首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of chymotrypsinogen by bovine trypsin or boar sperm acrosin was followed up using Nalpha-acetyl-L-tyrosine ethyl ester in a highly sensitive test system. Inhibition studies employing antiboar acrosin rabbit gamma-globulins showed the following results. 1) Whereas the acrosin-induced activation velocity was significantly depressed in the presence of the antibodies, the trypsin-catalyzed activation rate was not diminished. 2) The antibodies enhanced the acrosin-catalyzed cleavage rate of BzArgOEt significantly, but not the trypsin-catalyzed cleavage rate of this substrate. 3) Autodigestion of acrosin was considerably reduced in the presence of the antibodies. The enzymatic test system used is especially suitable to study the specificity of acrosin antibodies or their affinity to related enzymes if only small amounts of these substances are available.  相似文献   

2.
Acrosin was detected by immunofluorescence in the spermatozoan acrosomes of artiodactyla (bull, ram and boar), perissodactyla (horse), carnivora (dog and cat), lagomorpha (rabbit) and primates (human) using anti-bovine acrosin immunoglobulins. The results indicate that the acrosin molecules of several mammalian species possess antigenic similarities.  相似文献   

3.
An immunoperoxidase staining procedure that readily demonstrated acrosin in the rostral portion of the acrosome failed to detect acrosin in the equatorial segment of spermatozoa representing the mammalian orders artiodactyla (bull and boar), lagomorpha (rabbit) and primate (human).  相似文献   

4.
Thirteen serine proteinase inhibitors of the guanidine, monoamidine and diamidine type were tested for their ability to inhibit the proteinase acrosin present in the acrosome of ejaculated and capacitated boar spermatozoa. All compounds studied proved to be potent in-vitro inhibitors of acrosin. Inhibition constants (Ki) in the range of 1.2 x 10(-7) to 6 x 10(-8) M were found for the reversible inhibitors. The intra-acrosomal inhibition of acrosin was assessed by the gelatin substrate film method: 2 guanidinobenzoates, one monoamidine and one diamidine derivative proved to inhibit acrosin completely in intact spermatozoa. Intravenous injection of 6-amidino-2-(4-amidinophenyl)-indole had no effect on fertilization, but application of 4-nitrophenyl-4-guanidinobenzoate in a vaginal suppository gave a 50% reduction of fertilization.  相似文献   

5.
Three different monoclonal rat antibodies, Acr1, Acr2, and Acr3, have been established against boar proacrosin. They are shown by enzyme-linked immunosorbent and immunoblot assays to react with boar proacrosin and several different acrosin molecules derived therefrom during activation. The epitopes detected by the three antibodies are different from each other, one being highly sensitive to reduction and periodate treatment. The antibodies crossreact with various proacrosin and acrosin molecules derived from human sperm extract; they also show indirect immunofluorescent staining of the acrosomal region of ejaculated sperm from normal men but fail to react with round-headed spermatozoa.  相似文献   

6.
Further evidence is presented that the acrosomal proteinase acrosin exists as a zymogen precursor in freshly ejaculated boar spermatozoa. Autoactivation of proacrosin to acrosin takes place optimally at slightly alkaline pH and in the presence of calcium ions. Activation is considerably accelerated by catalytic amounts of trypsin or highly purified acrosin. A significant acceleration of the activation is also achieved by porcine pancreatic and urinary kallikrein, whereas chymotrypsin, plasmin, thrombin or urokinase showed no effect. Activation can be inhibited by p-amino-benzamidine and p-nitrophenyl p'-guanidino-benzoate. Electrophoretic analysis at different stages of activation revealed that during this process various molecular forms of acrosin are produced, apparently by limited proteolysis.  相似文献   

7.
Flow cytometric techniques were used to measure relative DNA content of X and Y chromosome-bearing bull, boar, and ram sperm populations and to separate the two sex-determining populations. Neat semen was prepared for flow cytometric analysis by washing, light sonication, and staining with 9 μM Hoechst 33342. Computer analysis of the bimodal histograms showed mean X-Y DNA differences of 3.9, 3.7, and 4.2% for bull, boar, and ram, respectively. Flow cytometric reanalysis of sorted bull, boar, and ram sperm showed purities greater than 90%. Bull, boar, and ram sperm nuclei were microinjected into hamster oocytes. Microinjected sperm were either unsorted, sorted, unsorted plus dithio-threitol (DTT) exposure, or sorted plus DTT exposure. Following microinjection, eggs were incubated 3 hr, fixed, and stained. A total of 579 eggs was observed for sperm activation (decondensation or formation of a male pronucleus). A lower percentage of sorted than unsorted (3 vs. 23%) boar sperm was activated (P <.05). However, sorted and unsorted DTT-exposed boar sperm or sorted and unsorted bull or ram sperm, regardless of DTT treatment, did not differ significantly. Sorted sperm nuclei of both rams and bulls exhibited higher activation rates than sorted boar sperm (P <.05). Treatment of sperm with DTT increased the activation rate (P < .05) for sorted boar sperm but not for bull or ram sperm. These data represent the first separation of bull, boar, and ram X and Y chromosome-bearing sperm populations and the first evidence that sperm of domestic animals sorted on the basis of DNA by flow cytometric procedures have the ability to decondense and to form pronuclei upon injection into a hamster egg.  相似文献   

8.
Carbohydrate-protein interactions are known to be important in gamete interactions. We therefore investigated the inhibition of boar sperm acrosin amidase activity by carbohydrates. The sulfated polysaccharides fucoidan and dextran sulfate inhibited amide hydrolysis whereas dextran and various monosaccharides did not inhibit acrosin amidase activity. The kinetics of the inhibition corresponded to those characteristic when multiple forms of an enzyme are present. Such a kinetic result was consistent with the presence of the known autolytically produced forms of acrosin. It was previously shown that sulfated polysaccharides inhibit sperm-egg binding and that acrosin binds carbohydrate. We propose that the sulfated polysaccharide inhibition of acrosin amidase activity observed here is causally related to the previously observed sulfated polysaccharide inhibition of sperm binding to the zona pellucida.  相似文献   

9.
Gossypol, a known antispermatogenic agent, was found to effectively inhibit the highly purified boar sperm proacrosin-acrosin proteinase enzyme system by irreversibly preventing the autoproteolytic conversion of proacrosin to acrosin and reversibly inhibiting acrosin activity. The agent appears to prevent the self-catalyzed by not the acrosin-catalyzed activation of proacrosin. In additional experiments, brief exposure of human semen to concentrations of gossypol, which did not visibly alter spermatozoal motility or forward progression, was found to irreversibly inhibit the conversion of proacrosin to acrosin although the activity of the nonzymogen acrosin was not decreased, and also to prevent the human spermatozoa from penetrating denuded hamster oocytes. Gossypol inhibition of proacrosin conversion to acrosin closely paralleled the decline in oocyte penetration. Racemic (+/-) gossypol was equally as effective as the enantiomer (+) gossypol. The results suggest that the inhibition of proacrosin conversion to acrosin is a mechanism by which gossypol exerts its antifertility effect at nonspermicidal concentrations and that low levels of gossypol should be tested for their contraceptive action when placed vaginally.  相似文献   

10.
An inactive form of acrosin was extracted from epididymal boar spermatozoa utilizing acid pH conditions. When subjected to activation in alkaline environment, this form turns into an enzymatically active species, which exhibits close-related electrophoretic characteristics. Both the precursor and the activated species, when incubated in the presence of thermolysin, give rise to two fastly moving acrosin molecular forms. In order to establish the nature of the true acrosin zymogen, we isolated poly(A+)-RNA from boar testicles, performed its translation in vitro in the presence of [35S]-methionine and reticulocyte lysate, immunoprecipitated the translation products with anti-boar acrosin antibody, and analyzed them by SDS-polyacrylamide gel electrophoresis and autoradiography. A single translation product of molecular weight 55,000 was detected. It is concluded that the polypeptide chain of the boar zymogen is of 55,000; increases in molecular weight are due to post-translational modifications, like glycosylation.  相似文献   

11.
12.
Using the indirect immunofluorescence staining technique, the occurrence and localization of proacrosin, the zymogen form of acrosin, was studied during spermatogenesis in the bull, ram, boar and rabbit. Proacrosin staining was demonstrable for the first time in the early haploid spermatid and increased with the differentiation of the spermatid to spermatozoon. The spermatozoon is covered by a cap-like structure of uniform fluorescence corresponding to the acrosomal compartment of the male gamete. No fluorescence could be found in diploid spermatogenic cells, i.e., in spermatogonia and spermatocytes. An identical developmental pattern of proacrosin was observed with the indirect immunoperoxidase staining technique. However, with this staining technique a distinct distribution of proacrosin staining was observed in the acrosome of epididymal and ejaculated spermatozoa of the bull, ram, boar, rabbit and man. Proacrosin seems to be distributed in the acrosome in granules rather than in the homogeneous form, as was indicated by the results of indirect immunofluorescence staining.  相似文献   

13.
An acrosin inhibitor was isolated from bull seminal plasma by gel filtration on Sephadex G-50 fine and ion-exchange chromatography on CM-Sephadex. The inhibitor is a basic polypeptide (pl greater than or equal to 10.5) of molecular weight 6 200 (calculated from amino acid composition). Its N-terminal amino group is blocked. The inhibitor is not strictly specific in its effect since it also inhibits trypsin and to a lesser degree chymotrypsin, in addition to bull and boar acrosin.  相似文献   

14.
A clinical assay to evaluate total acrosin activity developed for human semen has been optimized for use in boar spermatozoa. The main modifications included a decrease of sperm number per assay from 1.0 to 10.0 x 10(6) to 12.5 to 75.0 x 10(3) spermatozoa, and the time of incubation from 180 to 60 min. Linearity of response for differing quantities of spermatozoa was maintained. Extensive washing of spermatozoa was necessary to eliminate seminal plasma, the source of acrosin inhibitors. Seminal plasma that was diluted 1000 times inhibited acrosin activity by about 50%. To abolish the inhibitory effect of seminal plasma it was necessary to use 25,000-fold dilution. Total acrosin activity of boar spermatozoa was about 100 times higher than that of human spermatozoa. Acrosin activity of boar spermatozoa in extended semen decreased during 7 d of storage. These results indicate that the clinical assay of acrosin activity can be used for boar spermatozoa to evaluate the quality of boar semen.  相似文献   

15.
We have isolated cDNA clones encoding boar acrosin, a serine protease participating in the initial stage of fertilization, from boar testis lambda gt11 cDNA libraries. Nucleotide sequencing of the overlapping clones indicates that the composite cDNA inserts contain 1,391 base pairs coding for a 5'-untranslated region, an open reading frame, a stop codon, a 3'-untranslated region, and a poly(A)+ tail. A polyadenylation signal, AATAAA, is located 33 bases upstream from the start of the poly(A)+ tail. The amino acid sequence deduced from the cDNAs shows that boar acrosin is initially synthesized as a prepro-protein with a 16-residue signal peptide at the NH2 terminus. This signal sequence is followed by a 399-residue sequence corresponding to the acrosin zymogen. COOH-terminal sequence analysis of boar sperm 55-kDa proacrosin and its processed forms indicates that the mature acrosin molecule contains 322 amino acid residues in two polypeptide chains, a 23-residue light chain and a 299-residue heavy chain, with a combined molecular mass of 35,735 Da, and that the 55-kDa proacrosin molecule has 14-, 18-, and 43-residue segments as COOH-terminal extensions that are removed during proacrosin maturation. The COOH-terminal 43-residue segment is rich in proline residues, including an unusual repeat of 23 consecutive prolines. The deduced amino acid sequence of boar acrosin shows a high degree of identity with major portions of other serine proteases, including the active site region and the location of cysteine residues. We conclude that boar acrosin is synthesized as a single-chain polypeptide with the regions corresponding to the light and heavy chains covalently connected by two disulfide bonds, and that the single-chain molecule is autoactivated by cleavage of the Arg23-Val24 bond after removal of the COOH-terminal 14-residue segment, resulting in the formation of the light and heavy chains. This two-chain molecule is then converted to the mature enzyme by removal of the COOH-terminal 18- and 43-residue segments.  相似文献   

16.
The cleavage specificity of boar acrosin is, like that of trypsin, strictly limited to the arginyl and lysyl bonds, as demonstrated for the oxidized B-chain of insulin. In addition, in this polypeptide substrate as well as in reduced and carboxymethylated ribonuclease, these peptide bonds are hydrolyzed by acrosin and trypsin with nearly identical velocities.  相似文献   

17.
The sperm-specific proteinase acrosin (EC 3.4.21.10) is found in spermatozoa as a zymogen. We have looked for different forms of this zymogen in testicular, epididymal, and ejaculated spermatozoa from ram and have compared total sperm extracts made immediately after cell disruption with extracts made later from isolated sperm heads. We have concluded that the autoactivatable zymogen form, known generally as proacrosin, is the only form of acrosin within intact mature ram spermatozoa; no other zymogen form was detected, although lower levels of proacrosin were found in some samples of testicular spermatozoa. From studies of the activation process, it appears that ram proacrosin is truly autoactivatable; no evidence could be found for the involvement of any auxiliary enzyme. Estimations of the molecular weight of proacrosin using gel chromatography (60,000) and SDS-polyacrylamide gel electrophoresis (51,300) indicated that the zymogen is monomeric. Comparison with the molecular weight of ram acrosin (44,000 or 40,000, using the two respective methods) indicated that a single acrosin molecule is derived from each zymogen molecule. The sperm acrosin inhibitor (molecular weight 11,000 or 8,000) was present in testicular spermatozoa as well as in ejaculated spermatozoa; there was no evidence that it was produced as a result of zymogen activation.  相似文献   

18.
When denuded ram spermatozoa were suspended in weakly buffered 0.25M sucrose, the acrosin remained bound to the acrosomal membranes of the sperm heads. Media containing CaCl2 caused complete solubilization of the enzyme. Effects of acrosin inhibitors on soluble and bound enzyme were studied in Tris HCl(pH 8.2) containing sucrose. Denuded spermatozoa were used as a preparation of bound acrosin. Trasylol (Kunitz basic pancreatic trypsin inhibitor) acted more strongly on bound scrosin than on soluble acrosin, but soya-bean trypsin inhibitor acted more strongly on soluble acrosin. At concentrations 0.5 - 2.0muM, the inhibitors isolated from ram acrosomes and from ram seminal plasma inhibited soluble acrosin but had negligible effects on bound acrosin. However, bound acrosin was sensitive to high concentrations of the acrosomal inhibitor. The two forms of acrosin were inhibited to about the same degree by p-aminobenzamidine and also by Tos-Lys-CH2Cl. It is proposed that membrane-bound acrosin is the form that functions in penetration of the zona pellucida, and that a role for acrosin inhibitors is suppression of an antifertility effect of soluble acrosin on mammalian eggs. This hypothesis is supported by 1) the results of work on the impaired fertilizing capacity of rabbit spermatozoa that have been treated with acrosin inhibitors, 2) the anti-fertility effects on hamster eggs of solutions of acrosin and of bovine trypsin, and 3) the results in this paper.  相似文献   

19.
Guinea pig (GP) acrosin was purified following acid extraction of testicular acetone powder, pH precipitation of the soluble extract, gel filtration on Sephadex G-100, ion-exchange chromatography on SP-Sephadex, and affinity chromatography on Concanavalin A-Sepharose. Final purification was achieved by re-chromatography on Sephadex G-100. Enzymatic activity was detected by following the hydrolysis of N-benzyloxycarbonylarginyl amide of 7-amino-4-trifluoromethylcoumarin at 37 degrees C, pH 8.0, before and after activation. GP testicular acrosin exhibited a molecular weight of 48,000 by gel filtration and 34,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Following SDS-PAGE in gels containing 0.1% gelatin, protease activity was observed to comigrate with the major protein detected by silver staining. The purified GP acrosin showed cross-reactivity with a monospecific polyclonal rabbit antiserum directed against boar sperm acrosin and exhibited reversible pH-dependent activation. The physiochemical characteristics of the purified protein, including the amino acid composition, resemble those reported for acrosins from other species.  相似文献   

20.
Abstract. Using the indirect immunofluorescence staining technique, the developmental pattern of acrosin during spermatogenesis of boar, ram, rabbit, mouse, rat, and Russian hamster ( Phodopus sungorus ) was studied. Specific antibodies against purified boar acrosin raised in rabbits crossreacted with the acrosin of all species investigated thus suggesting that the antigenic determinants of the acrosin molecule cross-reacting with anti-boar acrosin antiserum have been highly conserved in mammalian evolution. During spermatogenesis acrosin was first demonstrable in haploid spermatids and increased in the course of the differentiation of the spermatids to spermatozoa. During the entire period of spermatid differentiation acrosin appeared in juxtaposition to the nucleus. In boar and ram the results obtained with the indirect immunofluorescence staining procedure were confirmed with the indirect immunoperoxidase staining method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号