首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Iron K-edge e.x.a.f.s. data for the iron-vanadium cofactor (FeVaco) from Azotobacter chroococcum vanadium nitrogenase reported here provide further evidence for the structural similarity between this and the iron-molybdenum nitrogenase cofactor (FeMoco) from Klebsiella pneumoniae molybdenum nitrogenase [Arber, Flood, Garner, Gormal, Hasnain & Smith (1988) Biochem. J. 252, 421-425]. The e.x.a.f.s. data are consistent with the vanadium being present in a V-Fe-S cluster, thus confirming that the N-methylformamide extract of the VFe protein component of A. chroococcum vanadium nitrogenase does indeed contain a polynuclear metal-sulphur cluster. Additionally, a long Fe-Fe distance is observed as 0.369 nm, demonstrating the presence of a long-range order in the cluster.  相似文献   

3.
1. Nitrogenase activity of a strain of Azotobacter chroococcum lacking the structural genes for conventional nitrogenase (nifHDK) was separated into two components: an Fe-containing protein and a vanadoprotein. 2. The larger protein was purified to homogeneity by the criterion of electrophoresis of 10% (w/v) acrylamide gels in the presence of SDS. Two types of subunit, of Mr 50,000 and 55,000, were present in equal amounts. 3. The protein had an Mr of 210,000 and contained 2 V atoms, 23 Fe atoms and 20 acid-labile sulphide groups per molecule. The Mo content was less than 0.06 g-atom/mol. All the common amino acids were present, with a predominance of acidic residues. Ultracentrifugal analysis gave a maximum sedimentation coefficient of 9.7 S and a symmetrical boundary at 5 mg of protein X ml-1; dissociation occurred at lower concentrations. The specific activities (nmol of product/min per mg of protein), when assayed under optimum conditions with the complementary Fe protein from this strain, were 1348 for H2 evolution, 350 for NH3 formation and 608 for acetylene reduction. Activity was O2-labile, with a t1/2 of 40 s in air. At low temperatures the dithionite-reduced protein showed e.p.r. signals at g = 5.6, 4.35, 3.77 and 1.93, consistent with an S = 3/2 ground state with an additional S = 1/2 centre giving rise to the feature at g = 1.93. The u.v. spectra of dithionite-reduced and thionine-oxidized protein were very similar. Oxidation resulted in a general increase in absorbance in the visible region. The shoulder at 380 nm in the spectrum of reduced protein was replaced with shoulders near 330 nm and 420 nm on oxidation.  相似文献   

4.
1. The vanadium (V-) nitrogenase of Azobacter chroococcum transfers up to 7.4% of the electrons used in acetylene (C2H2) reduction for the formation of ethane (C2H6). The apparent Km for C2H2 (6 kPa) is the same for either ethylene (C2H4) or ethane (C2H6) formation and much higher than the reported Km values for C2H2 reduction to C2H4 by molybdenum (Mo-) nitrogenases. Reduction of C2H2 in 2H2O yields predominantly [cis-2H2]ethylene. 2. The ratio of electron flux yielding C2H6 to that yielding C2H4 (the C2H6/C2H4 ratio) is increased by raising the ratio of Fe protein to VFe protein and by increasing the assay temperature up to at least 40 degrees C. pH values above 7.5 decrease the C2H6/C2H4 ratio. 3. C2H4 and C2H6 formation from C2H2 by V-nitrogenase are not inhibited by H2. CO inhibits both processes much less strongly than it inhibits C2H4 formation from C2H2 with Mo-nitrogenase. 4. Although V-nitrogenase also catalyses the slow CO-sensitive reduction of C2H4 to C2H6, free C2H4 is not an intermediate in C2H6 formation from C2H2. 5. Propyne (CH3C identical to CH) is not reduced by the V-nitrogenase. 6. Some implications of these results for the mechanism of C2H6 formation by the V-nitrogenase are discussed.  相似文献   

5.
A comparison of the effect of temperature on the reduction of N2 by purified molybdenum nitrogenase and vanadium nitrogenase of Azotobacter chroococcum showed differences in behaviour. As the assay temperature was lowered from 30 degrees C to 5 degrees C N2 remained an effective substrate for V nitrogenase, but not Mo nitrogenase, since the specific activity for N2 reduction by Mo nitrogenase decreased 10-fold more than that of V nitrogenase. Activity cross-reactions between nitrogenase components showed the enhanced low-temperature activity to be associated with the Fe protein of V nitrogenase. The lower activity of homologous Mo nitrogenase components, although dependent on the ratio of MoFe protein to Fe protein, did not equal that of V nitrogenase even under conditions of high electron flux obtained at a 12-fold molar excess of Fe protein.  相似文献   

6.
In crude cell-free extracts of Azotobacter chroococcum, nitrogenase was much less sensitive to irreversible inactivation by O2 than was the purified enzyme. When nitrogenase was partially purified by anaerobic discontinuous sucrose-density-gradient centrifugation, O2-tolerance was retained. This preparation was considerably enriched in four polypeptides, three of which were derived from the Mo-Fe(molybdenum-iron) protein and Fe (iron) protein of nitrogenase. The fourth was purified to homogeneity and shown to be an iron-sulphur protein (mol.wt. 14000) probably containing a 2Fe--2S centre. When this protein was added to purified nitrogenase, the enzyme was rendered O2-tolerant, through stabilization was Mg2+-dependent. The isolated O2-tolerant nitrogenase was an equimolar stoicheiometric complex between the MO--Fe, Fe and protective proteins. It is likely that the formation of this complex in vivo is the mechanism of 'conformational protection' in this organism.  相似文献   

7.
Vanadium K-edge X-ray-absorption spectra were collected for samples of thionine-oxidized, super-reduced (during enzyme turnover) and dithionite-reduced VFe-protein of the vanadium nitrogenase of Azotobacter chroococcum (Acl*). Both the e.x.a.f.s and the x.a.n.e.s. (X-ray-absorption near-edge structure) are consistent with the vanadium being present as part of a VFeS cluster; the environment of the vanadium is not changed significantly in different oxidation states of the protein. The vanadium atom is bound to three oxygen (or nitrogen), three sulphur and three iron atoms at 0.215(3), 0.231(3) and 0.275(3) nm respectively.  相似文献   

8.
9.
10.
11.
The kinetics of MgATP-induced electron transfer from the Fe protein (Ac2V) to the VFe protein (AclV) of the vanadium-containing nitrogenase from Azotobacter chroococcum were studied by stopped-flow spectrophotometry at 23 degrees C at pH 7.2. They are very similar to those of the molybdenum nitrogenase of Klebsiella pneumoniae [Thorneley (1975) Biochem. J. 145, 391-396]. Extrapolation of the dependence of kobs. on [MgATP] to infinite MgATP concentration gave k = 46 s-1 for the first-order electron-transfer reaction that occurs with the Ac2V MgATPAclV complex. MgATP binds with an apparent KD = 230 +/- 10 microM and MgADP acts as a competitive inhibitor with Ki = 30 +/- 5 microM. The Fe protein and VFe protein associate with k greater than or equal to 3 x 10(7) M-1.s-1. A comparison of the dependences of kobs. for electron transfer on protein concentrations for the vanadium nitrogenase from A. chroococcum with those for the molybdenum nitrogenase from K. pneumoniae [Lowe & Thorneley (1984) Biochem. J. 224, 895-901] indicates that the proteins of the vanadium nitrogenase system form a weaker electron-transfer complex.  相似文献   

12.
13.
We have constructed a strain of Azotobacter vinelandii which has deletions in the genes for both the molybdenum (Mo) and vanadium (V) nitrogenases. This strain fixed nitrogen in medium that did not contain Mo or V. Growth and nitrogenase activity were inhibited by Mo and V. In highly purified medium, growth was limited by iron. Addition of other metals (Co, Cr, Cu, Mn, Ni, Re, Ti, W, and Zn) did not stimulate growth. Like the V-nitrogenase, the nitrogenase synthesized by the double deletion strain reduced acetylene to both ethylene and ethane (C2H6/C2H4 ratio, 0.046). There was an approximately 10-fold increase in ethane production when Mo was added to the deletion strain grown in medium lacking Mo and V. This change in reactivity may be due to the incorporation of an Mo-containing cofactor into the nitrogenase synthesized by the double-deletion strain. A strain synthesizing the V-nitrogenase did not show a similar increase in ethane production. The growth characteristics of the double-deletion strain, together with the metal composition reported for a nitrogenase isolated from a tungstate-tolerant strain lacking genes for the molydenum enzyme grown in the absence of Mo and V (J. R. Chisnell, R. Premakumar, and P. E. Bishop, J. Bacteriol. 170:27-33, 1988) show that A. vinelandii can synthesize a nitrogenase which lacks both Mo and V. Reduction of dinitrogen by nitrogenase can therefore occur at a center lacking both these metals.  相似文献   

14.
15.
Active transport systems in bacteria can be divided into two groups: those that are osmotic shock-resistant with one single membrane protein, and those that are shock-sensitive and have a membrane-bound protein complex plus a soluble periplasmic protein. Whether the bacterial assimilatory nitrate transport falls into the one or the other of these two groups has not been studied before. We report that nitrate uptake by the strictly aerobic, N2-fixing heterotrophic bacterium Azotobacter chroococcum is sensitive to osmotic shock. The polypeptide composition of cytoplasmic membranes changes in response to the nitrogen source available to the cells. Incorporation of [35S]-methionine into proteins as well as use of the A. chroococcum TRI mutant, which is defective in nitrate transport, and the A. choococcum MCD1 strain, a mutant unable to use nitrate as a nitrogen source, suggest that nitrate transport into A. chroococcum cells is mediated by a multicomponent system tightly bound to the cytoplasmic membrane.  相似文献   

16.
When Azotobacter chroococcum cells grown in batch culture under N2-fixing conditions were transferred to a medium lacking a nitrogen source, the cellular C/N ratio, the amount of alginic acid released into the external medium and the rate of endogenous respiration increased appreciably after 6 h to the exclusion of dinitrogen, whereas nitrogenase activity did not undergo any significant change. Nitrogen deficiency caused a decrease in the ammonium inhibition of nitrogenase activity from 95% inhibition at zero time to 14% after 6 h incubation under dinitrogen starvation, with no difference in the rate of ammonium utilization by N2-fixing and N2-starved cells being observed. This suggests that a balance of nitrogen and carbon assimilation is necessary for the ammonium inhibition of nitrogenase activity in A. chroococcum to take place.  相似文献   

17.
18.
The vnf-encoded nitrogenase from Azotobacter vinelandii contains an iron-vanadium cofactor (FeV-co) in its active site. Little is known about the synthesis pathway of FeV-co, other than that some of the gene products required are also involved in the synthesis of the iron-molybdenum cofactor (FeMo-co) of the widely studied molybdenum-dinitrogenase. We have found that VnfX, the gene product of one of the genes contained in the vnf-regulon, accumulates iron and vanadium in a novel V-Fe cluster during synthesis of FeV-co. The electron paramagnetic resonance (EPR) and metal analyses of the V-Fe cluster accumulated on VnfX are consistent with a VFe7-8Sx precursor of FeV-co. The EPR spectrum of VnfX with the V-Fe cluster bound strongly resembles that of isolated FeV-co and a model VFe3S4 compound. The V-Fe cluster accumulating on VnfX does not contain homocitrate. No accumulation of V-Fe cluster on VnfX was observed in strains with deletions in genes known to be involved in the early steps of FeV-co synthesis, suggesting that it corresponds to a precursor of FeV-co. VnfX purified from a nifB strain incapable of FeV-co synthesis has a different electrophoretic mobility in native anoxic gels than does VnfX, which has the V-Fe cluster bound. NifB-co, the Fe and S precursor of FeMo-co (and presumably FeV-co), binds to VnfX purified from the nifB strain, producing a shift in its electrophoretic mobility on anoxic native gels. The data suggest that a precursor of FeV-co that contains vanadium and iron accumulates on VnfX, and thus, VnfX is involved in the synthesis of FeV-co.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号