首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recombination of Bacteriophage T4 Stimulated by 9-Aminoacridine   总被引:2,自引:1,他引:2       下载免费PDF全文
T. L. Mattson 《Genetics》1970,65(4):535-544
  相似文献   

2.
Mutations in the Escherichia coli genes recK, recL and (probably) uvrE and polA increase special (glucosylation-dependent), but not general recombination in bactriophage T4D.  相似文献   

3.
Recombinational effects of the antimutator allele tsL42 of gene 43 of phage T4, encoding DNA polymerase, were studied in crosses between rIIB mutants. Recombination under tsL42-restricted conditions differed from the normal one in several respects: (1) basic recombination was enhanced, especially within very short distances; (2) mismatch repair tracts were shortened, while the contribution of mismatch repair to recombination was not changed; (3) marker interference at very short distances was augmented. We infer that the T4 DNA polymerase is directly involved in mismatch repair, performing both excision of a nonmatched single strand (by its 3' -> 5' exonuclease) and filling the resulting gap. A pathway for the mismatch repair was substantiated; it includes sequential action of endo VII (gp49) -> 3'->5' exonuclease (gp43) -> DNA polymerase (gp43) -> DNA ligase (gp30). It is argued that the marker interference at very short distances may result from the same sequence of events during the final processing of recombinational intermediates.  相似文献   

4.
Involvement of Gene 49 in Recombination of Bacteriophage T4   总被引:6,自引:1,他引:6       下载免费PDF全文
The role of T4 gene 49 in recombination was investigated using its conditional-lethal amber (am) and temperature-sensitive (ts) mutants. When measured in genetic tests, defects in gene 49 produced a recombination-deficient phenotype. However, DNA synthesized in cells infected with a ts mutant (tsC9) at a nonpermissive temperature appeared to be in a recombinogenic state: after restitution of gene function by shifting to a permissive temperature, the recombinant frequency among progeny increased rapidly even when DNA replication was blocked by an inhibitor. Growth of a gene 49-defective mutant was suppressed by an additional mutation in gene uvsX, but recombination between rII markers was not.  相似文献   

5.
Deoxyribonucleic acid replication and genetic recombination were investigated after infection of Escherichia coli with ligase-deficient rII bacteriophage T4D. The major observations are: (i) deoxyribonucleic acid synthesis is discontinuous, (ii) the discontinuities are more slowly repaired than in wild-type infection, (iii) host ligase is required for viability, and (iv) genetic recombination is increased.  相似文献   

6.
The contribution of mismatch repair to genetic recombination in T4 phage has been evaluated by three independent approaches: (1) testing for non-additivity of recombinant frequencies; (2) measurements of double exchange frequencies in three-factor crosses: (3) comparisons of recombination abilities of mutations occupying the same site. Quantitative agreement among the results of these approaches suggests that within distances much less than the mean length of hybrid regions, mismatch repair accounts perfectly for high negative interference as measured in three-factor crosses and as manifested by non-additivity in two-factor crosses. The mismatch repair mechanism readily recognizes only particular mismatches, the repair frequency being dependent on the base sequence in both strands of the mismatched region.  相似文献   

7.
The timing of the suppression of gene 30 (deoxyribonucleic acid ligase) mutations by rII mutations was studied by temperature shift-down experiments with a temperature-sensitive rII mutation. The rII function must remain inactivated for about 5 to 8 min at 37 C for suppression to occur, thus making suppression an early function. This result is in agreement with the timing of expression of other rII functions. A gene 30 defect can also be overcome by replacing the Na(+) cation in the growth medium with the Mg(2+) cation, a result similar to the relief of the lethality of rII mutations in lambda lysogens. Prior infection with bacteriophages T3 or T7, which produce their own deoxyribonucleic acid ligases, can also partially overcome the lethality of gene 30 mutations.  相似文献   

8.
Distance- as well as marker-dependence of genetic recombination of bacteriophage T4 was studied in crosses between rIIB mutants with known base sequences. The notion of a "basic recombination," which is the recombination within distances shorter than hybrid DNA length in the absence of mismatch repair and any marker effects, was substantiated. The basic recombination frequency per base pair can serve as an objective parameter (natural constant) of general recombination reflecting its intensity. Comparative studies of the recombination properties of rIIB mutants with various sequence changes in the mutated sites showed that the main factor determining the probability of mismatch repair in recombination heteroduplexes is the length of a continuous heterologous region. A run of A:T pairs immediately adjoining the mismatch appears to stimulate its repair. In the case of mismatches with DNA strands of unequal length, formed by frameshift mutations, the repair is asymmetric, the longer strand (bulge) being preferentially removed. A pathway for mismatch repair including sequential action of endonuclease VII (gp49)----3'----5' exonuclease (gp43)----DNA polymerase (gp43)----DNA ligase (gp30) was proposed. A possible identity of the recombinational mismatch repair mechanism to that operating to produce mutations via sequence conversion is discussed.  相似文献   

9.
The protein component of the T-even bacteriophage coat which binds the phage-specific dihydropteroyl polyglutamate has been identified as the phage-induced dihydrofolate reductase. Dihydrofolate reductase activity has been found in highly purified preparations of T-even phage ghosts and phage substructures after partial denaturation. The highest specific enzymatic activity was found in purified tail plate preparations, and it was concluded that this enzyme was a structural component of the phage tail plate. Phage viability was directly correlated with the enzymological properties of the phage tail plate dihydrofolate reductase. All reactions catalyzed by this enzyme which changed the oxidation state of the phage dihydrofolate also inactivated the phage. Properties of two T4D dihydrofolate reductase-negative mutants, wh1 and wh11, have been examined. Various lines of evidence support the view that the product of the wh locus of the phage genome is normally incorporated into the phage tail structure. The effects of various dihydrofolate reductase inhibitors on phage assembly in in vitro complementation experiments with various extracts of conditional lethal T4D mutants have been examined. These inhibitors were found to specifically block complementation when added to extracts which did not contain preformed tail plates. If tail plates were present, inhibitors such as aminopterin, did not affect further phage assembly. This specific inhibition of tail plate formation in vitro confirms the analytical and genetic evidence that this phage-induced "early" enzyme is a component of the phage coat.  相似文献   

10.
The T4 head protein, gp2, promotes head-tail joining during phage morphogenesis and is also incorporated into the phage head. It protects the injected DNA from degradation by exonuclease V during the subsequent infection. In this study, we show that recombinant gp2, a very basic protein, rapidly kills the cells in which it is expressed. To further illustrate the protectiveness of gp2 for DNA termini, we compare the effect of gp2 expression on Red-mediated and Int-mediated recombination. Red-mediated recombination is nonspecific and requires the transient formation of double-stranded DNA termini. Int-mediated recombination, on the other hand, is site specific and does not require chromosomal termini. Red-mediated recombination is inhibited to a much greater extent than is Int-mediated recombination. We conclude from the results of these physiological and genetic experiments that T4 gp2 expression, like Mu Gam expression, kills bacteria by binding to double-stranded DNA termini, the most likely mode for its protection of entering phage DNA from exonuclease V.  相似文献   

11.
Smith, Kendall O. (Baylor University College of Medicine, Houston, Tex.), and Melvin Trousdale. Multiple-tailed T4 bacteriophage. J. Bacteriol. 90:796-802. 1965.-T4 phage particles which appeared to have multiple-tails were observed. Experiments were designed to minimize the possibility that superimposed particles might account for this appearance. Double-tailed particles occurred at a frequency as high as 10%. Triple- and quadruple-tailed particles were extremely rare. All attempts to isolate pure lines of multiple-tailed phage have failed. Multiple-tailed phage particles were produced in highest frequency by Escherichia coli cells in the logarithmic growth phase which had been inoculated at a multiplicity of about 2.  相似文献   

12.
13.
After infection of Escherichia coli B with phage T4D carrying an amber mutation in gene 59, recombination between two rII markers is reduced two- to three-fold. This level of recombination deficiency persists even when burst size similar to wild type is induced by the suppression of the mutant DNA-arrest phenotype. In the background of two other DNA-arrest mutants in genes 46 and 47, a 10- to 11-fold reduction in recombination is observed. The cumulative effect of gene 59 mutation on gene 46-47 mutant suggests that complicated interactions must occur in the production of genetic recombinants. The DNA-arrest phenotype of gene 59 mutant can be suppressed by inhibiting the synthesis of late phage proteins. Under these conditions, DNA replicative intermediates similar to those associated with wild-type infection are induced. Synthesis of late phage proteins, however, results in the degradation of mutant 200S replicative intermediate into 63S DNA molecules even in the absence of capsid assembly. Although these 63S molecules are associated with membrane, they do not replicate. These results suggest a role for gene 59 product, in addition to a possible requirement of concatemeric DNA in late replication of phage T4 DNA.  相似文献   

14.
T. Yonesaki 《Genetics》1994,138(2):247-252
Bacteriophage T4 gene 41 encodes a replicative DNA helicase that is a subunit of the primosome which is essential for lagging-strand DNA synthesis. A mutation, rrh, was generated and selected in the helicase gene on the basis of limited DNA replication that ceases early. The survival of ultraviolet-irradiated phage and the frequency of genetic recombination are reduced by rrh. In addition, rrh diminishes the production of concatemeric DNA. These results strongly suggest that the gene 41 replicative helicase participates in DNA recombination.  相似文献   

15.
Bacteriophage T4 genome.   总被引:2,自引:0,他引:2  
  相似文献   

16.
17.
High Negative Interference and Recombination in Bacteriophage T5   总被引:3,自引:0,他引:3  
The process of close recombinant formation in bacteriophage T5 crosses has been studied by examining the structure of internal heterozygotes (HETs), the immediate products of recombination events. The T5 system was chosen because it permits the study of internal heterozygotes exclusively, thus avoiding the ambiguities inherent in previous studies with T4. The heterozygotes were obtained by the nonselective screening of progeny phage in a prematurely lysed sample from an eight-factor cross. The molecular structure of each HET was inferred from the strand genotypes displayed among its progeny. This investigation presents unequivocal evidence that both overlap and insertion HETs are intermediates in recombinant formation and that insertion HETs are a significant source of close double recombinants. There is evidence suggesting that mismatch repair of overlap HETs could be the source of close triple exchanges. Thus, a significant part, and perhaps all, of the high negative interference for close-marker recombination observed in this system is a direct consequence of the fine structure of the recombinational intermediates. These findings are compatible with recombination models proposed by others, in which a single branched intermediate can give rise to HETs of both the overlap and insertion types.  相似文献   

18.
In this paper, we present results of crosses designed to elucidate the structure of recombinants in the tail-fiber region of bacteriophage T4, in which a glucosylation-dependent recombinations mechanism is operative, and the cause of the "special" recombination in glycosylated crosses is discussed. We present evidence that, when phage are nonglycosylated, recombination in the tail-fiber region proceeds via long heteroduplex overlaps. Mismatched bases within such regions (in nonglycosylated phage) are repaired efficiently (as contrasted to those of glucosylated phage), but asymmetrically; that is, there may be an equal probability of resolving the mismatch to mutant or wild type.  相似文献   

19.
Bacteriophage T4 gene 25.   总被引:1,自引:1,他引:1       下载免费PDF全文
  相似文献   

20.
Bacteriophage T4 gene 27.   总被引:1,自引:1,他引:1       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号