit structure with a C-domain complete hot-dog fold housing the active site, and an N-domain incomplete hot-dog fold housing the cavity for the aliphatic acyl part of the substrate molecule. The ability of human hydratase 2 to utilize such bulky compounds which are not physiological substrates for the fungal ortholog, e.g. CoA esters of C26 fatty acids, pristanic acid and di/trihydroxycholestanoic acids, is explained by a large hydrophobic cavity formed upon the movements of the extremely mobile loops I-III in the N-domain. In the unliganded form of human hydratase 2, however, the loop I blocks the entrance of fatty enoyl-CoAs with chain-length >C8. Therefore, we expect that upon binding of substrates bulkier than C8, the loop I gives way, contemporaneously causing a secondary effect in the CoA-binding pocket and/or active site required for efficient hydration reaction. This structural feature would explain the inactivity of human hydratase 2 towards short-chain substrates. The solved structure is also used as a tool for analyzing the various inactivating mutations, identified among others in MFE-2-deficient patients. Since hydratase 2 is the last functional unit of mammalian MFE-2 whose structure has been solved, the organization of the functional units in the biologically active full-length enzyme is also discussed.  相似文献   

11.
The formation of insoluble proteinaceous deposits is characteristic of many diseases which are collectively known as amyloidosis. There is very little molecular-level structural information available regarding the amyloid deposits due to the fact that the constituent proteins are insoluble and noncrystalline. Therefore, traditional protein structure determination methods such as solution NMR and X-ray crystallography are not applicable. We report herein the application of the solid-state NMR technique rotational resonance (R2) to the accurate measurement of carbon-to-carbon distances in the amyloid formed from a synthetic fragment (H2N-LeuMetValGlyGlyValValIleAla-CO2H) of the amyloid-forming protein of Alzheimer's disease (AD). This sequence has been implicated in the initiation of amyloid formation. Two distances measured by R2 indicate that an unusual structure, probably involving a cis amide bond, is present in the aggregated peptide amyloid. This structure is incompatible with the accepted models of fibril structure. A relationship between this structure and the stability of the amyloid is proposed.  相似文献   

12.
13.
Human hepatitis delta (HDV) ribozyme is one of small ribozymes, such as hammerhead and hairpin ribozymes, etc. Its secondary structure shows pseudoknot structure composed of four stems (I to IV) and three single-stranded regions (SSrA, -B and -C). The 3D structure of 3'-cleaved product of genomic HDV ribozyme provided extensive information about tertiary hydrogen bonding interactions between nucleotide bases, phosphate oxygens and 2'OHs including new stem structure P1.1. To analyze the role of these hydrogen bond networks in the catalytic reaction, site-specific atomic-level modifications (such as deoxynucleotides, deoxyribosyl-2-aminopurine, deoxyribosylpurine, 7-deaza-ribonucleotide and inosine) were incorporated in the smallest trans-acting HDV ribozyme (47-mer). Kinetic analysis of these ribozyme variants demonstrated the importance of the two W-C base pairs of P1.1 for cleavage; in addition, the results suggest that all hydrogen bond interactions detected in the crystal structure involving 2'-OH and N7 atoms are present in the active ribozyme structure. In most of the variants, the relative reduction in kobs caused by substitution of the 2'-OH group correlated with the number of hydrogen bonds affected by the substitution. However G74 and C75 may have more than one hydrogen bond involving the 2'-OH in both the trans- and cis-acting HDV ribozyme. Moreover, in variants in which N7 was deleted, kobs was reduced 5- to 15-fold, it may suggest that N7 assists in coordinating Mg2+ ions or water molecules which bind with weak affinity in the active structure.  相似文献   

14.
Safo MK  Abraham DJ 《Biochemistry》2005,44(23):8347-8359
The liganded hemoglobin (Hb) high-salt crystallization condition described by Max Perutz has generated three different crystals of human adult carbonmonoxy hemoglobin (COHbA). The first crystal is isomorphous with the "classical" liganded or R Hb structure. The second crystal reveals a new liganded Hb quaternary structure, RR2, that assumes an intermediate conformation between the R form and another liganded Hb quaternary structure, R2, which was discovered more than a decade ago. Like the R2 structure, the diagnostic R state hydrogen bond between beta2His97 and alpha1Thr38 is missing in the RR2 structure. The third crystal adopts a novel liganded Hb conformation, which we have termed R3, and it shows substantial quaternary structural differences from the R, RR2, and R2 structures. The quaternary structure differences between T and R3 are as large as those between T and R2; however, the T --> R3 and T --> R2 transitions are in different directions as defined by rigid-body screw rotation. Moreover, R3 represents an end state. Compared to all known liganded Hb structures, R3 shows remarkably reduced strain at the alpha-heme, reduced steric contact between the beta-heme ligand and the distal residues, smaller alpha- and beta-clefts, and reduced alpha1-alpha2 and beta1-beta2 iron-iron distances. Together, these unique structural features in R3 should make it the most relaxed and/or greatly enhance its affinity for oxygen compared to the other liganded Hbs. The current Hb structure-function relationships that are now based on T --> R, T -->R --> R2, or T --> R2 --> R transitions may have to be reexamined to take into account the RR2 and R3 liganded structures.  相似文献   

15.
Proton two-dimensional nuclear Overhauser enhancement (2D NOE) spectra in the pure absorption phase were obtained at 500 MHz for [d(GGAATTCC)]2 in aqueous solution at a series of mixing times. The experimental data were analyzed by comparison with theoretical spectra calculated using the complete 70 X 70 relaxation matrix including all proton dipole-dipole interactions and spin diffusion [Keepers, J. W. & James, T. L. (1984) J. Magn. Reson. 57, 404-426]. The theoretical spectra at each mixing time were calculated using two structures: a standard B-form DNA structure and an energy-minimized structure based on the similarity of the six internal residues of the title octamer with those of the dodecamer [d(CGCGAATTCGCG)]2, for which the crystal structure has been determined. Neither the standard B-form nor the energy-minimized structure will yield theoretical 2D NOE spectra which accurately reproduce all peak intensities in the experimental spectra. However, many features of the experimental spectra can be represented by both the B-form and the energy-minimized structure. Sequence-dependent structural characteristics are manifest in the 2D NOE spectra, in particular at the purine-pyrimidine junction as noted previously in the crystal structure. On the whole, the energy-minimized structure appears to yield theoretical 2D NOE spectra which mimic many, if not all, aspects of the experimental spectra. All 2D NOE data were consistent with nanosecond correction times as implied by proton spin-lattice relaxation time measurements. But better fits of some of the 2D NOE data using small variations in an effective isotropic correlation time suggest that there may be some local variations in mobility within the octamer duplex structure in solution.  相似文献   

16.
城市公园绿地生态效应的定量评估   总被引:23,自引:3,他引:20  
以位于亚热带地区的城市公园(深圳市莲花山公园)绿地为例,选取了碳-氧平衡、水土涵养和小气候调节3方面的CO2-O2吸释量、群落蓄水量、保土量、蒸散量、蒸散耗热量等指标,对城市公园植被的不同群落结构类型进行了生态效应的定量评价.结果表明,有乔、灌、草3层结构的林地群落的生态效应平均为单层结构的草坪群落的2~3倍.  相似文献   

17.
One of the major goals of structural genomics projects is to determine the three-dimensional structure of representative members of as many different fold families as possible. Comparative modeling is expected to fill the remaining gaps by providing structural models of homologs of the experimentally determined proteins. However, for such an approach to be successful it is essential that the quality of the experimentally determined structures is adequate. In an attempt to build a homology model for the protein dynein light chain 2A (DLC2A) we found two potential templates, both experimentally determined nuclear magnetic resonance (NMR) structures originating from structural genomics efforts. Despite their high sequence identity (96%), the folds of the two structures are markedly different. This urged us to perform in-depth analyses of both structure ensembles and the deposited experimental data, the results of which clearly identify one of the two models as largely incorrect. Next, we analyzed the quality of a large set of recent NMR-derived structure ensembles originating from both structural genomics projects and individual structure determination groups. Unfortunately, a visual inspection of structures exhibiting lower quality scores than DLC2A reveals that the seriously flawed DLC2A structure is not an isolated incident. Overall, our results illustrate that the quality of NMR structures cannot be reliably evaluated using only traditional experimental input data and overall quality indicators as a reference and clearly demonstrate the urgent need for a tight integration of more sophisticated structure validation tools in NMR structure determination projects. In contrast to common methodologies where structures are typically evaluated as a whole, such tools should preferentially operate on a per-residue basis.  相似文献   

18.
The solution structure of the DNA-binding domain of the TraM protein, an essential component of the DNA transfer machinery of the conjugative resistance plasmid R1, is presented. The structure has been determined using homonuclear 2-dimensional NMR spectroscopy as well as 15N labeled heteronuclear 2- and 3-dimensional NMR spectroscopy. It turns out that the solution structure of the DNA binding domain of the TraM protein is globular and dominantly helical. The very first amino acids of the N-terminus are unstructured.  相似文献   

19.
蛋白磷酸酶PP2A的结构及其肿瘤抑制因子功能   总被引:6,自引:0,他引:6  
蛋白磷酸酶在细胞的生命活动中起着十分重要的作用,蛋白磷酸酶2A(protein phosphatase 2A, PP2A)作为蛋白磷酸酶家族中十分重要的一员,它几乎与所有真核细胞的生命活动都有密不可分的关系.2006年,PP2A核心酶和全酶晶体结构的陆续破解对于深入了解PP2A自身的结构和亚基之间的相互作用,以及其与结合蛋白作用的机制都有重大的影响.随着PP2A与肿瘤相关性的一系列新研究成果的不断涌现,PP2A在肿瘤发生和细胞迁移中也彰显出十分关键的作用.重点介绍PP2A的组成与结构、催化亚基的特殊修饰、亚基之间的相互作用关系以及PP2A作为一种新的肿瘤抑制因子的生物学功能.  相似文献   

20.
Grb2 is an adaptor protein composed of a single SH2 domain flanked by two SH3 domains. Grb2 functions as an important evolutionary conserved link between a variety of cell membrane receptors and the Ras/MAP kinase-signaling cascade. Here, we describe the solution structure of Grb2 as revealed by NMR and small angle X-ray scattering measurements. We demonstrate that Grb2 is a flexible protein in which the C-terminal SH3 domain is connected to the SH2 domain via a flexible linker. This is in contrast to the previously described Grb2 crystal structure, which showed a compact structure with intramolecular contact between two SH3 domains. Binding experiments on Grb2 and peptides containing two different proline-rich sequences indicate that Grb2 adapts the relative position and orientation of the two SH3 domains to bind bivalently to the target peptide sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号