首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of the effects of soil management practices on crop production requires knowledge of these effects on plant roots. Much time is required to wash plant roots from soil and separate the living plant roots from organic debris and previous years’ roots. We developed a root washer that can accommodate relatively large soil samples for washing. The root washer has a rotary design and will accommodate up to 24 samples (100 mm diam. by 240 mm long) at one time. We used a flat-bed scanner to digitize an image of the roots from each sample and used a grid system with commercially-available image analysis software to analyze each sample for root surface area. Sensitivity analysis and subsequent comparisons of ‘dirty’ samples containing the roots and all the organic debris contained in the sample and ‘clean’ samples where the organic debris was manually removed from each sample showed that up to 15% of the projected image could be coveredwith debris without affecting accuracy and precision of root surface area measurements. Samples containing a large amount of debris may need to be partitioned into more than one scanning tray to allow accurate measurements of the root surface area. Sample processing time was reduced from 20 h, when hand separation of roots from debris was used, to about 0.5 h, when analyzing the image from an uncleaned sample. The method minimizes the need for preprocessing steps such as dying the roots to get better image contrast for image analysis. Some information, such as root length, root diameter classes and root weights, is not obtained when using this technique. Root length measurements, if needed, could be made by hand on the digital images. Root weight measurement would require sample cleaning and the advantage of less processing time per sample with this method would be lost. The significance of the tradeoff between information not obtained using this technique and the ability to process a greater number of samples with the time and personnel resources available must be determined by the individual researcher and research objectives.  相似文献   

2.
Smith  D.M. 《Plant and Soil》2001,229(2):295-304
Previous theoretical research has suggested that lengths of tree roots can be estimated on the basis of their branching characteristics, if branching has a fractal pattern that is independent of root diameter. This theory and its underlying assumptions was tested for Grevillea robusta trees at a site in Kenya by comparing estimates of root length from conventional soil coring and the output of a fractal branching algorithm. The trees were in a 4-year-old stand established on a 3 × 4 m planting grid. Root lengths (L r) in four units of the planting grid were estimated by soil coring. Branching characteristics determined by examination of 32 excavated roots from 16 trees were: The number of branches at each branching point; the length of links between branching points (L l); the diameter of root tips; and parameters which describe the change in diameter at each branching point. Each was found to be independent of root size. These data were used to parameterise a branching algorithm, which was then used to estimate numbers of root links in the four grid units (n l) from root diameters at the bases of the four trees at the corners of each unit. Root lengths, from L r = n1 L1, severely underestimated L r. This discrepancy probably resulted from inaccuracy in the parameterisation of the branching algorithm, as output from the algorithm was very sensitive to small changes in parameter values. Use of fractal branching rules alone to estimate roots length does not appear possible unless the algorithm is calibrated to adjust for errors in parameter estimation. Calibration can be achieved by calculation of an 'effective link length', L eff 1, from L r/n l, where L r is measured by a reference method such as soil coring.  相似文献   

3.
Background and Aims Root diameter, especially apical diameter, plays an important role in root development and function. The variation in diameter between roots, and along roots, affects root structure and thus the root system’s overall foraging performance. However, the effect of diameter variation on root elongation, branching and topological connections has not been examined systematically in a population of high-order roots, nor along the roots, especially for mature plants grown in the field.Methods A method combining both excavation and analysis was applied to extract and quantify root architectural traits of adult, field-grown maize plants. The relationships between root diameter and other root architectural characteristics are analysed for two maize cultivars.Key Results The basal diameter of the lateral roots (orders 1–3) was highly variable. Basal diameter was partly determined by the diameter of the bearing segment. Basal diameter defined a potential root length, but the lengths of most roots fell far short of this. This was explained partly by differences in the pattern of diameter change along roots. Diameter tended to decrease along most roots, with the steepness of the gradient of decrease depending on basal diameter. The longest roots were those that maintained (or sometimes increased) their diameters during elongation. The branching density (cm–1) of laterals was also determined by the diameter of the bearing segment. However, the location of this bearing segment along the mother root was also involved – intermediate positions were associated with higher densities of laterals.Conclusions The method used here allows us to obtain very detailed records of the geometry and topology of a complex root system. Basal diameter and the pattern of diameter change along a root were associated with its final length. These relationships are especially useful in simulations of root elongation and branching in source–sink models.  相似文献   

4.
Manual line-intersect methods for estimating root length are being progressively replaced by faster and more accurate image analysis procedures. These methods even allow the estimation of some more root parameters (e.g., diameter), but still require preliminary labour-intensive operations. Through a task-specific macro function written in a general-purpose image analysis programme (KS 300 – Zeiss), the processing time of root images was greatly reduced with respect to skeletonisation methods by using a high-precision algorithm (Fibrelength). This has been previously proposed by other authors, and estimates length as a function of perimeter and area of the digital image of roots. One-bit binary images were acquired, aiming at large savings in computer memory, and automatic discrimination of roots against extraneous objects based on their elongation index (perimeter2/area), was performed successfully. Of four tested spatial resolutions (2.9, 5.9, 8.8, 11.8 pixel mm–1), in clean samples good accuracy in root length estimation was achieved at 11.8 pixel mm–1, up to a root density of 5 cm cm–2 on the scanner bed. This resolution is theoretically suitable for representing roots at least 85 m wide. When dealing with uncleaned samples, a thick layer of water was useful in speeding up spreading of roots on the scanner bed and avoiding underestimation of their length due to overlaps with organic debris. A set of fibrous root samples of sugar beet (Beta vulgaris var. saccharifera L.) collected at harvest over two years at Legnaro (NE Italy) was analysed by applying the above procedure. Fertilisation with 100 kg ha–1 of nitrogen led to higher RLD (root length density in soil) in shallow layers with respect to unfertilised controls, whereas thicker roots were found deeper than 80 cm of soil without nitrogen.  相似文献   

5.
This report describes an image analysis algorithm to estimate the length versus diameter of washed root samples accurately. Image analysis was performed using a Macintosh computer and the public domain NIH Image program. The binary image of the roots was processed to get the thinned image to calculate the length of the roots. The pixels of the root in a binary image were then stripped off from around the periphery based on the pixel's Pythagorean distance from the nearest background pixel. The length of the remaining root in each stripping off process was calculated after the image was thinned. Images (300 dpi) of copper wire of 0.23, 0.5, 1.0 mm diameter were analyzed for verification of the usefulness of the procedure. The results showed that more than 93% of the wires in each diameter wire were calculated to be in diameter classes including the true diameter and its adjoining classes: 93.6% of the wires of 0.23 mm diameter appeared in the 0.098–0.38 mm diameter classes, 96.19% of the wires of 0.5 mm diameter appeared in the 0.38–0.61 mm diameter classes, and 96.17% of the wires of 1 mm diameter appeared in the 0.85–1.08 mm diameter classes. The proposed method was tested for primary and secondary roots of water-cultured rice (Oryza sativa L.) and it was proven that the method could provide accurate length and diameter measurements for each root order. In addition, it was found that the method could provide the lengths of the thick primary, thin primary, and secondary roots. The effectiveness of applying sharpening for the grayscale image before making the binary image is also discussed.  相似文献   

6.
Kimura  K.  Yamasaki  S. 《Plant and Soil》2001,234(1):37-46
The objective of this study was to develop an image analysis algorithm for estimating the length versus diameter distribution of washed root samples. Image analysis was performed using a Macintosh computer and the public domain NIH Image program. After an appropriate binary image of roots was obtained, the image was processed to get the thinned image to calculate the length of the roots. The edge pixel of the binary image was then deleted and root length was calculated again. This `edge deletion–length calculation' cycle was repeated until no root pixel was left in the image. Repeated edge deletion removed one pixel layer from around the periphery of root objects in each iteration. The number of edge deletions, which is equivalent to the intercept length, can be used to estimate the root diameter. We used the vertical or horizontal intercept length, whichever was shorter. The accuracy of diameter estimation due to orientation of objects varied from 89.1 to 126.0%. Branching root systems consist of several orders of laterals, and as the root branches to a higher order, the diameter of the roots becomes smaller. Therefore, edge deletions eliminate sequentially from the highest order roots, which have the smallest diameter, to the lowest order roots, which have the widest diameter. Thus, the length and diameter of each root order can be calculated by the proposed method. For verification, images of copper wire of 0.23, 0.50, and 1.0 mm diameter were analyzed. The results showed reasonable agreement with the expected distribution of length versus diameter for randomly oriented objects, and consequently the wire length of each diameter could be estimated. The proposed method was tested for primary and secondary roots of water-cultured rice (Oryza sativa L.), and it was proven that the method can provide accurate length and diameter measurements for each root order.  相似文献   

7.
Smith  D.M.  Jackson  N.A.  Roberts  J.M.  Ong  C.K. 《Plant and Soil》1999,211(2):191-205
Limited knowledge of root distributions in agroforestry systems has resulted in assumptions that various tree species are more suited to agroforestry than others, because they are presumed to have few superficial lateral roots. This assumption was tested for Grevillea robusta when grown with maize (Zea mays) in an agroforestry system in a semi-arid region of Kenya. At a site with a shallow soil, root lengths of both species between the soil surface and bedrock were quantified by soil coring, at intervals over four cropping seasons, in plots containing sole stands and mixtures of the trees and crop; the trees were 4–6 years old and they were severely pruned before the third season. Profiles of soil water content were measured using a neutron probe. Prior to pruning of the trees, recharge of soil water below the deepest maize roots did not occur, resulting in significant (P<0.05) suppression of maize root lengths and downward root growth. Maximum root length densities for both species occurred at the top of the soil profile, reaching 1.1–1.7 cm cm-3 for G. robusta, but only 0.5 cm cm-3 for maize grown with trees. Root populations in mixed plots were dominated by G. robusta at all times, all depths and all distances from trees and maize and, thus, there was no spatial separation of the rooting zones of the trees and crop. Competition between G. robusta and maize for soil water stored near the surface was unavoidable, although pruning reduced its impact; complementary use of water by the trees and crop would only have been possible if alternative sources of water were available. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Information on the response of root growth and morphology to soil strength is useful for testing suitability of existing and new tillage methods and/or for selecting plants suitable for a specific site with or without tillage. Although there is extensive published information on the root growth-soil strength relationships for annual agricultural plants, such information is scarce for woody, perennial tree species. The purpose of this study is to examine growth and morphology of the root systems of 17-day-old eucalypt seedlings with respect to variation in soil strength. Soil strength in this study was varied by compaction of a well-aggregated clay soil to bulk densities of 0.7–1.0 Mg m-3 whilst maintaining adequate water availability and aeration for plant growth. Lengths and tip-diameters of primary and lateral roots were measured on the excavated root systems of seedlings.With increase in bulk density and also soil strength (expressed as penetrometer resistance), total length of primary and lateral roots decreased. There were 71 and 31% reduction in the lengths of primary and lateral roots respectively with an increase in penetrometer resistance from 0.4 to 4.2 MPa. This indicated primary roots to be more sensitive to high soil strength than the lateral roots. Average length of lateral roots and diameters of both primary and lateral root tips increased with an increase in soil strength as well. There was greater abundance of lateral roots (no. of lateral roots per unit length of primary root) and root hairs with increased soil strength. The observed root behaviour to variable soil strength is discussed in the context of compensatory growth of roots and overall growth of plants.  相似文献   

9.
The study of fine roots growing under field conditions is limited by the techniques currently available for separating these roots from soil. This study had two objectives: to measure the total root length of field grown corn (Zea mays L.) by root diameter class, and to develop an inexpensive and efficient root washing device that would effectively capture all of the roots in a field soil sample. An inexpensive Fine Root Extraction Device (FRED) was constructed from readily available materials and was successful at extracting all roots, including very fine diameter roots (0.025 mm), from field soil samples. Greater than 99.7% of marked roots introduced to the FRED were recaptured by the device. Soil samples from three depths, and on three dates, from field grown corn were placed in the FRED. We found that more than 56% of total root length occurred in roots whose diameters were smaller than 0.175 mm, and more than 35% of root length occurred in roots smaller than 0.125 mm in diameter. Corn roots of the diameters described here have not been reported in field soils prior to this study. Root researchers who fail to measure these very fine roots will significantly underestimate root length density. Widespread use of the FRED should improve our understanding of root distribution in field soils.  相似文献   

10.
Moran  C. J.  Pierret  A.  Stevenson  A. W. 《Plant and Soil》2000,223(1-2):101-117
Plant performance is, at least partly, linked to the location of roots with respect to soil structure features and the micro-environment surrounding roots. Measurements of root distributions from intact samples, using optical microscopy and field tracings have been partially successful but are imprecise and labour-intensive. Theoretically, X-ray computed micro-tomography represents an ideal solution for non-invasive imaging of plant roots and soil structure. However, before it becomes fast enough and affordable or easily accessible, there is still a need for a diagnostic tool to investigate root/soil interplay. Here, a method for detection of undisturbed plant roots and their immediate physical environment is presented. X-ray absorption and phase contrast imaging are combined to produce projection images of soil sections from which root distributions and soil structure can be analyzed. The clarity of roots on the X-ray film is sufficient to allow manual tracing on an acetate sheet fixed over the film. In its current version, the method suffers limitations mainly related to (i) the degree of subjectivity associated with manual tracing and (ii) the difficulty of separating live and dead roots. The method represents a simple and relatively inexpensive way to detect and quantify roots from intact samples and has scope for further improvements. In this paper, the main steps of the method, sampling, image acquisition and image processing are documented. The potential use of the method in an agronomic perspective is illustrated using surface and sub-surface soil samples from a controlled wheat trial. Quantitative characterization of root attributes, e.g. radius, length density, branching intensity and the complex interplay between roots and soil structure, is presented and discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
R. Habib 《Plant and Soil》1988,108(2):267-274
A method is proposed for estimating the total length of a root system from sub-samples. This method is based on the measurement of the length and diameter of small pieces of roots, and on the measurements of the bulk density of root sub-samples. It is assumed that roots are cylinders with a given bulk density. The length and diameter of small root pieces are measured by image analysis. A weighted quadratic mean (W.Q.M.) root diameter is then calculated and used in estimating the root length. This W.Q.M. diameter is defined as the real mean diameter of an equivalent single root with the same length and volume as the tested root system. The accuracy of prediction is demonstrated for one theoretical root system. The standard deviation of estimation can be calculated using sampling simulations.  相似文献   

12.
Summary A study was made of the relationship between the number of roots (Nr) observed on unit area of the freshly exposed, horizontal faces of soil cores, and the amounts of roots (per unit volume) present in the same cores. Soil cores, 7 cm diameter, were extracted to depths of 1 m from cereal crops in 1976 at three field sites located on clay soils. Sampling was either at the start of stem elongation, or at anthesis. Estimates of root length per unit soil volume (L) were derived from Nr by assuming random orientation of roots in the soil.Values of L were found to be highly correlated with the measured lengths of both the main roots (root axes) and the total roots (axes and laterals) washed from the soil at a given growth stage, for each of the soils. On average, L was 3.3 times the length of root axes washed from the soil, and was 0.42 times the length of total roots, but there was appreciable variation between different growth stages and field sites. Possible factors giving rise to differences between L and the measured lengths of roots are discussed. Estimates of root length from observation of soil cores may nonetheless provide a suitable basis for rapidly comparing therelative distribution of roots down the soil profile under field conditions.  相似文献   

13.
The role of roots penetrating various undisturbed soil horizons beneath loose layer in water use and shoot growth of maize was evaluated in greenhouse experiment. 18 undisturbed soil columns 20 cm in diameter and 20 cm in height were taken from the depths 30–50 cm and 50–70 cm from a Brown Lowland soil, a Pseudogley and a Brown Andosol (3 columns from each depth and soil). Initial resistance to penetration in undisturbed soil horizons varied from 2.5 to 8.9 MPa while that in the loose layer was 0.01 MPa. The undisturbed horizons had a major effect on vertical arrangement of roots. Root length density in loose layer varied from 96 to 126 km m-3 while in adjacent stronger top layers of undisturbed horizons from 1.6 to 20.0 km m-3 with higher values in upper horizons of each soil. For specific root length, the corresponding ranges were 79.4–107.7 m g-1 (on dry basis) and 38.2–63.7 m g-1, respectively. Ratios of root dry weight per unit volume of soil between loose and adjacent undisturbed layers were much lower than those of root length density indicating that roots in undisturbed horizons were produced with considerably higher partition of assimilates. Root size in undisturbed horizons relative to total roots was from 1.1 to 38.1% while water use from the horizons was from 54.1 to 74.0%. Total water use and shoot growth were positively correlated with root length in undisturbed soil horizons. There was no correlation between shoot growth and water use from the loose layers.  相似文献   

14.
隔沟交替灌溉条件下玉米根系形态性状及结构分布   总被引:9,自引:0,他引:9  
为揭示根系对土壤环境的适应机制,研究了隔沟交替灌溉条件下玉米根系形态性状及结构分布。以垄位和坡位的玉米根系为研究对象,利用Minirhizotrons法研究了根系(活/死根)的长度、直径、体积、表面积、根尖数和径级变化及其与土壤水分、土温和水分利用效率(WUE)的相关关系。结果表明,对于活根,在坡位非灌水区域复水后根系平均直径减小,而根系日均生长速率、单位面积土壤根系体积密度、根尖数和表面积均增大,并随灌水区域土壤水分的消退逐渐减小;对于死根,在坡位非灌水区域复水后根系日均死亡速率、根系体积密度、根尖数和表面积变化均减小,其中根系死亡速率和死根直径随土壤水分的消退逐渐降低,而死根体积密度、根尖数和表面积分布随土壤水分降低呈增大趋势;在垄位,根系形态分布趋势与坡位一致,除根系直径与与坡位比较接近外,其他根系形态值均小于坡位。将根系分成4个径级区间分析根系的形态特征,结果表明在根系长度和体积密度分布中以2.5-4.5 mm径级的根系所占比例最大,在根尖数和根系表面积分布中以0.0-2.5 mm径级的根系为主。通过显著性相关分析,死根直径、体积密度、活根表面积等根系形态与土壤含水率、土壤温度和WUE间均存在显著或极显著的正相关关系,部分根系形态指标(如根系的生长速率、活根体积密度)只与坡位土壤含水量、土壤温度具有明显的相关性,表明隔沟交替灌溉对坡位根系形态的调控作用比垄位显著。  相似文献   

15.
  • Ammonium gluconate (AG) provides both an organic carbon source and a nitrogen source, which can positively improve soil fertility and delay soil degradation.
  • We investigated the underlying mechanisms of both NH4+‐ and C6H11O7?‐mediated resistance to high salt concentrations in maize (Zea mays L.), and how they relate to antioxidant cellular machinery, root system architecture, root activity and lignin content in roots.
  • Seedlings treated with AG maintained lower Na+ content, higher chlorophyll content, higher CAT and POD activity, compared with those without AG and ammonium carbonate (AC). The total size of the root system, primary root length and number of lateral roots detected on the primary root treated with AG decreased compared with those not treated with AG at the same NaCl concentration. However, average root diameter and root activity when treated with AG were significantly higher than roots without AG at the same NaCl concentration. Furthermore, total size of the root system, primary root length and number of lateral roots detected on primary rootsof seedlings treated with AG were higher than those treated with AC at the same NaCl concentration.
  • These results suggested that AG may be a good organic fertiliser under salt stress by decreasing Na+ content and increasing chlorophyll content, activity of antioxidant enzymes, root diameter and root activity in maize seedlings.
  相似文献   

16.
李玉英 《生态学报》2011,31(6):1617-1630
为河西走廊绿洲灌区豆科/禾本科间作体系的养分管理提供科学依据,于2007年在武威绿洲农业试验站应用田间原位根系行分隔技术研究了蚕豆/玉米种间互作和施氮对玉米抽雄期的根系空间分布、根系形态和作物地上部生长的影响。研究结果表明:种间互作和施氮均增加了玉米和蚕豆在纵向和横向两个尺度上的根重密度、根长密度、根表面积、根系体积。根长密度和根表面积与两种作物产量和氮素吸收均呈正相关,而与蚕豆的根瘤重呈负相关;抽雄期的土壤含水量与玉米产量和养分吸收呈显著的负相关。玉米根系可以占据蚕豆地下部空间,但蚕豆的根却较少到间作玉米的地下部空间,也就是间作后增加了玉米根系水平尺度的生态位。蚕豆和玉米根系主要分布分别在0-40 cm浅土层和0-60 cm 土层,且间作玉米根系在60-120 cm比单作和分隔的多。因此,种间互作和施氮扩大了两作物根系纵向和横向的空间生态位,改变了作物根系形态,即扩展了两者水分和养分吸收的生态位,增加了作物吸收养分的有效空间,从而提高了间作生态系统的生产力。  相似文献   

17.
A system was designed, constructed, tested, and used to growBrassica rapa L. seedling roots which were exposed to O2 concentrations from 0 to 0.21 mol mol−1, water potentials from 0 to −80 kPa, temperatures from 10 to 34°C, and mechanical impedance from 0 to 20.8 kPa. The experimental design was a central composite rotatable design with seven replications of the center point. Measurements were taken of taproot length, taproot diameter at the point of initiation of root hairs (diameter 1), and one cm above the first measurement (diameter 2), and total length and number of first-order laterals. Temperature had the greatest effect on seedling root growth, with linear and quadratic temperature effects significant for all root measurements except taproot diameter 2 which just had a significant linear effect. Water potential had a significant linear effect on lateral length and number of laterals and a significant quadratic effect on taproot diameter 1. Mechanical impedance had a significant effect only on taproot diameter 2. Oxygen was not significant for any root measurement. The mechanical impedance by water potential interaction was significant for taproot length and taproot diameter 1. A temperature optimum was found for taproot length, taproot diameter 1, lateral length, and lateral number, at 26.0, 42.5, 26.5, and 26.4°C, respectively. Taproot diameter 1 had a water potential optimum at −36.5 kPa, whereas taproot diameter 2 had a mechanical impedance optimum at 12.5 kPa. A growth cell designed for this study allows independent control of soil strength, water potential, oxygen concentration, and temperature. Thus, the cell provides the capability which was demonstrated forBrassica rapa L. to grow seedling roots under complete control of the soil physical properties.  相似文献   

18.
Livesley  S.J.  Gregory  P.J.  Buresh  R.J. 《Plant and Soil》2000,227(1-2):149-161
Complementarity in the distribution of tree and crop root systems is important to minimise competition for resources whilst maximising resource use in agroforestry systems. A field study was conducted on a kaolinitic Oxisol in the sub-humid highlands of western Kenya to compare the distribution and dynamics of root length and biomass of a 3-year-old Grevillea robusta A. Cunn. ex R. Br. (grevillea) tree row and a 3-year-old Senna spectabilis DC. (senna) hedgerow grown with Zea mays L. (maize). Tree roots were sampled to a 300 cm depth and 525 cm distance from the tree rows, both before and after maize cropping. Maize roots were sampled at two distances from the tree rows (75–150 cm and 450–525 cm) to a maximum depth of 180 cm, at three developmental stages. The mean root length density (Lrv) of the trees in the upper 15 cm was 0.55 cm cm−3 for grevillea and 1.44 cm cm−3 for senna, at the start of the cropping season. The Lrv of senna decreased at every depth during the cropping season, whereas the Lrv of grevillea only decreased in the crop rooting zone. The fine root length of the trees decreased by about 35% for grevillea and 65% for senna, because of maize competition, manual weeding, seasonal senescence or pruning regime (senna). At anthesis, the Lrv of maize in the upper 15 cm was between 0.8 and 1.5 cm cm−3. Maize root length decreased with greater proximity to the tree rows, potentially reducing its ability to compete for soil resources. However, the specific root length (m g−1) of maize was about twice that of the trees, so may have had a competitive uptake advantage even when tree root length was greater. Differences in maize fine root length and biomass suggest that competition for soil resources and hence fine root length may have been more important for maize grown with senna than grevillea. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
There is interest in discovering root traits associated with acclimation to nutrient stress. Large root systems, such as in adult maize, have proven difficult to be phenotyped comprehensively and over time, causing target traits to be missed. These challenges were overcome here using aeroponics, a system where roots grow in the air misted with a nutrient solution. Applying an agriculturally relevant degree of low nitrogen (LN) stress, 30-day-old plants responded by increasing lengths of individual crown roots (CRs) by 63%, compensated by a 40% decline in CR number. LN increased the CR elongation rate rather than lengthening the duration of CR growth. Only younger CR were significantly responsive to LN stress, a novel finding. LN shifted the root system architectural balance, increasing the lateral root (LR)-to-CR ratio, adding ~70 m to LR length. LN caused a dramatic increase in second-order LR density, not previously reported in adult maize. Despite the near-uniform aeroponics environment, LN induced increased variation in the relative lengths of opposing LR pairs. Large-scale analysis of root hairs (RHs) showed that LN decreased RH length and density. Time-course experiments suggested the RH responses may be indirect consequences of decreased biomass/demand under LN. These results identify novel root traits for genetic dissection.  相似文献   

20.
Effects of soil drought or waterlogging on the morphological traits of the root system and internal root anatomy were studied in maize hybrids of different drought tolerance. The investigations comprised quantitative and qualitative analyses of a developed plant root system through determining the number, length and dry matter of the particular components of the root system and some traits of the anatomical structure of the seminal root. Obtained results have demonstrated a relatively broad variation in the habit of the root system. This mainly refers, to the number, length and dry matter of lateral roots, developed by seminal root, seminal adventitious and nodal roots as well as to some anatomical properties of the stele, cortex and metaxylem elements. Plants grown under waterlogging or drought conditions showed a smaller number and less dry matter of lateral branching than plants grown in control conditions. The harmful effect of waterlogging conditions on the growth of roots was greater when compared with that of plants exposed to drought. In the measurements of the root morphological traits, the effect of soil drought on the internal root anatomical characteristic was weaker than the effect of soil waterlogging. The observed effects of both treatments were more distinct in a drought sensitive hybrid Pioneer D than in drought resistant Pioneer C one. The drought resistant hybrid Pioneer C distinguished by a more extensive rooting and by smaller alterations in the root morphology caused by the stress conditions than drought sensitive hybrid Pioneer D one. Also the differences between the resistant and the sensitive maize hybrids were apparent for examined root anatomical traits. Results confirm that the hybrid Pioneer D of a high drought susceptibility was found to be also more sensitive to periodieal soil water excess. A more efficient water use and a lower shoot to root (S:R) ratio were found to be major reasons for a higher stress resistance of the hybrid Pioneer C. The reasons for a different response of the examined hybrids to the conditions of drought or waterlogging may be a more economical water balance and more favourable relations between the shoot and root dimensions in the drought resistant genotype. The observed modifications of the internal root structure caused by water deficit in plant tissues may partly influence on water conductivity and transport within roots. The results suggest that the morphological and anatomical traits of the maize root system may be used in practice as direct or indirect selection criteria in maize breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号