首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biomarkers that show high sensitivity and specificity are needed for the early diagnosis and prognosis of cancer. An immune response to cancer is elicited in humans, as demonstrated, in part, by the identification of autoantibodies against a number of tumor-associated antigen (TAAs) in sera from patients with different types of cancer. Identification of TAAs and their cognate autoantibodies is a promising strategy for the discovery of relevant biomarkers. During the past few years, three proteomic approaches, including serological identification of antigens by recombinant expression cloning (SEREX), serological proteome analysis (SERPA) and, more recently, protein microarrays, have been the dominant strategies used to identify TAAs and their cognate autoantibodies. In this review, we aim to describe the advantages, drawbacks and recent improvements of these approaches for the study of humoral responses. Finally, we discuss the definition of autoantibody signatures to improve sensitivity for the development of clinically relevant tests.  相似文献   

2.
It is now well established that an immune response to cancer is elicited in humans, as demonstrated in part by the identification of autoantibodies against a number of tumor-associated antigens in sera from patients with different types of cancer. During these past few years, proteomic approaches have been developed to identify tumor-associated antigens and their cognate autoantibodies. Detection of a panel of serum autoantibodies has thus been proposed as a new method for early cancer diagnosis. Early detection seems to be particularly adequate in high-risk populations, such as heavy smokers for lung cancer or in women with high mammographic density for breast cancer. In this review, we highlight the features of serum autoantibody biomarkers and outline the proteomic strategies employed to identify and validate their use in clinical practice for cancer screening and diagnosis. We particularly emphasize the clinical utility of autoantibody signatures, using the examples of lung and breast cancer. Finally, we discuss the challenges remaining for clinical validation.  相似文献   

3.
In the process of tumorigenesis, normal cells are remodeled to cancer cells and protein expression patterns are changed to those of tumor cells. A newly formed tumor microenvironment elicits the immune system and, as a result, a humoral immune response takes place. Although the tumor antigens are undetectable in sera at the early stage of tumorigenesis, the nature of an antibody amplification response to antigens makes tumor-associated autoantibodies as promising early biomarkers in cancer diagnosis. Moreover, the recent development of proteomic techniques that make neo-epitopes of tumor-associated autoantigens discovered concomitantly has opened a new area of ‘immuno-proteomics’, which presents tumor-associated autoantibody signatures and confers information to redefine the process of tumorigenesis. In this article, the strategies recently used to identify and validate serum autoantibodies are outlined and tumor-associated antigens suggested until now as diagnostic/prognostic biomarkers in various tumor types are reviewed. Also, the meaning of autoantibody signatures and their clinical utility in personalized medicine are discussed. [BMB Reports 2012; 45(12): 677-685]  相似文献   

4.
《Biomarkers》2013,18(4):362-371
Background: Autoantibodies, which are produced against tumor-associated antigens, are potential tumor markers and attract a growing interest for cancer detection, differential diagnostics and prognosis.

Objective: To evaluate the diagnostic significance of 40 antigens identified by immunoscreening of cDNA libraries from thyroid and colon cancers by allogenic screening with different tumor types patients’ sera.

Method: Plaque-spot serological assay.

Results: Increased frequency of antibody response in sera of cancer patients compared with that of healthy donors was shown toward 14 antigens, 8 of which (CG016, BTN3A3, FKBP4, XRCC4, TSGA2, ACTR1A, FXYD3 and CTSH) have revealed exclusively cancer-related serological profile.

Conclusion: Allogenic screening of 40 SEREX-antigens with sera from cancer patients and healthy donors allowed us to reveal 14 antigens with potential diagnostic significance. These antigens and their cognate autoantibodies could be considered as valuable targets for further analysis as potential cancer biomarkers.  相似文献   

5.
There is strong preclinical evidence that cancer, including breast cancer, undergoes immune surveillance. This continual monitoring, by both the innate and the adaptive immune systems, recognizes changes in protein expression, mutation, folding, glycosylation, and degradation. Local immune responses to tumor antigens are amplified in draining lymph nodes, and then enter the systemic circulation. The antibody response to tumor antigens, such as p53 protein, are robust, stable, and easily detected in serum; may exist in greater concentrations than their cognate antigens; and are potential highly specific biomarkers for cancer. However, antibodies have limited sensitivities as single analytes, and differences in protein purification and assay characteristics have limited their clinical application. For example, p53 autoantibodies in the sera are highly specific for cancer patients, but are only detected in the sera of 10-20% of patients with breast cancer. Detection of p53 autoantibodies is dependent on tumor burden, p53 mutation, rapidly decreases with effective therapy, but is relatively independent of breast cancer subtype. Although antibodies to hundreds of other tumor antigens have been identified in the sera of breast cancer patients, very little is known about the specificity and clinical impact of the antibody immune repertoire to breast cancer. Recent advances in proteomic technologies have the potential for rapid identification of immune response signatures for breast cancer diagnosis and monitoring. We have adapted programmable protein microarrays for the specific detection of autoantibodies in breast cancer. Here, we present the first demonstration of the application of programmable protein microarray ELISAs for the rapid identification of breast cancer autoantibodies.  相似文献   

6.
Autoantibody biomarkers in the detection of cancer   总被引:1,自引:0,他引:1  
By definition, tumor biomarkers are selective molecules that can distinguish between patients with cancer and controls. Serum tumor markers have been the most widely used approach for cancer detection. However, the limitations of these markers, which are based on the measurement of tumor antigens, preclude their general use in cancer screening and diagnosis. Here we give an overview of recent cancer biomarker developments based on the detection of autoantibodies produced against tumor antigens in patients' sera. This new detection method can measure the autoantibodies for a spectrum of tumor antigens in a single assay, with sensitivity and specificity exceeding those obtained using the conventional antigen determination method. Autoantibodies against serum cancer biomarkers offer a novel technology for cancer detection.  相似文献   

7.
Immunofluorescent imaging has been a powerful technique in helping to identify intracellular nuclear and cytoplasmic molecules which are target antigens of autoantibodies in systemic autoimmune disorders. Patterns of staining can be correlated with molecules engaged in specific cellular functions and distributed in distinct cellular domains. Different autoimmune disorders have different profiles of autoantibodies, and immunodiagnostics has become an important adjunct in differential diagnosis. An important finding that has eluded explanation is the presence of autoantibodies to many different antigens, manifested strikingly in systemic lupus erythematosus. In cancer, the occurrence of autoantibodies to tumor-associated antigens is not uncommon and a characteristic feature is also the presence of multiple autoantibodies. The targeted tumor-associated antigens are either oncogene or tumor suppressor gene products or their coactivators, which are altered or mutated and driving the autoimmune response. Most cancer cells have between two and eight mutated genes before oncogenic transformation occurs, initiating a process called synthetic lethality in tumorigenesis pathways. These observations beg the question of whether there are similar mechanisms in systemic lupus erythematosus and other disorders driving autoimmunity pathways. Targeting molecules that are synthetic lethal to each other is in the forefront of the search for anticancer therapy, and this could also be an objective in systemic autoimmune disorders.  相似文献   

8.
The recognition that human tumors stimulate the production of autoantibodies against autologous cellular proteins called tumor-associated antigens (TAAs) has opened the door to the possibility that autoantibodies could be exploited as serological tools for the early diagnosis and management of cancer. Cancer-associated autoantibodies are often driven by intracellular proteins that are mutated, modified, or aberrantly expressed in tumor cells and hence are regarded as immunological reporters that could help uncover molecular events underlying tumorigenesis. Emerging evidence suggests that each type of cancer might trigger unique autoantibody signatures that reflect the nature of the malignant process in the affected organ. The advent of novel genomic, proteomic, and high throughput approaches has accelerated interest in the serum autoantibody repertoire in human cancers for the discovery of candidate TAAs. The use of individual anti-TAA autoantibodies as diagnostic or prognostic tools has been tempered by their low frequency and heterogeneity in most human cancers. However, TAA arrays comprising several antigens significantly increase this frequency and hold great promise for the early detection of cancer, monitoring cancer progression, guiding individualized therapeutic interventions, and identification of novel therapeutic targets. Our recent studies suggest that the implementation of TAA arrays in screening programs for the diagnosis of prostate cancer and other cancers should be preceded by the optimization of their sensitivity and specificity through the careful selection of the most favorable combinations of TAAs.  相似文献   

9.
Over the past decade, it has been demonstrated that cancer is immunogenic, and multiple tumor antigens have been identified in cancer patients. It is now possible to potentially harness the immune response elicited by cancer growth as a potential diagnostic tool. Humoral immunity, or the development of autoantibodies against tumor-associated proteins, may be used as a marker for cancer exposure. Unlike circulating proteins that are shed by bulky tumors, serum autoantibodies are detectable even when antigen expression is minimal. This paper will review the methods used for tumor antigen discovery and overview what is known about autoantibodies targeting common cancer antigens with a focus on breast cancer. Data will be presented modeling the use of tumor antigen associated autoantibodies as a breast cancer diagnostic. The endogenous humoral immune response present in cancer patients may allow the identification of individuals exposed to the malignant transformation of somatic cells.  相似文献   

10.
Becoming invasive is a crucial step in cancer development, and the early spread of tumour cells is usually undetected by current imaging technologies. In patients with cancer and no signs of overt metastases, sensitive methods have been developed to identify circulating autoantibodies and their antigen counterparts in several cancers. These technologies are often based on proteomic approaches, and recent advances in protein and antibody microarrays have greatly facilitated the discovery of new antibody biomarkers in sera from cancer patients. Interestingly, in a clinical application setting, combinations of multiple autoantibody reactivities into panel assays have recently been proposed as relevant screening tests and validated in several independent trials. In addition, autoantibody signatures seem to be particularly relevant for early detection of cancer in high-risk cancer patients. In this review, we highlight the concept that immunogenic epitopes associated with the humoural response and key pathogenic pathways elicit serum autoantibodies that can be considered as relevant cancer biomarkers. We outline the proteomic strategies employed to identify and validate their use in clinical practice for cancer screening and diagnosis. We particularly emphasize the clinical utility of autoantibody signatures in several cancers. Finally, we discuss the challenges remaining for clinical validation.  相似文献   

11.
The appearance of antibodies to cancer-associated antigens in biological fluids (particularly, in blood sera) of cancer patients is now a well-established fact, and their detection by immunochemical methods is a promising approach to diagnostics of malignant neoplasms. In this review, we consider some immunobiological aspects of the most extensively studied cancer-associated B-cell antigens, various applications of autoantibodies as cancer biomarkers, and prospects for the use of antigen arrays for improving diagnostic sensitivity.  相似文献   

12.
Humoral immune response to tumor-associated antigens in cancer patients can be used as a basis for disease diagnosis and monitoring. Moreover, identification of molecular targets of such response may be used to develop antigen-specific anticancer vaccines. Here, we review the main approaches to identification and study of tumor-associated antigens recognized by serum antibodies. We also focus on the challenges that must be met before serological antigens can be used in clinical cancer diagnostics.  相似文献   

13.
The development of proteomic technologies that display a wide variety of antigenic structures has led to the identification of autoantibodies to cancer-derived tumor antigens. These autoantibodies have been detected in sera from patients with multiple cancer types, and are being evaluated as biomarkers for early cancer detection. It is not known whether these antibodies also contribute to active immune surveillance or even tumorigenicity of developing tumors. Here, we review which tumor antigen-specific antibodies are prognostic biomarkers of cancer outcome, and emerging proteomic methods for the isolation and cloning of these antibodies for potential molecular diagnostics and therapeutics.  相似文献   

14.
The development of proteomic technologies that display a wide variety of antigenic structures has led to the identification of autoantibodies to cancer-derived tumor antigens. These autoantibodies have been detected in sera from patients with multiple cancer types, and are being evaluated as biomarkers for early cancer detection. It is not known whether these antibodies also contribute to active immune surveillance or even tumorigenicity of developing tumors. Here, we review which tumor antigen-specific antibodies are prognostic biomarkers of cancer outcome, and emerging proteomic methods for the isolation and cloning of these antibodies for potential molecular diagnostics and therapeutics.  相似文献   

15.
Despite spontaneous or vaccination-induced immune responses, pancreatic cancer remains one of the most deadly immunotherapy-resistant malignancies. We sought to comprehend the spectrum of pancreatic tumor-associated antigens (pTAAs) and to assess the clinical relevance of their immunogenicity. An autologous SEREX-based screening of a cDNA library constructed from a pancreatic T3N0M0/GIII specimen belonging to a long-term survivor (36 months) revealed 18 immunogenic pTAA. RT-PCR analysis displayed broad distribution of the identified antigens among normal human tissues. PNLIPRP2 and MIA demonstrated the most distinct pancreatic cancer-specific patterns. ELISA-based screening of sera for corresponding autoantibodies revealed that although significantly increased, the immunogenicity of these molecules was not a common feature in pancreatic cancer. QRT-PCR and immunohistochemistry characterized PNLIPRP2 as a robust acinar cell-specific marker whose decreased expression mirrored the disappearance of parenchyma in the diseased organ, but was not related to the presence of PNLIPRP2 autoantibodies. Analyses of MIA—known to be preferentially expressed in malignant cells—surprisingly revealed an inverse correlation between intratumoral gene expression and the emergence of autoantibodies. MIAhigh patients were autoantibody-negative and had shorter median survival when compared with autoantibody-positive MIAlow patients (12 vs. 34 months). The observed pTAA spectrum comprised molecules associated with acinar, stromal and malignant structures, thus presenting novel targets for tumor cell-specific therapies as well as for approaches based on the bystander effects. Applying the concept of cancer immunoediting to interpret relationships between gene expression, antitumor immune responses, and clinical outcome might better discriminate between past and ongoing immune responses, consequently enabling prognostic stratification of patients and individual adjustment of immunotherapy.  相似文献   

16.
17.
Mapping differential expression of soluble proteins has become fairly routine using chromatofocusing in combination with the reversed-phase HPLC (ProteomeLab PF-2D by Beckman Coulter Inc.); however, identification of membrane antigens has not been reported thus far. In this report, we demonstrate a targeted proteomic approach employing immunoprecipitation, prior to 2D-LC separation, in tandem with MS/MS that can be used to identify tumor-associated membrane antigens. This system is very sensitive and reproducible in that only 1/4th the amount of starting material is required for analysis as compared to gel-based analysis, and permits a focused environment for eliminating non-specific interactions leading to an accurate resolution of the cognate antigen. This system also circumvents the well-known limitations associated with gel-based approaches. This approach has been validated in the identification of ErB2/HER-2 and was subsequently used to identify CD44E as the cognate antigen for VB1-008, one of our fully human, tumor-specific, monoclonal antibodies.  相似文献   

18.
Autoantibody biomarker opens a new gateway for cancer diagnosis   总被引:6,自引:0,他引:6  
The list of cancer markers of current interest has grown considerably, but none of the markers used in clinical work is a true tumor marker. These cancer biomarkers are based on the determination of tumor antigens. Here, we report a single method of autoantibody enzyme immunoassay (EIA) screens for a spectrum of serum tumor markers. A comparison of the autoantibody-based EIA to conventional antigen EIA kits, using receiver operating characteristic (ROC) plots, showed that the autoantibody EIA can significantly enhance the sensitivity and specificity of tumor markers. The detection of serum autoantibodies for a spectrum of serum tumor markers, as demonstrated here, suggests that most, if not all, serum cancer biomarkers produce autoantibodies. A unique autoantibody biomarker screening method, as presented here, might therefore facilitate achieving the accurate and early diagnosis of cancer.  相似文献   

19.
Biochemistry (Moscow) - Circulating autoantibodies against tumor-associated autoantigens (TAA) may serve as valuable biomarkers for a wide range of diagnostic purposes. Modern immunology offers a...  相似文献   

20.
Vaccines for colorectal cancer.   总被引:1,自引:0,他引:1  
Despite recent advances in the treatment of colorectal cancer, the overall survival rate for those patients with advanced locoregional disease remains less than 50%. Although adjuvant systemic chemotherapy has improved survival of these patients, more effective therapies are needed. Immunotherapy is an approach that could have a particular role in the adjuvant therapy of colorectal cancer. There is now convincing evidence that the immune system can specifically recognize and destroy malignant cells. Although both antibody- and T-cell-mediated anti-tumor responses have been documented, the cellular immune response with its direct cytotoxic mechanisms is felt to be the principal anti-tumor arm of the immune system. Analysis of the T cells that recognize tumors has led to the identification and characterization of many tumor-associated antigens including several colorectal antigens. Current approaches to developing a vaccine for colorectal cancer use our expanded understanding of these tumor-associated antigens and the conditions that allow development of an effective cellular immune response to them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号