首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromosome pairing behaviour of the natural allotetraploid Aegilops biuncialis (genome UUMM) and a triploid hybrid Ae. biuncialis x Secale cereale (genome UMR) was analyzed by electron microscopy in surface-spread prophase I nuclei. Synaptonemal-complex analysis at zygotene and pachytene revealed that synapsis in the allotetraploid was mostly between homologous chromosomes, although a few quadrivalents were also formed. Only homologous bivalents were observed at metaphase I. In contrast, homoeologous and heterologous chromosome associations were common at prophase I and metaphase I of the triploid hybrid. It is concluded that the mechanism controlling bivalent formation in Ae. biuncialis acts mainly at zygotene by restricting pairing to homologous chromosomes, but also acts at pachytene by preventing chiasma formation in the homoeologous associations. In the hybrid the mechanism fails at both stages. Key words : Aegilops biuncialis, allotetraploid, intergeneric hybrid, pairing control, synaptonemal complex.  相似文献   

2.
G Jenkins  R Chatterjee 《Génome》1994,37(5):784-793
The influence of chromosome structure upon pairing behaviour during meiosis was investigated by comparing four autotetraploid genotypes of rye (Secale cereale) containing homologous chromosome sets with different degrees of structural similarity. The series provided a range of genotypes that, at one extreme, contained structurally identical chromosome sets and, at the other extreme, sets that are certainly more heterozygous in the genic sense and probably also more diverse from a purely structural viewpoint. Relative frequencies of pairing configurations at meiotic prophase and metaphase I were compared by electron microscopy of whole-mount surface-spread synaptonemal complex complements and light microscopy of squash preparations. Despite unexpectedly low quadrivalent frequencies over all four genotypes, higher mean bivalent frequencies appeared to be associated with greater homologue diversity. In other words, greater structural divergence between chromosome sets appears to facilitate more efficient discrimination between homologous and identical chromosomes that drives the formation of bivalents. Statistical comparisons were not able to confirm in some cases the significance of the observed pattern of pairing behaviour.  相似文献   

3.
Meiotic chromosome behaviour was investigated by surface-spreading, air-drying and thin sectioning testes for light and electron microscope examination in artificial triploid transparent coloured crucian carp ( Carassius auratus L.) produced by hydrostatic pressure shock. Unsynapsed univalents, synapsed bivalents and partially synapsed trivalents could be observed and distinguished from each other in the surface-spread spermatocytes. The pairing of the partially paired trivalents mainly occurred in the telomeric regions. Similarly, lateral elements of unsynapsed univalents, typical synapsed bivalents and triple pairing configurations having three lateral elements and two central elements in the trivalents were also observed in the thin sectioned pachytene spermatocytes. The metaphase I cells were mainly composed of univalents, bivalents and trivalents, but a few tetravalents, pentavalents and hexavalents were also found. The relationship between disturbed chromosome pairing and abnormal spermatogenesis is briefly discussed.  相似文献   

4.
G H Jones  J E Vincent 《Génome》1994,37(3):497-505
Meiotic chromosome pairing of autotetraploid Crepis capillaris was analysed by electron microscopy of surface-spread prophase I nuclei and compared with light microscopic observations of metaphase I chromosome configurations. Prophase I quadrivalent frequencies are high in all three tetrasomes. (A, D, and C) and partially dependent on chromosome size. At metaphase I quadrivalent frequencies are much lower and strongly dependent on chromosome size. There is no evidence for multivalent elimination during prophase I in this system, and the reduction in multivalent frequency at metaphase I can be explained by an insufficiency of appropriately placed chiasmata. The high frequencies of prophase I quadrivalents far exceed the two-thirds expected on a simple model with two terminal independent pairing initiation sites per tetrasome, suggesting that multiple pairing initiation occurs. Direct observations reveal relatively high frequencies of pairing partner switches (PPSs) at prophase I, which confirms this suggestion. The numbers of PPSs per tetrasome show a good fit to the Poisson distribution, and their positional distribution along chromosomes is random and nonlocalized. These observations favour a model of pairing initiation based on a large number of evenly distributed autonomous pairing sites each with a uniform and low probability of generating a PPS.  相似文献   

5.
R Chatterjee  G Jenkins 《Génome》1993,36(1):131-138
Electron microscopy of whole-mount surface-spread synaptonemal complex complements and conventional light microscopy of chromosomes at first metaphase of meiosis were used to compare the relative frequencies of pairing configurations at the two stages in inbred autotetraploid rye (Secale cereale L.). Statistical tests showed significantly fewer multivalents at first metaphase than expectations based on random initiation of synapsis at each telomeric site within each group of four homologues. Direct observations of synaptic behaviour of chromosomes showed that this deviation is due primarily to a preponderance of bivalents during zygotene and pachytene. It is also the result of a significant drop in multivalent frequency from meiotic prophase to metaphase I, which is attributable both to a lack of chiasmata with which to consolidate multivalents and inhibition of chiasma formation in synaptonemal complex segments of multivalents that are nonhomologous.  相似文献   

6.
Meiotic chromosome pairing of triploid and trisomic Crepis capillaris was analysed by electron microscopy in surface-spread prophase I nuclei and compared with light microscopic observations of metaphase I. This system allows identification and separate analysis of each chromosome of the C. capillaris genome. Prophase I trivalent frequencies are very high in all three trisomes and only slightly dependent on chromosome size. At metaphase I, on the other hand, trivalent frequencies are much lower and strongly dependent on chromosome size. There is no evidence for trivalent elimination during prophase I in this system, and the reduction in trivalent frequency at metaphase I can be explained by an insufficiency of appropriately placed chiasmata. The high prophase I trivalent frequencies far exceed the two-thirds expected on a simple model with two terminal independent pairing initiation sites per trisome, suggesting that multiple pairing initiation occurs. Direct observations reveal high frequencies of pairing partner switches (PPSs) in prophase I trisomes, which confirms this supposition. The numbers of PPSs per trisome shows a better fit to the Poisson than to the binomial distribution and their positional distribution along trisomes is random and non-localized. All these observations favour a model of pairing initiation in trisomes based on a large number of evenly distributed autonomous pairing sites each with a uniform and low probability of generating a PPS.by C. Heyting  相似文献   

7.
Martí DA  Bidau CJ 《Hereditas》2001,134(3):245-254
Dichroplus pratensis has a complex system of Robertsonian rearrangements with central-marginal distribution; marginal populations are standard telocentric. Standard bivalents show a proximal-distal chiasma pattern in both sexes. In Robertsonian individuals a redistribution of chiasmata occurs: proximal chiasmata are suppressed in fusion trivalents and bivalents which usually display a single distal chiasma per chromosome arm. In this paper we studied the synaptic patterns of homologous chromosomes at prophase I of different Robertsonian status in order to find a mechanistic explanation for the observed phenomenon of redistribution of chiasmata. Synaptonemal complexes of males with different karyotypes were analysed by transmission electron microscopy in surface-spread preparations. The study of zygotene and early pachytene nuclei revealed that in the former, pericentromeric regions are the last to synapse in Robertsonian trivalents and bivalents and normally remain asynaptic at pachytene in the case of trivalents, but complete pairing in bivalents. Telocentric (standard) bivalents usually show complete synapsis at pachytene, but different degrees of interstitial asynapsis during zygotene, suggesting that synapsis starts in opposite (centromeric and distal) ends. The sequential nature of synapsis in the three types of configuration is directly related to their patterns of chiasma localisation at diplotene-metaphase I, and strongly supports our previous idea that Rb fusions instantly produce a redistribution of chiasmata towards chromosome ends by reducing the early pairing regions (which pair first, remain paired longer and thus would have a higher probability of forming chiasmata) from four to two (independently of the heterozygous or homozygous status of the fusion). Pericentromeric regions would pair the last, thus chiasma formation is strongly reduced in these areas contrary to what occurs in telocentric bivalents.  相似文献   

8.
A cytotaxonomic investigation was undertaken to assess the taxonomic status of the grasses Alloteropsis semialata subsp. eckloniana and A. semialata subsp. semialata , distinguished because of a C3 photosynthetic pathway in subsp. eckloniana and a C4 pathway in subsp. semialata. Of the 30 analysed specimens of population A, 14 (46.7%) were diploid, 14 (46.7%) hexaploid, one octoploid (3.3%) and one dodecaploid (3.3%). Of the 21 specimens of population B, 14 (66.7%) were diploid, three (14.3%) hexaploid and four (19.0%) octoploid. All the diploids belonged to subsp. eckloniana , while all the polyploids belonged to subsp. semialata. Meiosis of the diploids appeared normal, with nine bivalents and a mean metaphase I chiasma frequency of 12.7 per cell. The hexaploids displayed a large range of chromosome pairing associations, although a high percentage of bivalents was recorded (89.9%). Three of the hexaploids showed 100% bivalent pairing, but the largest multivalent found in other hexaploids was a hexavalent pairing. The three octoploids analysed had 93.5% bivalent pairing. B chromosomes were found in five diploids, two hexaploids and one octoploid. Slow-moving bivalents, two in the diploids and up to four in the polyploids segregated late at anaphase I in most specimens.  相似文献   

9.
Chromosomal pairing and recombination were analyzed in male specimens of Sceloporus grammicus heterozygous for a large pericentric inversion of macrochromosome 4. Analysis of silver-stained synaptonemal complexes (SCs) in surface-spread nuclei revealed that homologously paired inversion loops were not formed. Synapsis of the inverted segments proceeded directly to nonhomologous straight pairing. In some nuclei, this resulted in a configuration that could not be distinguished from homozygous bivalents of similar size. Examination of Giemsa- and silver-stained diakinetic nuclei indicated that crossing-over was limited to the noninverted (homologous) portion of the heteromorphic bivalent. Analysis of secondary spermatocytes (metaphase II configurations) revealed normal disjunction and balanced segregation of the elements of the heteromorphic bivalent. These observations indicate that the inversion heteromorphism does not lead to the production of unbalanced gametes.  相似文献   

10.
Chromosomal pairing of one triploid and three tetraploid plants of rye, Secale cereale, was analyzed by electron microscopy in surface-spread prophase I nuclei and compared with light microscopic observations of metaphase I cells. Prophase I is characterized by: (i) the weak alignment showed by the three or four unsynapsed or partially homologous synapsed axes; (ii) the low number ber of pairing partner switches (PPSs) displayed by both trivalents and quadrivalents; and (iii) the existence of complex multivalents in which up to 13 chromosomes in the triploid and 22 chromosomes in the tetraploids were involved. However, only few heterologous chromosomal associations were maintained at metaphase I. The results obtained are discussed under the assumptions of the random end pairing model with some modifications.  相似文献   

11.
Preferential pairing estimates from multivalent frequencies in tetraploids.   总被引:4,自引:0,他引:4  
J Sybenga 《Génome》1994,37(6):1045-1055
Mathematical models are presented for estimating preferential pairing and chiasma parameters in amphidiploids and autotetraploids on the basis of diakinesis or metaphase I configuration frequencies and are compared with other approaches of estimating affinity. With a preferential pairing factor p, estimated from quadrivalent and trivalent frequencies, and estimated chiasmate association factors for the two arms in quadrivalents (a(qu) and b(qu) for arms A and B, respectively) and in bivalents (a(bi) and b(bi)) a perfect fit between observed and predicted configuration frequencies can often be obtained in amphidiploids of several plant species, including Solanaceae and Gramineae. Since several proven autotetraploids give very similar apparent preferential pairing estimates, the biological significance of such parameters as preferential pairing and affinity factors is considered limited. The same is true for pairing parameters estimated by optimizing fit of configuration frequencies expected on the basis of theoretical models to observed data.  相似文献   

12.
Different wild allopolyploid species of Triticeae show extensive bivalent formation at zygotene while a considerable number of multivalents is present in cultivated polyploid wheats. To study the chromosome behaviour at early meiotic stages in wild forms of tetraploid wheats Triticum turgidum and T timopheevii (2n = 4x = 28) we have analysed the synaptic pattern in fully traced spread nuclei at mid- and late zygotene and at pachytene of wild accessions of these species. The mean number of synaptonemal complex (SC) bivalents at mid-zygotene ranged from 12.22 to 13.14 among the accessions studied indicating a strong restriction of synapsis initiation to homologous chromosomes. The mean of bivalents increased at pachytene because of the transformation of multivalents into bivalents. Ring bivalents observed at metaphase I support that SC bivalents were formed by homologous chromosomes. The average values of SC bivalents at mid-zygotene in the wild forms are much higher than the average values observed in the cultivated tetraploid wheats but similar to that of a mutant line of T turgidum with a duplication that includes Ph1, the major homoeologous pairing suppressor locus. These results suggest that the efficiency of the mechanism operating in the homologous recognition for synapsis is higher in wild wheat populations than in cultivated varieties. Apparently, a relatively detrimental modification of the pairing regulating genetic system accompanied the domestication of the wild wheat forms.  相似文献   

13.
The meiotic behaviour of chromosomes 1R, 2R and 5R was studied in C-banded preparations of autotetraploid rye. Analysis of pairing and chiasma formation was based on metaphase I configurations, using the model designed by Sybenga, with slight modifications. Frequencies of two modes of pairing (one quadrivalent or two bivalents) differed from those expected for random pairing. Although preferential pairing for some arm pairs of chromosome 2R was detected, this did not seem to be the cause of the increased bivalent pairing. This increase was attributed to either the spatial separation of the four homologous chromosomes in some premeiotic cells into two groups of two, or a correction of the synaptonemal complex, or both. The number of chiasmate associations showed variation between chromosomes and between arms within the same chromosome. It was closely related to arm length, but different after quadrivalent and bivalent pairing. This is suggested to be a consequence of partner exchange interfering with pairing and, consequently, with chiasma formation, and a different chiasma distribution after quadrivalent pairing. Variation between chromosomes in the frequencies of alternate and adjacent co-orientation in metaphase I quadrivalents without interstitial chiasmata suggests that the relative positions of the centromeres in the quadrivalent influence their co-orientation.  相似文献   

14.
J. Sybenga 《Chromosoma》1975,50(2):211-222
In autotetraploids, chromosome pairing may be in the form of quadrivalents or bivalent pairs. Whether or not the quadrivalents are maintained until first meiotic metaphase depends on the formation of chiasmata. The relative frequencies of M I configurations thus contain information both on pairing and on chiasma formation. With distal chiasma localisation six configurations can be recognised and their relative frequencies determined: ring quadrivalents, chain quadrivalents, trivalents (with univalent), ring bivalents, open (rod) bivalents, univalent pairs. These represent five degrees of freedom permitting five parameters to be estimated: the frequency (f) of quadrivalent pairing; the frequencies of chiasmate association of the two ends (arms in metacentrics), a′, b′, after quadrivalent pairing, and a, b after bivalent pairing. — The appropriate formulae have been derived and applied to observations on Tradescantia virginiana (4n=24) which has pronounced distal chiasma localisation. Slight modifications make the model applicable to autotetraploids with interstitial in addition to distal chiasmata. In T. virginiana, chromosome pairing appeared to be random between homologues (65.8% quadrivalent pairing; 55.4% observed at M I). After quadrivalent pairing chiasmate association is frequent in the “average long” arm (95.0%) and much less so in the other arm (60.5%). This is attributed to partner exchange. After bivalent pairing chiasma frequencies are still different for the two arms (93.8% and 83.5% association respectively) but much less pronounced. Various complications are discussed.  相似文献   

15.
Chromosomes of Bombyx mori (n = 28) and of Bombyx mandarina (n = 27) were studied cytogenetically to resolve the origin of the large M chromosome in the Japaneses type of B. mandarina. In the F1 progeny from the reciprocal cross between B. mandarina and B. mori, the mitotic chromosome number was 2n = 55, and a chromosome configuration of 26 bivalents plus 1 trivalent was observed at metaphase I of germ cells. The trivalent chromosome consisted of the M chromosome from B. mandarina and two chromosomes from B. mori. When males of B. mori were mated to the F1 females, nuclei with two types of chromosome number (2n = 55 and 2n = 56) and two sets of chromosome pairs (26 bivalents plus 1 trivalent versus 28 bivalents) were observed in the metaphase I stage. Linkage analysis showed that the 14th chromosome of B. mori was involved in these two types of chromosome segregation. This result indicates that the M chromosome in B. mandarina arose from a fusion between a chromosome corresponding to the 14th linkage group and another, yet unidentified linkage group.  相似文献   

16.
V. Manga  J. V. Pantulu 《Genetica》1971,42(3):319-328
Meiosis was studied in one haploid plant of pearl millet, obtained from twin seedlings. Apparent pairing resulted in up to three bivalent associations at pachytene. At diakinesis and metaphase I associations of two, three or four chromosomes were observed. The frequency distribution of bivalents at metaphase followed a truncated Poisson distribution, suggesting that the bivalents were random pairs. They were considered to be pseudo-bivalents. Univalents varied in number from three to seven and they formed s-s and e-g associations. The s-s and e-s associations were random associations since their frequency distributions also followed a truncated Poisson distribution. A bipolar spindle was observed in a large number of PMC's but in a few cases two unipolar spindles were observed. The anaphase I distribution of the chromosomes deviated from abinomial distribution. Laggards were observed at telophase I. The dyads varied in size and in number of chromosomes. After the second division cell wall formation often failed to take place in one or in both the dyads, resulting in the formation of 2 to 4 microspores and microspores with two nuclei. The pollen grains varied in size and number of chromosomes. The plant was completely sterile.  相似文献   

17.
Charles Tease 《Chromosoma》1998,107(8):549-558
Two factors postulated to influence the meiotic behaviour of reciprocal translocations were investigated. Firstly, variation in the length of translocated and non-translocated segments was studied in male mice using four different rearrangements involving chromosomes 2 and 4. Secondly, sex-related effects were analysed through comparison of the meiotic behaviour of two translocations in male and female germ cells. In the first part of the study, primary and secondary spermatocytes of male mice carrying a translocation [T(2;4)1Ca, T(2;4)13H, T(2;4)1Sn, or T(2;4)1Go] were screened. Each rearrangement had different proportions of cells with ring and chain quadrivalents at metaphase I; the T(2;4)1Sn heterozygote also had a high rate (45%) of translocation bivalents. In general, the translocations had elevated chiasma frequencies in the rearranged chromosomes compared with structurally normal chromosomes 2 and 4, although the extent of the effect varied. Each rearrangement produced a different array of segregation products at metaphase II, reflecting their contrasting frequencies of multivalent configurations at metaphase I. Comparison of chromosome behaviour at metaphase I and II suggested that certain configurations tended to adopt particular orientations. However, it was also clear that such correlations were imprecise and that other factors, possibly the exact positions of chiasmata, also played a role in multivalent orientation. Two rearrangements, T(2;4)1Go and T(7;16)67H, were analysed in female mice. The frequencies of the various multivalent types at metaphase I differed from those in male carriers of these rearrangements owing to an increased chiasma frequency in oocytes in some of the pairing segments. Not surprisingly, the segregation products seen in metaphase II cells showed some differences from the pattern recorded in male germ cells. For T(2;4)1Go, the sex-related difference in segregation patterns resulted in a diminished expectation of genetically imbalanced gametes, although this was not the case for T(7;16)67H. Received: 6 June 1998 / Accepted: 9 October 1998  相似文献   

18.
A small population of complex translocation heterozygote plants of Allium roylei from the Bani region of Jammu Province was studied for meiosis in the female track. This study resulted in identification of two variants, having embryo-sac mother cells (EMCs) with more than 16 chromosomes. EMCs of the remaining plants invariably had diploid (2n = 16) chromosome complement. Female meiosis, in general, was found to be abnormal, with nearly 23% and 11% chromosomes associating as quadrivalents or trivalents at prophase I and at metaphase I, respectively. This was followed by irregular segregation of chromosomes at anaphase I. Amongst the variants; one had 38% EMCs with eight bivalents plus two small sized chromosomes. Their small size, dispensable nature and tendency to affect the pairing behaviour of normal complement are some of the features that latter chromosomes share with the B chromosomes. Seventeen to nineteen chromosomes were observed in 35% EMCs of other variant; the remaining cells had 16 chromosomes. Chromosomal behaviour in both kind of cells (euploid and aneuploid) was more or less similar. Unlike female meiocytes, male meiocytes analysed earlier of this strain always had 16 chromosomes which paired to form extremely complex associations involving 3-16 chromosomes. The most likely cause of this asynchrony with regards to number of chromosomes involved in multivalent formation seems to be interaction of genes controlling chiasma formation with the different physiological conditions of male and female meiocytes.  相似文献   

19.
通过细胞学观察,在普通小麦栽培品种“丰抗13”和“京红1号”的杂交后代中,发现有多价体出现,这就表明有染色体易位发生。为进一步弄清究竟是哪条染色体发生了易位,我们采用单体测交方法,观察鉴定所有各单体系F_1的花粉母细胞第一次减数分裂中期Ⅰ(以下简称PMCs中Ⅰ)染色体构型。从鉴定结果发现,凡2n=42的F_1 PMCs中Ⅰ出现19~Ⅱ 1~Ⅳ,而2n=41的F_1PMCs中Ⅰ的染色体构型不同,单体与易位有关的两个单体系4B和1D F_1 PMCs中的Ⅰ构型中有部分呈现为19个二价体加1个三价体,即19~Ⅱ 1~Ⅲ,没有单价体,而其余各单体系F_1 PMCs中Ⅰ构型则表现为18个二价体,1个四价体和1个单价体,即18~Ⅱ 1~Ⅰ 1~Ⅳ。因此,可以肯定“丰抗13”存在1个染色体易位,其有关染色体就是4B和1D。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号