首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
The effects of single large doses of the porphyrin-heme precursor ?d-aminolevulinic acid on tissue porphyrins and on δ-aminolevulinate synthase and heme oxygenase, the rate-living enzymes of liver heme synthesis and degradation respectively, were studied in the chick embryo in ovo, in the mouse and in the rat. δ-Aminolevulinic acid treatment produced a distinctive pattern characterized by extensive tissue porphyrin accumulation and alterations in these rate-limiting enzymes in the liver. Repression of basal or allylisopropylacetamide-induced liver δ-aminolevulinate synthase was observed and, in the mouse and the rat, induction of liver heme oxygenase after δ-aminolevulinic acid treatment, in a manner similar to the known effects of hemin on these enzymes. In the chick embryo liver in ovo heme oxygenase was substantially higher than in rat and mouse liver, and was not significantly induced by δ-aminolevulinic acid or other compounds, including hemin, CS2 and CoCl2. Levulinic acid, an analogue of δ-aminolevulinic acid, did not induce heme oxygenase in mouse liver. δ-Aminolevunilic acid treatment did not impair ferrochelatase activity but was associated with slight and variable decreases in liver cytochrome P-450. Treatment of chick embryos with a small ‘priming’ dose of 1,4-dihydro-3,5-dicarbethoxycollidine, which impairs liver ferrochelatase activity, accentuated porphyrin accumulation after δ-aminolevulinic acid in the liver. These observations indicate that exogenous δ-aminolevulinic acid is metabolized to porphyrins in a number of tissues and, at least in the liver, to a physiologically significant amount of heme, thereby producing an increase in the size of one or more of the heme pools that regulate both heme systhesis and degradation. It is also possible than when δ-aminolevulinic acid is markedly overproduced in vivo it may be transported to many tissues and re-enter the heme pathway and alter porphyrin-heme metabolism in cells and tissues other than those in which its overproduction primarily occurs.  相似文献   

2.
A cell-free chloroplast preparation obtained from greening cucumber cotyledons was tested for its ability to synthesize protoporphyrin IX from compounds previously postulated to be precursors of δ-aminolevulinic acid in plants, namely, glutamate, glutamine, α-ketoglutarate, glycine, and succinate. Of these, only glutamate caused a marked stimulation of protoporphyrin biosynthesis. A mixture of cofactors (ATP, KH2PO4, glutathione, coenzyme A, and NAD+), which was previously shown to be necessary for the incorporation of δ-aminolevulinic acid into protochlorophyll and for the maintenance of etioplasts in vitro also proved to be necessary for the conversion of glutamate to protoporphyrin IX.  相似文献   

3.
Two biosynthetic routes to the heme, chlorophyll, and phycobilin precursor, δ-aminolevulinic acid (ALA) are known: conversion of the intact five-carbon skeleton of glutamate, and ALA synthase-catalyzed condensation of glycine plus succinyl-coenzyme A. The existence and physiological roles of the two pathways in Cyanidium caldarium were assessed in vivo by determining the relative abilities of [2-14C]glycine and [1-14C]glutamate to label protoheme and heme a. Glutamate was incorporated to a much greater extent than glycine into both protoheme and heme a, even in cells that were unable to form chlorophyll and phycobilins. The small incorporation of glycine could be accounted for by transfer of label to intracellular glutamate pools, as determined from amino acid analysis. It thus appears that C. caldarium makes all tetrapyrroles, including mitochondrial hemes, solely from glutamate, and there is no contribution by ALA synthase in this organism.  相似文献   

4.
Two enzymes which catalyze the formation of δ-aminolevulinic acid in two steps from α-ketoglutaric acid have been partially purified from Zea mays leaf extracts. The enzymes catalyze the following reactions: (1) a novel NADH-dependent reduction of the 1-carboxyl group of α-ketoglutarate, yielding 4,5-dioxovaleric acid, followed by (2) a transamination of this product with L-alanine to yield δ-aminolevulinate. The dehydrogenase cannot be demonstrated in crude extracts since it is masked by glutamic dehydrogenase. This pathway, in which the 5-carbon skeleton of α-ketoglutarate is utilized intact for δ-aminolevulinate formation, differs radically from the classical δ-aminolevulinate synthase reaction between glycine and succinyl-CoA.  相似文献   

5.
Greening cucumber cotyledons accumulate δ-aminolevulinic acid when treated with levulinic acid. A variety of specifically labelled compounds were applied to the tissue and label was measured in the δ-aminolevulinic acid. Glutamate, glutamine and α-ketoglutarate were found to be incorporated into δ-aminolevulinic acid to a much greater extent than were glycine and succinate. A new route of δ-aminolevulinic acid biosynthesis is proposed wherein the carbon skeleton of α-ketoglutarate is incorporated intact.  相似文献   

6.
Experimental porphyria in the rat induced by the porphyrogenic agent, 3,5-dicarbethoxy-1,4-dihydrocollidine, was reversed by sodium benzoate or p-aminobenzoate treatment. In porphyric rats, benzoate and p-aminobenzoate markedly decreased the urinary excretion of the heme precursors, δ-aminolevulinic acid, porphobilinogen, and porphyrins, as well as the levels of tissue and blood porphyrins. The administration of glycine prevented the reversal of the porphyria. Neither benzoate, p-aminobenzoate, nor their respective metabolites, hippurate and p-aminohippurate, had an effect on δ-aminolevulinic acid synthetase in vivo or in vitro, indicating that the reversal of porphyria could not be explained by an effect on the rate limiting enzyme for heme biosynthesis. Hippurate, administered intraperitoneally, had no effect on the porphyric state. These results indicate that benzoate and p-aminobenzoate, substrates for glycine acyltransferase (EC 2.3.1.13), promote the diversion of glycine from the heme biosynthetic pathway to hippurate biosynthesis, thereby altering the biochemical pattern associated with the porphyric state.  相似文献   

7.
The synthesis of chlorophyll a and the bile-pigment and protein moieties of phycocyanin were arrested in illuminated cells of Cyanidium caldarium, strain III-D-2, incubated with chloramphenicol, ethionine, p-fluorophenylalanine, and p-chloromercuribenzoate. Pigment synthesis was similarly retarded in illuminated cells provided with nutrient medium lacking nitrogen.

Porphobilinogen, porphyrins, and a blue phycobilin were excreted into the nutrient medium by illuminated and unilluminated cells of wild-type and mutant C. caldarium strains incubated with δ-aminolevulinic acid in darkness. Pigment production from δ-aminolevulinic acid was sensitive to treatment with chloramphenicol and ethionine.

Cells of C. caldarium excreted 7 red-fluorescing porphyrins into the suspending medium during incubation with δ-aminolevulinic acid. Three of these porphyrins were identified as uroporphyrin III, coproporphyrin III, and protoporphyrin on the basis of their spectral properties and by paper chromatogaphy with standards.

The blue phycobilin was characterized spectrally and compared with biliverdin. The algal phycobilin displayed properties of a pigment with a violin-type structure. The phycobilin may be an immediate precursor of phycocyanobilin, the phycocyanin chromophore, or identical to it.

  相似文献   

8.
Addition of hemin (5–200 μM) to a rabbit reticulocyte iron-free incubation medium, resulted in a progressive inhibition of heme synthesis as measured by incorporation of (14C)-glycine. In contrast when (14C) δ-aminolevulinic acid incorporation into heme was studied, significant inhibition below that of the (14C)-glycine control only occurred with hemin concentrations greater than 100 μM. Hemin progressively inhibited cellular and mitochondrialδ-aminolevulinic acid synthetase activity, as well as cellular δ-aminolevulinic acid dehydratase activity. The results indicated that elevated levels of hemin initially control heme synthesis by feedback inhibition at the rate-limiting enzyme of heme synthesis, δ-aminolevulinic acid synthetase. Hemin inhibition of δ-aminolevulinic acid dehydratase is only significant for the entrire heme synthetic pathway when greater than one-third of this enzyme's activity is inhibited.  相似文献   

9.
Liver and heart represent two organs with markedly different needs for heme as related to their metabolic roles. To examine these diferences chick embryo heart and liver cells were compared with respect to transport of δ-aminolevulinic acid and activity of δ-aminolevulinic acid synthetase, porphyrin synthesis and heme oxygenase. Heart cells were found to have a low rate of δ-aminolevulinic acid uptake, a high resting level of δ-aminolevulinic acid synthetase activity and a lower level of heme oxygenase activity as compared with liver cells. The hepatic cell uptake of δ-aminolevulinic acid was 6–25-times that of heart cells. The embryonal heart cell appears to be a balanced autonomous system for the synthesis and degradation of heme. The embryonal liver cell represents a cell system permeable to exogenous δ-aminolevulinic acid, which is also responsive to and inducible by external stimuli.  相似文献   

10.
In the present work we have been able to demonstrate the phenobarbital and lead exert an inducing effect on the biosynthesis of δ-aminovulenic acid synthase, ferrochelatase and cytochrome P-450 hemoproteins in isolated rat hepatocytes of normal adult rats. Dibutyryl cyclic AMP enhances the induction effect produced by phenobarbital in this in vitro system. Glucose inhibits the induction of δ-aminolevulinic acid synthase and ferrochelatase. This repression effect can be reversed with increasing concentrations of dibutyryl cyclic AMP. No glucose effect was observed on the phenobarbital- and lead-mediated inductions of cytochrome P-450. The present results add more experimental evidence to support the concept that the last enzyme of the heme pathway is inducible, and as such may have a significant role in regulatory mechanisms of porphyrin and heme biosynthesis.  相似文献   

11.
The lipid composition of a Saccharomyces cerevisiae mutant (GL 1–38) lacking δ-aminolevulinic acid synthase (EC 2.3.1.37) was investigated. This mutant is unable to synthesize heme compounds and, as a consequence, cannot make unsaturated fatty acids or ergosterol. The mutant cells were grown (i) in medium supplemented with δ-aminolevulinic acid or (ii) in medium supplemented with Tween 80 (as a source of oleate) and ergosterol. After growth in the presence of δ-aminolevulinic acid, the fatty acid composition of total lipids and mitochondrial lipids was the same as that of the corresponding wild-type strain. After growth in the presence of Tween 80 and ergosterol, the mutant cells contained increased levels of oleate and greatly decreased levels of palmitoleate. The ratio of unsaturated to saturated fatty acids in these cells was still close to that of the wild type but much lower than that of the medium. The sphingolipids accounted for 5.2% of the lipid phosphate in the wild type and, after growth in Tween 80 and ergosterol, for 12.7% in the mutant. Changes in other phospholipids were too small to be considered significant.  相似文献   

12.
The effects of four monopyrroles on porphyrin biosynthesis and excretion in the rat were studied. All four compounds investigated significantly increased total urinary porphyrin excretion and hepatic porphyrin levels while the effects on fecal excretion were equivocal. Peak porphyrin production elicited by treatment with ethyl 3-acetyl-2,4-dimethylpyrrole-5-carboxylate was found to be dose dependent, as was the time of maximum excretion. The effects of 3-ethyl-5-hydroxy-4,5-dimethyl-Δ3-pyrrolin-2-one, a compound excreted in abnormally high levels in the urine of patients with hepatic porphyria, were studied in greater depth. It was found that this compound caused an increase in the activity of δ-aminolevulinic acid synthase, in vivo, which was associated with a depression of microsomal levels of heme and cytochrome P-450. This depression of heme levels could not be related to increased catabolism or nonenzymic breakdown. It is suggested that the primary effect of this and the other compounds on porphyrin metabolism is a reduction in heme formation by a mechanism at present unclear.  相似文献   

13.
Heme a was not detected either in mitochondria isolated from copper-deficient yeast or in the intact cells. Nevertheless, the intracellular concentration of free porphyrins indicated that the pathway of porphyrin and heme synthesis was not impaired in copper-deficient cells. The immunoprecipitated apo-oxidase from copper-deficient cells revealed an absorption spectrum with maxima at 645, 592, 559, 519 and 423 nm, similar to that of purified porphyrin a. When solubilized mitochondria from [3H]leucine and δ-amino[14C]levulinic acid-labeled copper-deficient yeast cells were incubated with rabbit antiserum against cytochrome c oxidase, a precipitate was obtained. Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis of this immunoprecipitate showed [3H]leucine associated with six bands and δ-amino[14C]levulinic acid resolved in a single band. HCl fractionation of copper-deficient mitochondria labeled with δ-amino[14C]levulinic acid showed a high specific radioactivity in the fraction extracted by 20% HCl, a solvent which extracts porphyrin a. Thinlayer chromatography of the radioactivity found in 20% HCl showed an RF value identical to that of purified porphyrin a. When δ-amino[3H]levulinic acid-labeled, copper-deficient yeast cells are grown in copper-supplemented medium, the porphyrin a accumulated in copper-deficient cells wa converted into heme a, and this conversion was prevented by cycloheximidine.These observations suggest that porphyrin a is present in the apo-oxidase of copper-deficient cells, but that the conversion to heme a does not occur. This conversion reaction appears to be a point in the biosynthetic pathway of cytochrome c oxidase which is blocked by copper deficieny.  相似文献   

14.
Cells of the ciliate Tetrahymena pyriformis GL overproduce and accumulate massive quantities of the heme intermediate, protoporphyrin IX. Protoporphyrin is localized intracellularly in discrete membranous compartments. The amount of porphyrin stored in the cell changes dramatically as cells progress through the growth cycle. Porphyrin overproduction is stimulated by δ-aminolevulinic acid, but only during the mid-stationary phase. Overproduction of protoporphyrin IX apparently results from an increase, late in the growth cycle, of activities subsequent to δ-aminolevulinic acid synthetase. Feedback inhibition in the pathway by accumulated protoporphyrin IX does not occur. The presence of Co2+ completely inhibits accumulation of protoporphyrin IX in a manner reversed by δ-aminolevulinic acid. Sn4+ stimulates protoporphyrin IX accumulation in the culture.  相似文献   

15.
The biosynthesis of δ-aminolevulinic acid was investigated in three strains of Rhodopseudomonas sphaeroides. A wild-type strain (NCIB 8253) possessed both δ-aminolevulinic acid synthetase and γ,δ-dioxovaleric acid transaminase in the cytoplasmic and membrane cell fractions. δ-Aminolevulinic acid synthetase activities were not detected in extracts of mutant strains H5 and H5D. However, γ,δ-dioxovaleric acid transaminase was found in the cytoplasmic and membrane fractions of these latter two strains. Strain H5 required exogenously added δ-aminolevulinic acid for growth and bacteriochlorophyll synthesis. Strain H5D did not require this compound for growth and bacteriochlorophyll synthesis. γ,δ-Dioxovaleric acid added in the growth medium did not support the growth of H5, although it was actively transported into the cells. Addition of γ,δ-dioxovaleric acid to the growth medium did not enhance the growth of either the wild-type or H5D strains. These results indicate that ALA synthetase is not required for growth and bacteriochlorophyll synthesis in H5D and that γ,δ-dioxovaleric acid is probably not an intermediate in the formation of δ-aminolevulinic acid in the strains of Rhodopseudomonas sphaeroides studied. In strain H5D another pathway may function in the formation of δ-aminolevulinic acid other than that catalyzed by δ-aminolevulinic acid synthetase or γ,δ-dioxovaleric acid transaminase.  相似文献   

16.
A study is described of the regulation of porphyrin synthesis in Escherichia coli using a heme-permeable, hemH deletion mutant, designated VS212. This strain utilizes only exogenous hemin that is supplied in the medium and accumulates porphyrins since the final step in the synthesis of heme is genetically blocked. It is possible, therefore, to monitor the rate of synthesis of heme by examining the accumulation of porphyrins. Using this system, we found that the rate of production of porphyrins depended on the availability of heme. The lower the concentration of hemin in the medium, the higher the level of porphyrins that accumulated. We next examined the mechanism responsible for the activation of porphyrin synthesis upon starvation for heme. The main activation occurred at the step that leads to the synthesis of 5-aminolevulinic acid (ALA). Starvation for heme induced the expression of a hemA-lacZ fusion gene, as previously reported, but an activation pathway that is independent of the hemA promoter was also identified. We found that starvation for heme caused the stringent response, and such starvation promoted the synthesis of porphyrins without having any effect on the expression of the hemA-lacZ fusion gene. We suggest a model for the regulation of porphyrin synthesis whereby the synthesis of porphyrins is coordinated with that of proteins.  相似文献   

17.
The betaine-stimulated differential synthesis of vitamin B12, i.e., the increase in B12 per increase in dry cell weight, by Pseudomonas denitrificans was inhibited by rifampin and chloramphenicol but not by benzylpenicillin and carbenicillin at concentrations of antibiotic that inhibit growth. The level of the first enzyme of corrin (and porphyrin) biosynthesis, δ-aminolevulinic acid synthetase, was decreased to a much greater degree by rifampin and chloramphenicol than by the penicillins. These data support the concept that betaine stimulation of B12 synthesis is a result of its stimulation of synthesis of δ-aminolevulinic acid synthetase, a labile and presumably rate-limiting enzyme of corrin formation requiring continuous induction. In further support of this hypothesis, it was found that chloramphenicol immediately interfered with both vitamin B12 and δ-aminolevulinic acid synthetase formation, no matter when it was added to the system.  相似文献   

18.
Euglena gracilis cells synthesize the key tetrapyrrole precursor, δ-aminolevulinic acid (ALA), by two routes: plastid ALA is formed from glutamate via the transfer RNA-dependent five-carbon route, and ALA that serves as the precursor to mitochondrial hemes is formed by ALA synthase-catalyzed condensation of succinyl-coenzyme A and glycine. The biosynthetic source of succinyl-coenzyme A in Euglena is of interest because this species has been reported not to contain α-ketoglutarate dehydrogenase and not to use succinyl-coenzyme A as a tricarboxylic acid cycle intermediate. Instead, α-ketoglutarate is decarboxylated to form succinic semialdehyde, which is subsequently oxidized to form succinate. Desalted extract of Euglena cells catalyzed ALA formation in a reaction that required coenzyme A and GTP but did not require exogenous succinyl-coenzyme A synthetase. GTP could be replaced with ATP. Cell extract also catalyzed glycine-and α-ketoglutarate-dependent ALA formation in a reaction that required coenzyme A and GTP, was stimulated by NADP+, and was inhibited by NAD+. Succinyl-coenzyme A synthetase activity was detected in extracts of dark- and light-grown wild-type and nongreening mutant cells. In vitro succinyl-coenzyme A synthetase activity was at least 10-fold greater than ALA synthase activity. These results indicate that succinyl-coenzyme A synthetase is present in Euglena cells. Even though the enzyme may play no role in the transformation of α-ketoglutarate to succinate in the atypical tricarboxylic acid cycle, it catalyzes succinyl-coenzyme A formation from succinate for use in the biosynthesis of ALA and possibly other products.  相似文献   

19.
Succinylacetone, a competitive inhibitor (KI = 400 μM) of δ-aminolevulinic acid dehydratase of Clostridiumtetanomorphum, is converted non-enzymatically upon incubation with δ-aminolevulinic acid to succinylacetone pyrrole, a much stronger competitive inhibitor (KI = 5 μM) of the enzyme. A similar effect is seen in vivo: when present in the growth medium at concentrations of about 1 μM, the pyrrole decreases the level of corrinoids produced by this organism by half, while succinylacetone at 200 μM causes only 19 per cent inhibition of corrinoid formation. Levulinic acid is a much weaker inhibitor in vitro and in vivo. The inhibition by succinylacetone pyrrole is considered to be due to its structural resemblance to δ-aminolevulinic acid rather than to porphobilinogen, the reaction product of δ-aminolevulinic acid dehydratase: succinylacetone, succinylacetone pyrrole, and levulinic acid all contain a succinyl group.  相似文献   

20.
Physical and kinetic properties of δ-aminolevulinic acid synthase from wild-type and aplastidic strains of Euglena gracilis have been determined. Michaelis constants for glycine, succinyl-CoA and pyridoxal phosphate are 8.5 × 10?3m, 2.5 × 10?5m, and 2.9 × 10?6m, respectively. Optimum reaction pH is 7.8, and maximal product yield during a 30-min incubation occurs at 40 °C. Activity in frozen cell extracts remains constant for 5 days, then falls slowly to one-third of the initial value after 3 months. Enzyme activity rapidly declines irreversibly in the absence of pyridoxal phosphate. Agarose gel chromatography of the native enzyme yields a single band of activity at an elution volume corresponding to a molecular weight of 138,000. δ-Aminolevulinic acid synthase obtained from green wild-type strain Z cells is identical in its physical properties to that obtained from white aplastidic mutant strain W14 ZNalL cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号