首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Xiong H  Stanley BA  Pegg AE 《Biochemistry》1999,38(8):2462-2470
S-Adenosylmethionine decarboxylase is a pyruvate-dependent enzyme. The enzyme forms a Schiff base with substrate, S-adenosylmethionine, through the pyruvoyl moiety. This facilitates the release of CO2 from the substrate, which must then be protonated on the alpha carbon in order to permit hydrolysis of the Schiff base to release the product. The catalytic mechanism of human S-adenosylmethionine decarboxylase was investigated via mutagenic and kinetic approaches. The results of enzyme kinetic studies indicated that Cys-82 is a crucial residue for activity and this residue has a basic pKa. Iodoacetic acid inhibited wild-type enzyme activity in a time- and pH-dependent manner but did not affect the already reduced activity of mutant C82A. Reaction of this mutant with iodoacetic acid led to approximately one less mole of reagent being incorporated per mole of enzyme alphabeta dimer than with wild-type S-adenosylmethionine decarboxylase. Both wild-type and C82A mutant S-adenosylmethionine decarboxylases were inactivated by substrate-mediated transamination, but this reaction occurred much more frequently with C82A than with wild-type enzyme. A major proportion of the recombinant C82A mutant protein was in the transaminated form in which the pyruvoyl cofactor is converted into alanine. This suggests that incorrect protonation of the pyruvate, rather than the substrate, occurs much more readily when Cys-82 is altered. On the basis of these results, it was postulated that residue Cys-82 may be the proton donor of the decarboxylation reaction catalyzed by S-adenosylmethionine decarboxylase.  相似文献   

2.
D L Anton  R Kutny 《Biochemistry》1987,26(20):6444-6447
S-Adenosylmethionine decarboxylase, a pyruvoyl-containing decarboxylase, is inactivated in a time-dependent process under turnover conditions. The inactivation is dependent on the presence of both substrate and Mg2+, which is also required for enzyme activity. The rate of inactivation is dependent on the concentration of substrate and appears to be saturable. Inactivation by [methionyl-3,4-14C]-adenosylmethionine results in stoichiometric labeling of the protein. In contrast, when either S-[methyl-3H]adenosylmethionine or [8-14C]adenosylmethionine is used, there is virtually no incorporation of radioactivity. Automated Edman degradation of the alpha (pyruvoyl-containing) subunit reveals that substrate inactivation results in the conversion of the pyruvoyl group to an alanyl residue. These data suggest a mechanism of inactivation which involves the transamination of the nascent product to the pyruvoyl group, followed by the elimination of methylthioadenosine and the generation of a 2-propenal equivalent which could undergo a Michael addition to the enzyme. This is the first evidence for a transamination mechanism for substrate inactivation of a pyruvoyl enzyme.  相似文献   

3.
The 26S proteasome is a eukaryotic ATP-dependent protease, but the molecular basis of its energy requirement is largely unknown. Ornithine decarboxylase (ODC) is the only known enzyme to be degraded by the 26S proteasome without ubiquitinylation. We report here that the 26S proteasome is responsible for the irreversible inactivation coupled to sequestration of ODC, a process requiring ATP and antizyme (AZ) but not proteolytic activity. Neither the 20S proteasome (catalytic core) nor PA700 (the regulatory complex) by itself contributed to this ODC inactivation. Analysis with a C-terminal mutant ODC revealed that the 26S proteasome recognizes the C-terminal degradation signal of ODC exposed by attachment of AZ, and subsequent ATP-dependent sequestration of ODC in the 26S proteasome causes irreversible inactivation, possibly unfolding, of ODC and dissociation of AZ. These processes may be linked to the translocation of ODC into the 20S proteasomal inner cavity, centralized within the 26S proteasome, for degradation.  相似文献   

4.
D Mahaffey  M Rechsteiner 《FEBS letters》1999,450(1-2):123-125
The 26S proteasome subunit 5a binds polyubiquitin chains and has previously been shown to inhibit the degradation of mitotic cyclins. Presumably inhibition results from S5a binding and preventing recognition of Ub-cyclin conjugates by the 26S proteasome. Here we show that S5a does not inhibit the degradation of full-length ornithine decarboxylase (ODC) consistent with previous reports that the enzyme is degraded in an antizyme-dependent, but ubiquitin-independent reaction. S5a does, however, inhibit degradation of short ODC translation products generated by internal initiation events. Because in vitro translation often produces some shortened products, the existence of ubiquitin conjugated to a 35S-labeled protein is not necessarily evidence that the full-length protein is a substrate of the Ub-dependent proteolytic pathway.  相似文献   

5.
S-Adenosylmethionine decarboxylase is one of a small group of enzymes that use a pyruvoyl residue as a cofactor. Histidine decarboxylase from Lactobacillus 30a, the best studied pyruvoyl-containing enzyme, has an (alpha beta)6 subunit structure with the pyruvoyl moiety linked through an amide bond to the NH2-terminal of the larger alpha subunit (Recsei, P. A., Huynh, Q. K., and Snell, E. E. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 973-977). To examine potential structural analogies between the two enzymes, we have isolated and partially characterized S-adenosylmethionine decarboxylase. The purified enzyme comprises equimolar amounts of two subunits of Mr = 14,000 and 19,000 (by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and has a native molecular weight of 136,000 (by gel filtration). Approximately 4 mol of [methyl-3H] adenosylmethionine are incorporated per mol of enzyme (Mr = 136,000) when the enzyme is inactivated with this substrate and NaCNBH3. These data suggest an (alpha beta)4 structure with 1 pyruvoyl residue for each alpha beta pair. The two subunits have been separated by reversed-phase high performance liquid chromatography after reduction and carboxymethylation. The smaller subunit (beta) has a free amino terminus. The amino terminus of the larger subunit (alpha) appears to be blocked by a pyruvoyl group; this subunit can be sequenced only after this group is converted to an alanyl residue by reduction with sodium cyanoborohydride in the presence of ammonium acetate. This work suggests that S-adenosylmethionine decarboxylase is structurally much more similar to histidine decarboxylase than previously thought.  相似文献   

6.
Ubiquitin (Ub)-mediated proteasome-dependent proteolysis is critical in regulating multiple biological processes including apoptosis. We show that the unstructured BH3-only protein, NOXA, is degraded by an Ub-independent mechanism requiring 19S regulatory particle (RP) subunits of the 26S proteasome, highlighting the possibility that other unstructured proteins reported to be degraded by 20S proteasomes in vitro may be bona fide 26S proteasome substrates in vivo. A lysine-less NOXA (NOXA-LL) mutant, which is not ubiquitinated, is degraded at a similar rate to wild-type NOXA. Myeloid cell leukemia 1, but not other anti-apoptotic BCL-2 family proteins, stabilizes NOXA by interaction with the NOXA BH3 domain. Depletion of 19S RP subunits, but not alternate proteasome activator REG subunits, increases NOXA half-life in vivo. A NOXA-LL mutant, which is not ubiquitinated, also requires an intact 26S proteasome for degradation. Depletion of the 19S non-ATPase subunit, PSMD1 induces NOXA-dependent apoptosis. Thus, disruption of 26S proteasome function by various mechanisms triggers the rapid accumulation of NOXA and subsequent cell death strongly implicating NOXA as a sensor of 26S proteasome integrity.  相似文献   

7.
8.
The 26S proteasome mediates degradation of protein substrates labeled with polyUb chains. After recognition by the 19S proteasome regulatory complex, polyUb chains are disassembled and substrates are processed in the 20S core of proteasome. However, the exact relationship of degradation-associated deubiquitination to substrate processing remains unclear. Here, using Ub-based tagging strategies, we provided evidence that removable polyUb chains serve as the signal for proteolytic processing of ubiquitinated substrates. We showed that inhibition of the proteasome by proteasome inhibitor MG132 results in trapping of the substrate in the proteasome. Such a trapping allows proteasomal cleavage of attached non-removable Ub mutant (UbV75,76), which is otherwise a "difficult" deubiquitination substrate. Characterization of deubiquitination and degradation intermediates, generated due to incomplete proteolytic inhibition, revealed changes in proteolytic cleavage sites, within the Gal4-VP16 model substrate, suggesting that the copy number of attached UbV75,76 affects substrate processing. Conversion of lysine48 to arginine48 in UbV75,76 did not have significant effect on in vivo polyubiquitination of multiple Ub-fused substrates, but considerably reduced proteolytic intermediates. Taken together, the results support a model in which deubiquitination process is a crucial event for proteolysis of ubiquitinated substrates and such an event is coordinated with substrate translocation.  相似文献   

9.
The 26S proteasome degrades ubiquitinated proteins, and proteasomal degradation controls various cellular events. Here we report that the human 26S proteasome is ubiquitinated, by which the ubiquitin receptors Adrm1 and S5a, the ATPase subunit Rpt5, and the deubiquitinating enzyme Uch37 are ubiquitinated in situ by proteasome-associating ubiquitination enzymes. Ubiquitination of these subunits significantly impairs the 26S proteasome''s ability to bind, deubiquitinate, and degrade ubiquitinated proteins. Moreover, ubiquitination of the 26S proteasome can be antagonized by proteasome-residing deubiquitinating enzymes, by the binding of polyubiquitin chains, and by certain cellular stress, indicating that proteasome ubiquitination is dynamic and regulated in cells. We propose that in situ ubiquitination of the 26S proteasome regulates its activity, which could function to adjust proteasomal activity in response to the alteration of cellular ubiquitination levels.  相似文献   

10.
Peptides displayed on the cell surface by major histocompatibility class I molecules (MHC class I) are generated by proteolytic processing of protein-antigens in the cytoplasm. Initially, antigens are degraded by the 26 S proteasome, most probably following ubiquitination. However, it is unclear whether this proteolysis results in the generation of MHC class I ligands or if further processing is required. To investigate the role of the 26 S proteasome in antigen presentation, we analyzed the processing of an intact antigen by purified 26 S proteasome. A recombinant ornithine decarboxylase was produced harboring the H-2K(b)-restricted peptide epitope, derived from ovalbumin SIINFEKL (termed ODC-ova). Utilizing recombinant antizyme to target the antigen to the 26 S proteasome, we found that proteolysis of ODC-ova by the 26 S proteasome resulted in the generation of the K(b)-ligand. Mass spectrometry analysis indicated that in addition to SIINFEKL, the N-terminally extended ligand, HSIINFEKL, was also generated. Production of SIINFEKL was linear with time and directly proportional to the rate of ODC-ova degradation. The overall yield of SIINFEKL was approximately 5% of the amount of ODC-ova degraded. The addition of PA28, the 20 S, or the 20 S-PA28 complex to the 26 S proteasome did not significantly affect the yield of the antigenic peptide. These findings demonstrate that the 26 S proteasome can efficiently digest an intact physiological substrate and generate an authentic MHC class I-restricted epitope.  相似文献   

11.
Ornithine decarboxylase (ODC) is a key enzyme in polyamine biosynthesis. Turnover of ODC is extremely rapid and highly regulated, and is accelerated when polyamine levels increase. Polyamine-stimulated ODC degradation is mediated by association with antizyme (AZ), an ODC inhibitory protein induced by polyamines. ODC, in association with AZ, is degraded by the 26S proteasome in an ATP-dependent, but ubiquitin-independent, manner. The 26S proteasome irreversibly inactivates ODC prior to its degradation. The inactivation, possibly due to unfolding, is coupled to sequestration of ODC within the 26S proteasome. This process requires AZ and ATP, but not proteolytic activity of the 26S proteasome. The carboxyl-terminal region of ODC presumably exposed by interaction with AZ plays a critical role for being trapped by the 26S proteasome. Thus, the degradation pathway of ODC proceeds as a sequence of multiple distinct processes, including recognition, sequestration, unfolding, translocation, and ultimate degradation mediated by the 26S proteasome.  相似文献   

12.
Regulatory subunit interactions of the 26S proteasome, a complex problem   总被引:16,自引:0,他引:16  
The 26S proteasome is the major non-lysosomal protease in eukaryotic cells. This multimeric enzyme is the integral component of the ubiquitin-mediated substrate degradation pathway. It consists of two subcomplexes, the 20S proteasome, which forms the proteolytic core, and the 19S regulator (or PA700), which confers ATP dependency and ubiquitinated substrate specificity on the enzyme. Recent biochemical and genetic studies have revealed many of the interactions between the 17 regulatory subunits, yielding an approximation of the 19S complex topology. Inspection of interactions of regulatory subunits with non-subunit proteins reveals patterns that suggest these interactions play a role in 26S proteasome regulation and localization.  相似文献   

13.
Bile salt-dependent lipase (BSDL, EC 3.1.1.13) is a lipolytic enzyme normally secreted by the pancreatic acinar cell. Co- and post-translational modifications, such as N- and O-linked glycosylation, regulate the secretion of this enzyme; therefore it was of first importance to determine the behaviour of BSDL under conditions that impaired its secretion. Using AR4-2J pancreatic cells as model, we showed, particularly when BSDL secretion is impaired, that proteasome inhibitors increased the amount of intracellular BSDL, suggesting that the proteasome is involved in the degradation of this protein. This was strengthened by the detection of ubiquitinated BSDL and of degradation product. Our results suggested that both ubiquitination and degradation of the enzyme occurred at the level of the cytosolic side of microsome membranes. ATP hydrolysis appears essential in ubiquitinated BSDL association with membranes and degradation. Furthermore, under normal secretory conditions, we have shown that a fraction of ubiquitinated BSDL is neither O-glycosylated nor N-glycosylated, suggesting that the N-glycosylation-deficient proteasome substrate does not reach the Golgi and could be degraded by the ER-associated degradation machinery. However, another fraction of ubiquitinated BSDL that is deficient in O-glycosylation, carries out endoglycosidase H-insensitive N-linked glycans, meaning that a second system, that detects abnormal BSDL molecules, could also operate at the level of the Golgi compartment. Consequently, it appears that impairment of BSDL secretion consecutive to secretion inhibition or to a deficient glycosylation leads to the proteasome-ubiquitin-dependent degradation of the protein. Therefore, this pathway is part of the quality control involved in BSDL secretion.  相似文献   

14.
E Diaz  D L Anton 《Biochemistry》1991,30(16):4078-4081
S-Adenosylmethionine decarboxylase from Escherichia coli is a member of a small class of enzymes that uses a pyruvoyl prosthetic group. The pyruvoyl group is proposed to form a Schiff base with the substrate and then act as an electron sink facilitating decarboxylation. We have previously shown that once every 6000-7000 turnovers the enzyme undergoes an inactivation that results in a transaminated pyruvoyl group and the formation of an acrolein-like species from the methionine moiety. The acrolein then covalently alkylates the enzyme [Anton, D. L., & Kutny, R. (1987) Biochemistry 26, 6444]. After reduction of the alkylated enzyme with NaBH4, a tryptic peptide with the sequence Ala-Asp-Ile-Glu-Val-Ser-Thr-[S-(3-hydroxypropyl)Cys]-Gly-Val-Ile-Ser-Pro - Leu-Lys was isolated. This corresponds to acrolein alkylation of a cysteine residue in the second tryptic peptide from the NH2 terminal of the alpha-subunit [Anton, D. L., & Kutny, R. (1987) J. Biol. Chem. 262, 2817-2822]. The modified residue derived is from Cys-140 of the proenzyme [Tabor, C. W., & Tabor, H. (1987) J. Biol. Chem. 262, 16037-16040] and lies in the only sequence conserved between rat liver and E. coli S-adenosylmethionine decarboxylase [Pajunen et al. (1988) J. Biol. Chem. 263, 17040-17049]. We suggest that the alkylated Cys residue could have a role in the catalytic mechanism.  相似文献   

15.
Attachment of ubiquitin to cellular proteins frequently targets them to the 26S proteasome for degradation. In addition, ubiquitination of cell surface proteins stimulates their endocytosis and eventual degradation in the vacuole or lysosome. In the yeast Saccharomyces cerevisiae, ubiquitin is a long-lived protein, so it must be efficiently recycled from the proteolytic intermediates to which it becomes linked. We identified previously a yeast deubiquitinating enzyme, Doa4, that plays a central role in ubiquitin-dependent proteolysis by the proteasome. Biochemical and genetic data suggest that Doa4 action is closely linked to that of the proteasome. Here we provide evidence that Doa4 is required for recycling ubiquitin from ubiquitinated substrates targeted to the proteasome and, surprisingly, to the vacuole as well. In the doa4Delta mutant, ubiquitin is strongly depleted under certain conditions, most notably as cells approach stationary phase. Ubiquitin depletion precedes a striking loss of cell viability in stationary phase doa4Delta cells. This loss of viability and several other defects of doa4Delta cells are rescued by provision of additional ubiquitin. Ubiquitin becomes depleted in the mutant because it is degraded much more rapidly than in wild-type cells. Aberrant ubiquitin degradation can be partially suppressed by mutation of the proteasome or by inactivation of vacuolar proteolysis or endocytosis. We propose that Doa4 helps recycle ubiquitin from both proteasome-bound ubiquitinated intermediates and membrane proteins destined for destruction in the vacuole.  相似文献   

16.
Mammalian ornithine decarboxylase (ODC) is a very unstable protein which is degraded in an ATP-dependent manner by proteasome 26S, after making contact with the regulatory protein antizyme. PEST regions are sequences described as signals for protein degradation. The C-terminal PEST region of mammalian ODC is essential for its degradation by proteasome 26S. Mammalian histidine decarboxylase (HDC) is also a short-lived protein. The full primary sequence of mammalian HDC contains PEST-regions at both the N- and C-termini. Rat ODC and different truncated and full versions of rat HDC were expressed in vitro. In vitro degradation of rat ODC and rat 1-512 HDC were compared. Like ODC, rat 1-512 HDC is degraded mainly by an ATP-dependent mechanism. However, antizyme has no effect on the degradation of 1-512 HDC. The use of the inhibitors MG-132 and lactacystine significantly inhibited the degradation of 1-512 HDC, suggesting that a ubiquitin-dependent, proteasome 26S proteolytic pathway is involved. Results obtained with the different modifications of rat HDC containing all three PEST regions (full version, 1-656 HDC), only the N-terminal PEST region (1-512 HDC), or no PEST region (69-512 HDC), indicate that the N-terminal (1-69) fragment, but not the C-terminal fragment, determines that the HDC protein is a proteasome substrate in vitro.  相似文献   

17.
Selective degradation of single subunits of multimeric complexes by the ubiquitin pathway underlies multiple regulatory switches, including those involving cyclins and Cdk inhibitors. The machinery that segregates ubiquitinated proteins from unmodified partners prior to degradation remains undefined. We report that ubiquitinated Sic1 (Ub-Sic1) embedded within inactive S phase cyclin-Cdk (S-Cdk) complexes was rapidly degraded by purified 26S proteasomes, yielding active S-Cdk. Mutant proteasomes that failed to degrade Ub-Sic1 activated S-Cdk only partially in an ATP-dependent manner. Whereas Ub-Sic1 was degraded within approximately 2 min, spontaneous dissociation of Ub-Sic1 from S-Cdk was approximately 200-fold slower. We propose that the 26S proteasome has the intrinsic capability to extract, unfold, and degrade ubiquitinated proteins while releasing bound partners untouched. Activation of S-Cdk reported herein represents a complete reconstitution of the regulatory switch underlying the G1/S transition in budding yeast.  相似文献   

18.
Site-directed mutagenesis has been used to explore the role of two carboxylates in the active site of histidine decarboxylase from Lactobacillus 30a. The most striking observation is that conversion of Glu197 to either Gln or Asp causes a major decrease in catalytic rate while enhancing substrate binding. This is consistent with models based on X-ray diffraction results which suggest that the acid may protonate a reaction intermediate during catalysis. The Asp197 protein undergoes a suicide reaction with substrate, apparently triggered by inappropriate protonation of the intermediate. This leads to decarboxylation-dependent transamination which converts the pyruvoyl cofactor to an alanine, inactivating the enzyme. Conversion of Glu66 to Gln affects parameters of kinetic cooperativity. The mutation fixes the Hill number at approximately 1.5, midway between the pH-dependent values of the wild-type enzyme.  相似文献   

19.
Antizyme is a polyamine-induced cellular protein that binds to ornithine decarboxylase (ODC), and targets it to rapid ubiquitin-independent degradation by the 26S proteasome. However, the metabolic fate of antizyme is not clear. We have tested the stability of antizyme in mammalian cells. In contrast with previous studies demonstrating stability in vitro in a reticulocyte lysate-based degradation system, in cells antizyme is rapidly degraded and this degradation is inhibited by specific proteasome inhibitors. While the degradation of ODC is stimulated by the presence of cotransfected antizyme, degradation of antizyme seems to be independent of ODC, suggesting that antizyme degradation does not occur while presenting ODC to the 26S proteasome. Interestingly, both species of antizyme, which represent initiation at two in-frame initiation codons, are rapidly degraded. The degradation of both antizyme proteins is inhibited in ts20 cells containing a thermosensitive ubiquitin-activating enzyme, E1. Therefore we conclude that in contrast with ubiquitin-independent degradation of ODC, degradation of antizyme requires a functional ubiquitin system.  相似文献   

20.
蛋白酶体结构和功能研究进展   总被引:3,自引:0,他引:3  
蛋白酶体是真核细胞内依赖ATP的蛋白质水解途径的重要成分,负责大多数细胞内蛋白质的降解. 20 S蛋白酶体有多种肽酶活性,其活性位点为Thr. 19 S复合物与20 S蛋白酶体结合成为26 S复合物,能降解泛素化蛋白.近几年来,蛋白酶体的分子组成、亚基、生化机理、胞内功能等方面的研究取得了明显进展.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号