首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nearly all 1H NMR lines of the complex formed between the bis(quaternary ammonium) heterocycle 4-[p-[p-(4-quinolylamino)benzamido]anilino]pyridine (1, also known as SN 6999) and the decadeoxyribonucleoside nonaphosphate d-(GCATTAATGC)2 were sequentially assigned by using one- and two-dimensional NMR techniques. Intermolecular nuclear Overhauser effects between the ligand and the DNA show that the drug binds in the minor groove of the DNA, interacting with the central A-T base pairs. Over the temperature range from 277 to 313 K, the lifetime of the drug in the DNA binding sites is short relative to the NMR time scale, since fast exchange is observed for all but a few protons. A model for the binding of 1 to d-(GCATTAATGC)2 is proposed, where the drug binds to two equivalent sites covering approximately five A-T base pairs, which assumes exchange of 1 between these two binding sites.  相似文献   

2.
This study is concerned with an oral administration of 5mg of [1,2,4,19-13C(4),11alpha-2H]cortisol (cortisol-13C(4),2H(1)) to a human subject to reliably evaluate the individual activities of two isozymes of 11beta-HSD. The use of a GC-MS method allowed the simultaneous measurement of the plasma concentrations of cortisol-13C(4),2H(1), cortisone-13C(4), and cortisol-13C(4) together with endogenous cortisol and cortisone. The loss of 11alpha-2H during the conversion of cortisol-13C(4),2H(1) to cortisone-13C(4) by 11beta-HSD2 and the regenerated cortisol-13C(4) from cortisone-13C(4) by 11beta-HSD1 provided a direct and accurate means of distinguishing the activities of the two isozymes. The kinetic analysis associated with the metabolism of orally administered cortisol-13C(4),2H(1) was of great importance in assessing the 11beta-HSD activities. From a viewpoint of the chemical stability and much less pronounced kinetic isotope effect of the 13C-label and the 2H-labeling in the 11alpha-position, cortisol-13C(4),2H(1) used in this study served as an appropriate tracer for elucidating the kinetics of the interconversion of cortisol to cortisone in man.  相似文献   

3.
A novel strategy has been used to assign the 1H, 13C, and 15N resonances of the heme in Anabaena 7120 ferrocytochrome c553. 13C[13C] double-quantum coherence spectroscopy was used to delineate the heme carbons, 1H[13C] single-bond correlation spectroscopy was used to define the attached protons, and 1H[15N] multiple-bond correlation spectroscopy was used to assign the nitrogens. 1H[13C] multiple-bond correlation spectroscopy confirmed many of the assignments. Proteins were labeled uniformly with 13C or 15N to obtain the required spectral sensitivity.  相似文献   

4.
An effective in vitro enzymatic synthesis is described for the production of nucleoside triphosphates (NTPs) which are stereo-specifically deuterated on the H5" position with high selectivity (>98%), and which can have a variety of different labels (13C, 15N, 2H) in other positions. The NTPs can subsequently be employed in the enzymatic synthesis of RNAs using T7 polymerase from a DNA template. The stereo-specific deuteration of the H5" immediately provides the stereo-specific assignment of H5' resonances in NMR spectra, giving access to important structural parameters. Stereo-chemical H-exchange was used to convert commercially available 1,2,3,4,5,6,6-2H-1,2,3,4,5,6-13C-D-glucose (d7-13C6-D-glucose) into [1,2,3,4,5,6(R)-2H-1,2,3,4,5,6-13C]-D-glucose (d6-13C6-D-glucose). [1',3',4',5"-2H-1',2',3',4',5'-13C]GTP (d4-13C5-GTP) was then produced from d6-13C6-D-glucose and guanine base via in vitro enzymatic synthesis employing enzymes from the pentose-phosphate, nucleotide biosynthesis and salvage pathways. The overall yield was approximately 60 mg NTP per 1 g glucose, comparable with the yield of NTPs isolated from Escherichia coli grown on enriched media. The d4-13C5-GTP, together with in vitro synthesised d5-UTP, d5-CTP and non-labelled ATP, were used in the synthesis of a 31 nt RNA derived from the primer binding site of hepatitis B virus genomic RNA. (13C,1H) hetero-nuclear multiple-quantum spectra of the specifically deuterated sample and of a non-deuterated uniformly 13C/15N-labelled sample demonstrates the reduced spectral crowding and line width narrowing compared with 13C-labelled non-deuterated RNA.  相似文献   

5.
Clinical efficacy of alkylating anticancer drugs, such as chlorambucil (4-[p-[bis [2-chloroethyl] amino] phenyl]-butanoic acid; CHB), is often limited by the emergence of drug resistant tumor cells. Increased glutathione (gamma-glutamylcysteinylglycine; GSH) conjugation (inactivation) of alkylating anticancer drugs due to overexpression of cytosolic glutathione S-transferase (GST) is believed to be an important mechanism in tumor cell resistance to alkylating agents. However, the potential involvement of microsomal GST in the establishment of acquired drug resistance (ADR) to CHB remains uncertain. In our experiments, a combination of lipid chromatography/electrospray ionization mass spectrometry (LC/ESI/MS) was employed for structural characterization of the resulting conjugates between CHB and GSH. The spontaneous reaction of 1mM CHB with 5 mM GSH at 37 degrees C in aqueous phosphate buffer for 1 h gave primarily the monoglutathionyl derivative, 4-[p-[N-2-chloroethyl, N-2-S-glutathionylethyl] amino]phenyl]-butanoic acid (CHBSG) and the diglutathionyl derivative, 4-[p-[2-S-glutathionylethyl] amino]phenyl]-butanoic acid (CHBSG2) with small amounts of the hydroxy-derivative, 4-[p-[N-2-S-glutathionylethyl, N-2-hydroxyethyl] amino]phenyl]-butanoic acid (CHBSGOH), 4-[p-[bis[2-hydroxyethyl] amino]phenyl]-butanoic acid (CHBOH2), 4-[p-[N-2-chloroethyl, N-2-S-hydroxyethyl]amino]phenyl]-butanoic acid (CHBOH). We demonstrated that rat liver microsomal GST presented a strong catalytic effect on these reactions as determined by the increase of CHBSG2, CHBSGOH and CHBSG and the decrease of CHB. We showed that microsomal GST was activated by CHB in a concentration and time dependent manner. Microsomal GST which was stimulated approximately two-fold with CHB had a stronger catalytic effect. Thus, microsomal GST may play a potential role in the metabolism of CHB in biological membranes, and in the development of ADR.  相似文献   

6.
The X-ray crystal structure of the complex between the synthetic antitumour and antiviral DNA binding ligand SN 7167 and the DNA oligonucleotide d(CGCGAATTCGCG)2 has been determined to an R factor of 18.3% at 2.6 A resolution. The ligand is located within the minor groove and covers almost 6 bp with the 1-methylpyridinium ring extending as far as the C9-G16 base pair and the 1-methylquinolinium ring lying between the G4-C21 and A5-T20 base pairs. The ligand interacts only weakly with the DNA, as evidenced by long range contacts and shallow penetration into the groove. This structure is compared with that of the complex between the parent compound SN 6999 and the alkylated DNA sequence d(CGC[e6G]AATTCGCG)2. There are significant differences between the two structures in the extent of DNA bending, ligand conformation and groove binding.  相似文献   

7.
Samples of staphylococcal nuclease H124L (cloned protein overproduced in Escherichia coli whose sequence is identical with that of the nuclease isolated from the V8 strain of Staphylococcus aureus) were labeled uniformly with carbon-13 (26% ul 13C), uniformly with nitrogen-15 (95% ul 15N), and specifically by incorporating nitrogen-15-labeled leucine ([98% 15N]Leu) or carbon-13-labeled lysine ([26% ul 13C]Lys), arginine ([26% ul 13C]Arg), or methionine ([26% ul 13C]Met). Solutions of the ternary complexes of these analogues (nuclease H124L-pdTp-Ca2+) at pH 5.1 (H2O) or pH* 5.5 (2H2O) at 45 degrees C were analyzed as appropriate to the labeling pattern by multinuclear two-dimensional (2D) NMR experiments at spectrometer fields of 14.09 and 11.74 T: 1H-13C single-bond correlation (1H[13C]SBC); 1H-13C single-bond correlation with NOE relay (1H[13C]SBC-NOE); 1H-13C single-bond correlation with Hartmann-Hahn relay (1H-[13C]SBC-HH); 1H-13C multiple-bond correlation (1H[13C]MBC); 1H-15N single-bond correlation (1H-[15N]SBC); 1H-15N single-bond correlation with NOE relay (1H[15N]SBC-NOE). The results have assisted in spin system assignments and in identification of secondary structural elements. Nuclear Overhauser enhancements (NOE's) characteristic of antiparallel beta-sheet (d alpha alpha NOE's) were observed in the 1H [13C]-SBC-NOE spectrum of the nuclease ternary complex labeled uniformly with 13C. NOE's characteristic of alpha-helix (dNN NOE's) were observed in the 1H[15N]SBC-NOE spectrum of the complex prepared from protein labeled uniformly with 15N. The assignments obtained from these multinuclear NMR studies have confirmed and extended assignments based on 1H[1H] 2D NMR experiments [Wang, J., LeMaster, D. M., & Markley, J. L. (1990) Biochemistry (preceding paper in this issue)].  相似文献   

8.
(13)C NMR monitored the dynamics of exchange from specific hydrogens of hepatic [2-(13)C]glutamate and [3-(13)C]aspartate with deuterons from intracellular heavy water providing information on alpha-ketoglutarate/glutamate exchange and subcellular compartmentation. Mouse livers were perfused with [3-(13)C]alanine in buffer containing or not 50% (2)H(2)O for increasing periods of time (1 min < t < 30 min). Liver extracts prepared at the end of the perfusions were analyzed by high resolution (13)C NMR (150.13 MHz) with (1)H decoupling only and with simultaneous (1)H and (2)H decoupling. (13)C-(2)H couplings and (2)H-induced isotopic shifts observed in the glutamate C2 resonance, allowed to estimate the apparent rate constants (forward, reverse; min(-1)) for (i) the reversible exchange of [2-(13)C]glutamate H2 as catalyzed mainly by aspartate aminotransferase (0.32, 0.56), (ii) the reversible exchange of [2-(13)C]glutamate H3(proS) as catalyzed by NAD(P) isocitrate dehydrogenase (0.1, 0.05), and (iii) the irreversible exchanges of glutamate H3(proR) and H3(proS) as catalyzed by the sequential activities of mitochondrial aconitase and NAD isocitrate dehydrogenase of the tricarboxylic acid cycle (0.035), respectively. A similar approach allowed to determine the rates of (1)H-(2)H exchange for the H2 (0.4, 0.5) or H3(proR) (0.3, 0.2) or the H2 and H3(proS) hydrogens (0.20, 0.23) of [3-(13)C]aspartate isotopomers. The ubiquitous subcellular localization of (1)H-(2)H exchange enzymes and the exclusive mitochondrial localization of pyruvate carboxylase and the tricarboxylic acid cycle resulted in distinctive kinetics of deuteration in the H2 and either or both H3 hydrogens of [2-(13)C]glutamate and [3-(13)C]aspartate, allowing to follow glutamate and aspartate trafficking through cytosol and mitochondria.  相似文献   

9.
J F Wang  A P Hinck  S N Loh  J L Markley 《Biochemistry》1990,29(17):4242-4253
A combination of multinuclear two-dimensional NMR experiments served to identify and assign the combined 1H, 13C, and 15N spin systems of the single tryptophan, three phenylalanines, three histidines, and seven tyrosines of staphylococcal nuclease H124L in its ternary complex with calcium and thymidine 3',5'-bisphosphate at pH 5.1 (H2O) or pH 5.5 (2H2O). Samples of recombinant nuclease were labeled with 13C or 15N as appropriate to individual NMR experiments: uniformly with 15N (all sites to greater than 95%), uniformly with 13C (all sites to 26%), selectively with 13C (single amino acids uniformly labeled to 26%), or selectively with 15N (single amino acids uniformly labeled to greater than 95%). NMR data used in the analysis included single-bond and multiple-bond 1H-13C and multiple-bond 1H-15N correlations, 1H-13C single-bond correlation with Hartmann-Hahn relay (1H[13C]SBC-HH), and 1H-13C single-bond correlation with NOE relay (1H[13C]SBC-NOE). The aromatic protons of the spin systems were identified from 1H[13C]SBC-HH data, and the nonprotonated aromatic ring carbons were identified from 1H-13C multiple-bond correlations. Sequence-specific assignments were made on the basis of observed NOE relay connectivities between assigned 1H alpha-13C alpha or 1H beta-13C beta direct cross peaks in the aliphatic region [Wang, J., LeMaster, D. M., & Markley, J. L. (1990) Biochemistry 29, 88-101] and 1H delta-13C delta direct cross peaks in the aromatic region of the 1H[13C]SBC-NOE spectrum. The His121 1H delta 2 resonance, which has an unusual upfield shift (at 4.3 ppm in the aliphatic region), was assigned from 1H[13C]SBC, 1H[13C]MBC, and 1H[15N]MBC data. Evidence for local structural heterogeneity in the ternary complex was provided by doubled peaks assigned to His46, one tyrosine, and one phenylalanine. Measurement of NOE buildup rates between protons on different aromatic residues of the major ternary complex species yielded a number of interproton distances that could be compared with those from X-ray structures of the wild-type nuclease ternary complex with calcium and thymidine 3',5'-bisphosphate [Cotton, F. A., Hazen, E. E., Jr., & Legg, M. J. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 2551-2555; Loll, P. J., & Lattman, E. E. (1989) Proteins: Struct., Funct., Genet. 5, 183-201]. The unusual chemical shift of His121 1H delta 2 is consistent with ring current calculations from either X-ray structure.  相似文献   

10.
The following paper describes the synthesis of the [LysA13]bovine insulin A chain analog as [Lys(Tfa)A13]A(SO3H)4 and NalphaA1-Msc-[LysA13]A(SO3H)4 derivatives using the S-tert-butylmercapto residue for thiol protection. Although the intermediate S-tert-butylmercaptocysteinyl-peptide derivatives showed a good solubility in organic solvents the resulting fully protected A chain derivatives had a poor solubility in organic solvents and therefore were deblocked converted into the tetra(S-sulfonic acid) derivatives and purified via ionexchange chromatography.  相似文献   

11.
High-field NMR spectroscopic methods have been applied to study the reactions catalyzed by porphobilinogen (PBG) deaminase and uroporphyrinogen III (uro'gen III) cosynthase, which are the enzymes responsible for the formation of the porphyrin macrocycle. The action of these enzymes in the conversion of PBG, [2,11-13C]PBG, and [3,5-13C]PBG to uro'gens I and III has been followed by 1H and 13C NMR, and assignments are presented. The principal intermediate that accumulated was the correspondingly labeled (hydroxymethyl)bilane (HMB), the assignments for which are also presented.  相似文献   

12.
Biosynthetic studies of the glycopeptide teicoplanin by (1)H and (13)C NMR   总被引:1,自引:0,他引:1  
The biosynthesis of the glycopeptide antibiotic teicoplanin was studied by growing a teicoplanin producing strain of Actinoplanes teichomyceticus (ATCC 31121) on glucose containing either 34.0% [1-(13)C]glucose or 9.7% [U-(13)C]glucose. The fractional enrichment pattern of teicoplanin produced in the medium containing [1-(13)C]glucose was obtained from a one-dimensional (13)C spectrum. The enrichment pattern showed characteristic peaks indicating that amino acids 3 and 7 are derived from acetate, whereas amino acids 1, 2, 4, 5, and 6 are derived from tyrosine. Multiplet structures in heteronuclear single quantum coherence spectra of teicoplanin produced in the medium containing [U-(13)C]glucose showed characteristic coupling patterns supporting these results. Fractional enrichment patterns and multiplet structures of the three sugars in teicoplanin showed that about 50% of the sugars have the same labeling pattern as the glucose substrate whereas the rest have a labeling pattern showing that they are reassembled, probably from precursors in the primary metabolism.  相似文献   

13.
A method is described for the preparation of multi-labeled cortisol and cortisone with (13)C and (2)H via the indan synthon method, starting from chiral 11-oxoindanylpropionic acid. [1, 3-(13)C(2)]Acetone was used for the syntheses of [1,2,4, 19-(13)C(4)]cortisol (cortisol-(13)C(4)) and [1,2,4, 19-(13)C(4)]cortisone (cortisone-(13)C(4)), and [1,3-(13)C(2),1,1,1, 3,3,3-(2)H(6)]acetone was for [1,2,4,19-(13)C(4),1,1,19,19, 19-(2)H(5)]cortisol (cortisol-(13)C(4),(2)H(5)) and [1,2,4, 19-(13)C(4),1,1,19,19,19-(2)H(5)]cortisone (cortisone-(13)C(4), (2)H(5)). The chemical shifts for the (13)C and (1)H NMR spectra of cortisol and cortisone were fully assigned.  相似文献   

14.
Mono- and di-substituted analogs of dynorphin-A(1-13) (Dyn-A(1-13)) were synthesized by the solid-phase procedure. The products were purified and analyzed for their ability to inhibit the electrically evoked contractions of the guinea pig ileum (GPI) and mouse vas deferens (MVD) and to compete with the binding of [3H]etorphine ([3H]ET) and [3H]ethylketocyclazocine ([3H]EKC) to homogenates of rat brain (mu-, delta-, kappa 2-receptors) and guinea pig cerebellum (kappa-receptor), respectively. Introduction of Ala in position 2 caused a drastic decrease in the activity of the peptide on the smooth muscle preparations (IC50 of 104 and 2.250 nM in the GPI and the MVD as compared with 0.7 and 21 nM for the parent peptide, respectively). Conversely, this analog retained much of the opioid binding activity of Dyn-A(1-13) (relative binding potencies of 15 and 72% for the displacement of [3H]ET and [3H]EKC, respectively). The replacement of Phe4 by Trp also caused drastic decreases in the activity of the peptide in the smooth muscle preparations (relative potencies of 0.8 and 8.8% on the GPI and MVD) while much of the binding potency to the opioid receptors was retained (31 and 67% for the displacement of [3H]ET and [3H]EKC, respectively). [Ala2,Trp4]-Dyn-A(1-13) was the least potent peptide tested in the smooth muscle assays (relative potencies: 0.1 and 0.6%). However, this latter analog still retained some opioid binding activity in the displacement of [3H]ET to rat brain homogenates (3%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
As part of a study of protein-carbohydrate interactions, linear N-acetyl-polyllactosamines [Galbeta1,4GlcNAcbeta1,3]nwere synthesized at the 10-100 micromol scale using enzymatic methods. The methods described also provided specifically [1-13C]-galactose-labeled tetra- and hexasaccharides ([1-13C]-Galbeta1,4GlcNAcbeta1,3Galbeta1,4Glc and Galbeta1, 4GlcNAcbeta1,3[1-13C]Galbeta1,4GlcNAcbeta1,3Galbeta 1,4Glc) suitable for NMR studies. Two series of oligosaccharides were produced, with either glucose or N-acetlyglucosamine at the reducing end. In both cases, large amounts of starting primer were available from human milk oligosaccharides (trisaccharide primer GlcNAcbeta1,3Galbeta1, 4Glc) or via transglycosylation from N-acetyllactosamine. Partially purified and immobilized glycosyltransferases, such as bovine milk beta1,4 galactosyltransferase and human serum beta1,3 N- acetylglucosaminyltransferase, were used for the synthesis. All the oligo-saccharide products were characterized by1H and13C NMR spectroscopy and MALDI-TOF mass spectrometry. The target molecules were then used to study their interactions with recombinant galectin-1, and initial1H NMR spectroscopic results are presented to illustrate this approach. These results indicate that, for oligomers containing up to eight sugars, the principal interaction of the binding site of galectin-1 is with the terminal N-acetyllactosamine residues.  相似文献   

16.
The pleckstrin homology domain of the FAPP1 protein (FAPP1-PH) recognizes phosphatidylinositol 4-phosphate [PtdIns(4)P] and is recruited to the Golgi apparatus in order to mediate trafficking to the cell surface. We report the complete 1H, 13C and 15N resonance assignments of the FAPP1-PH in its free state and those induced by PtdIns(4)P or detergent micelles.  相似文献   

17.
For estimating the oxidation rates (Rox) of glucose and other substrates by use of (13)C-labeled tracers, we obtained correction factors to account for label dilution in endogenous bicarbonate pools and TCA cycle exchange reactions. Fractional recoveries of (13)C label in respiratory gases were determined during 225 min of rest and 90 min of leg cycle ergometry at 45 and 65% peak oxygen uptake (VO(2 peak)) after continuous infusions of [1-(13)C]acetate, [2-(13)C]acetate, or NaH(13)CO(3). In parallel trials, [6,6-(2)H]glucose and [1-(13)C]glucose were given. Experiments were conducted after an overnight fast with exercise commencing 12 h after the last meal. During the transition from rest to exercise, CO(2) production increased (P < 0.05) in an intensity-dependent manner. Significant differences were observed in the fractional recoveries of (13)C label as (13)CO(2) at rest (NaH(13)CO(3), 77.5 +/- 2.8%; [1-(13)C]acetate, 49.8 +/- 2.4%; [2-(13)C]acetate, 26.1 +/- 1.4%). During exercise, fractional recoveries of (13)C label from [1-(13)C]acetate, [2-(13)C]acetate, and NaH(13)CO(3) were increased compared with rest. Magnitudes of label recoveries during both exercise intensities were tracer specific (NaH(13)CO(3), 93%; [1-(13)C]acetate, 80%; [2-(13)C]acetate, 65%). Use of an acetate-derived correction factor for estimating glucose oxidation resulted in Rox values in excess (P < 0.05) of glucose rate of disappearance during hard exercise. We conclude that, after an overnight fast: 1) recovery of (13)C label as (13)CO(2) from [(13)C]acetate is decreased compared with bicarbonate; 2) the position of (13)C acetate label affects carbon dilution estimations; 3) recovery of (13)C label increases in the transition from rest to exercise in an isotope-dependent manner; and 4) application of an acetate correction factor in glucose oxidation measurements results in oxidation rates in excess of glucose disappearance during exercise at 65% of VO(2 peak). Therefore, bicarbonate, not acetate, correction factors are advocated for estimating glucose oxidation from carbon tracers in exercising men.  相似文献   

18.
In order to monitor the trans labilization of cisplatin at physiological pH we have prepared the complex cis-[PtCl2(13CH3NH2)2] and studied its interactions with excess glutathione in aqueous solution at neutral pH by two-dimensional [1H,13C] heteronuclear single-quantum correlation (HSQC) NMR spectroscopy. [1H,13C] HSQC spectroscopy is a good method for following the release of 13CH3NH2 but is not so good for characterizing the Pt species in solution. In the reaction of cisplatin with glutathione, Pt–S bonds are formed and Pt–NH3 bonds are broken. The best technique for following the formation of Pt–S bonds of cisplatin is by UV spectroscopy. [1H,13C] HSQC spectroscopy is the best method for following the breaking of the Pt–N bonds. [1H,15N] HSQC spectroscopy is the best method for characterizing the different species in solution. However, the intensity of the peaks in the 15NH3–Pt–S region, in [1H,15N] HSQC, reflects a balance between the formation of Pt–S bonds, which increases the signal intensity, and the trans labilization, which decreases the signal intensity. [1H,15N] HSQC spectroscopy and [1H,13C] HSQC spectroscopy are complementary techniques that should be used in conjunction in order to obtain the most accurate information on the interaction of platinum complexes with sulfur-containing ligands.  相似文献   

19.
Synthesis and evaluation of [O-methyl-11C](4-methoxy-2-methylphenyl)[1-(1-methoxymethylpropyl)-6-methyl-1H-[1,2,3]triazolo[4,5-c]pyridin-4-yl]amine or [11C]SN003 ([11C]6), as a PET imaging agent for CRF1 receptors, in baboons is described. 4-[1-(1-Methoxymethylpropyl)-6-methyl-1H-[1,2,3]triazolo[4,5-c]pyridin-4-ylamino]-3-methylphenol (5), the precursor molecule for the radiolabeling, was synthesized from 2,4-dichloro-6-methyl-3-nitropyridine in seven steps with 20% overall yield. The total time required for the synthesis of [11C]SN003 is 30 min from EOB using [11C]methyl triflate in the presence of NaOH in acetone. The yield of the synthesis is 22% (EOS) with >99% chemical and radiochemical purities and a specific activity of >2000 Ci/mmol. PET studies in baboon show that [11C]6 penetrates the BBB and accumulates in brain. No detectable specific binding was observed, likely due to the rapid metabolism or low density of CRF1 receptors in primate brain.  相似文献   

20.
We have obtained proton-coupled carbon-13 nuclear magnetic resonance (NMR) spectra of a variety of lipid-water and lipid-drug-water systems, at 11.7 T, as a function of temperature, using the "magic-angle" sample-spinning (MAS) NMR technique. The resulting spectra show a wide range of line shapes, due to interferences between dipole-dipole and dipole-chemical shielding anisotropy interactions. The differential line-broadening effects observed are particularly large for aromatic and olefinic (sp2) carbon atom sites. Coupled spectra of the tricyclic antidepressants desipramine and imipramine, in 1,2-dimyristoyl-sn-glycero-3-phosphocholine-water mesophases, show well-resolved doublets having different line shapes for each of the four aromatic methine groups, due to selective averaging of the four C-H dipolar interactions due to rapid motion about the director (or drug C2) axis. 2H NMR spectra of [2,4,6,8-2H4]desipramine (and imipramine) in the same 1,2-dimyristoyl-sn-glycero-3-phosphocholine-water mesophase exhibit quadrupole splittings of approximately 0-2 and approximately 20 kHz, indicating an approximate magic-angle orientation of the C2-2H(1H) and C8-2H(1H) vectors with respect to an axis of motional averaging, in accord with the 13C NMR results. Selective deuteration of imipramine confirms these ideas. Spectra of digalactosyl diglyceride [primarily 1,2-di[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl ]-3- (alpha-D-galactopyranosyl-1-6-beta-D-galactopyranosyl)-sn-glycerol]-H2O (in the L alpha phase) show a large differential line broadening for C9 but a reduced effect for C10, consistent with the results of 2H NMR of specifically 2H-labeled phospholipids [Seelig, J., & Waespe-Saracevic, N. (1978) Biochemistry 17, 3310-3315].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号