首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The influence of repair and replication on the frequency of spontaneous chromosome aberrations and of those induced by gamma-irradiation is reported.Using the technique of labelling DNA with radioactive 3H-thymidine and measuring the radioactivity of DNA isolated from embryos, the time of initiation and the duration of DNA synthesis in barley seeds was studied after the soaking of the seeds had begun. The average duration of each phase of the first DNA synthesis cycle in soaking barley seeds was found to be as follows: pre-DNA synthesis stage, 10–11 hrs; DNA synthesis stage, 8 hrs. After gamma-irradiation, the intensity of DNA synthesis decreased and the beginning of DNA synthesis was delayed.It was found that the inhibition of repair by caffeine led to an increase in the frequency of both spontaneous and induced chromosome aberrations. Caffeine enhanced several times the frequency of chromosome and chromatid aberrations at the time of the maximal activity of repair enzymes. During DNA replication, caffeine had a lower effect on the realization of premutational lesions.An inhibitor of DNA replication — hydroxyurea — had no influence on the frequency of spontaneous chromosome aberrations during the replication period, whereas after gamma-irradiation, hydroxyurea enhanced the frequency of aberrations mainly at the stage of DNA replication.The relatively small mutagenic action of both agents (caffeine and hydroxyurea) was observed during all stages of the cell cycle of germinating barley seeds.  相似文献   

2.
Sulphur mustard (SM) (5 × 10−8 M) given to primary Syrian hamster fibroblasts growing short-term in vitro products a very sharp peak of chromatid aberrations 12–16 h after treatment.

The composition of this peak has been investigated in relation to the cell cycle using the facility to divide S-phase into 5 cytologically defined sub-phases on the basis of replication band patterns following bromodeoxyuridine incorporation. It is shown that: (1) Considerable delay and perturbation of the cycle is present. (2) A major contribution to the aberration peak comes from pre-S cells, and the highest aberration frequencies are observed in such cells. (3) The bulk of contribution from S-cells comes from the last subphase, SkV. (4) The majority of early S cells (sub-phases SkI–IV) fail to reach division within 36 h. Of the total S-cells scored, 54% are non-SkV controls but only 14% after SM. (5) Aberrations are localized to late-replicating regions in SkV but are random in pre-S. (6) No measurable perturbation of replication programme was found in chromosome arms synthesizing in late SkV after SM. (7) The rapid fall in aberration frequency at later sampling times is consistent with a quick and efficient repair of DNA lesions which is known to occur after SM alkylation.

The preferential loss of early S cells seems most likely to result from selective lethality, though differential delay and perturbation may make a contribution. It is interesting to note that the subphases missing are just those where the euchromatin replicates (early replicating R and G bands). The late-replicating chromatin, some of which is known to be dispensable in Syrian hamster, is confined to SkV, the sub-phase which appears to survive this dose of SM.  相似文献   


3.
Replication times for all important chromosome bands, of both types R and Q (277 structures) are analysed. — The R-bands form a group of structures whose DNA replicates during the early S-phase, while the DNA situated in the Q-bands replicates during the late S-phase. — There may not exist overlapping between replication times of these two types of structures. — The widest R-bands are those which are the earliest to replicate; in general, the most intense Q-bands are those which are the latest to replicate. Especially among these last ones, a certain asynchronism exists between the replication times. Finally the heterochromatin of chromosomes 1, 16 and Y and of the short arms of the acrocentrics could contain two types of DNA which replicate at different times.  相似文献   

4.
Lavoie J  Drouin R 《Chromosoma》2001,110(7):501-510
Early and late S-phase of the cell cycle are separated by the R-band/G-band (R/G) transition. This corresponds to the time at which R-band synthesis has been completed while G-band synthesis has yet to begin. The aim of this work was to study cell cycle kinetics during S-phase using different blocking agents: mimosine, methotrexate, 5-fluorouracil, 5-fluoro-2'-deoxyuridine and an excess of thymidine. The stage at which these blocking agents arrest the cell cycle and their efficiency at blocking Epstein-Barr virus transformed lymphoblasts at the R/G transition were evaluated using flow cytometric techniques. Mimosine blocked 90% of the cells near the G1/S-phase boundary. Methotrexate, 5-fluoro-2'-deoxyuridine and 5-fluorouracil, and particularly thymidine, let a significant proportion of cells enter S-phase. The cells were released from the arrest state and their progression through early S-phase was monitored by flow cytometry. Before the cells reached the R/G transition, a second agent was added to inhibit cell cycle progression. For example, the use of mimosine followed by thymidine allowed up to 60% of the cells to be blocked at the R/G transition. The arrest of DNA replication at the R/G transition was confirmed by a marked decrease of 5-bromo-2'-deoxyuridine (BrdUrd) incorporation, revealed by using bivariate flow cytometric analysis. The blocking agent was then removed and the cell cohort was released in the presence of BrdUrd so that replication banding analysis could be performed on the harvested mitotic cells. This yielded a mitotic index of approximately 10% and chromosomes showing replication bands. Flow cytometric analysis combined with cytogenetic banding analysis suggested that the R/G transition is an arrest point within the S-phase of the cell cycle and allowed us to conclude that only cells that have already initiated S-phase are blocked at this point. It corresponds to a susceptible site where S-phase can be arrested easily. The R/G transition could also be a regulatory checkpoint within S-phase, a checkpoint that could respond to imbalance in deoxyribonucleotide pools.  相似文献   

5.
-Mimosine (β-N-[3-hydroxy-4-pyridone]-α-aminopropionic acid)—a rare amino acid derived fromMimosaandLeucaenaplants—arrests cells reversibly late during G1 phase or at the beginning of S-phase. If mimosine were to arrest cells immediately before S-phase, it would provide a superb tool for the investigation of the initiation of DNA synthesis. Therefore, we reexamined the point of action of mimosine. Mitotic HeLa cells were released into 200 μMmimosine and grown for 10 h to block them, before the cells were permeabilized and the amino acid removed by washing them thoroughly. On addition of the appropriate triphosphates, DNA synthesis—measured by the incorporation of [32P]dTTP—began immediately; as it is known that such permeabilized cells cannot initiate DNA synthesis but can only resume elongating previously initiated chains, mimosine must arrest after DNA synthesis has begun. Moreover, cells grown in mimosine assembled functional replication factories—detected by immunolabeling after incorporation of biotin–dUTP—that were typical of those found early during S-phase. Disappointingly, it seems that mimosine—like aphidocolin—blocks only after cells enter S-phase.  相似文献   

6.
W. Schempp  W. Vogel 《Chromosoma》1978,67(2):193-199
The time sequence of DNA replication in partially synchronized human amniotic fluid cells has been analysed, employing BrdU incorporation techniques. —Regardless of the interval between removal of the methotrexate/uridine block and addition of BrdU during S-phase, the treatment results in an R-type replication pattern. Conversely, replacement of BrdU containing medium by another one with thymidine yields G-type replication patterns. A thymidine pulse during the first 4 h of S-phase results in R-type replication patterns; from 7–10 h after block removal it produces G-type pattern. In between, only faint red staining dots can be found indicating a marked decrease of replicational activity during the middle part of the S-phase.  相似文献   

7.
Five distinct patterns of DNA replication have been identified during S-phase in asynchronous and synchronous cultures of mammalian cells by conventional fluorescence microscopy, confocal laser scanning microscopy, and immunoelectron microscopy. During early S-phase, replicating DNA (as identified by 5-bromodeoxyuridine incorporation) appears to be distributed at sites throughout the nucleoplasm, excluding the nucleolus. In CHO cells, this pattern of replication peaks at 30 min into S-phase and is consistent with the localization of euchromatin. As S-phase continues, replication of euchromatin decreases and the peripheral regions of heterochromatin begin to replicate. This pattern of replication peaks at 2 h into S-phase. At 5 h, perinucleolar chromatin as well as peripheral areas of heterochromatin peak in replication. 7 h into S-phase interconnecting patches of electron-dense chromatin replicate. At the end of S-phase (9 h), replication occurs at a few large regions of electron-dense chromatin. Similar or identical patterns have been identified in a variety of mammalian cell types. The replication of specific chromosomal regions within the context of the BrdU-labeling patterns has been examined on an hourly basis in synchronized HeLa cells. Double labeling of DNA replication sites and chromosome-specific alpha-satellite DNA sequences indicates that the alpha-satellite DNA replicates during mid S-phase (characterized by the third pattern of replication) in a variety of human cell types. Our data demonstrates that specific DNA sequences replicate at spatially and temporally defined points during the cell cycle and supports a spatially dynamic model of DNA replication.  相似文献   

8.
Werner Schempp 《Chromosoma》1980,79(2):199-206
Asynchronies in late replication of the autosomal chromosome pair No. 5, and to some extent of pair No. 4, were found after thymidine pulse labeling cultures of partially synchronized Chinese hamster lung fibroblasts from nine to nine and a half hours and from nine and a half to ten hours after block removal. In contrast to this, no asynchrony could be detected in the replication of homologous autosomes after continuous labeling for the last two hours of the S-phase. — G-banding and C-banding revealed no differences between the homologous autosomes. — These findings indicate that besides the known form of asynchronous replication in mammalian cells during S-phase on the chromosomal level, there also exists an asynchronous replication between homologous autosomes of the same complement.  相似文献   

9.
A. H. Cawood 《Chromosoma》1981,84(3):365-372
The sub-division of S-phase in Syrian hamsters, on the basis of BrdU/Hoechst 33258/Giemsa banding, has allowed a quantitative comparison of the replication of individual chromosome bands within defined subphases of S. This analysis has shown that in hamsters, as has been reported in humans, there are distinct patterns of early replication in vitro in the early X, the late X in fibroblasts, and the late X in lymphocytes. In addition, it has been possible to show that, although the pattern of replication of the late X in fibroblasts differs from that in lymphocytes, the time in S at which bands first appear on this chromosome is the same in the two cell types. — No significant heterogeneity can be ascribed to differences between individuals, adult or embryonic sources, culture media, or time of exposure to BrdU. — The absence of any detectable heterogeneity in the replication band frequencies in autosomal heterochromatic arms suggests that the cell-specific variability of the late-replicating X is a feature of facultative rather than constitutive heterochromatin.  相似文献   

10.
11.
The disruption of DNA replication in cells triggers checkpoint responses that slow-down S-phase progression and protect replication fork integrity. These checkpoints are also determinants of cell fate and can help maintain cell viability or trigger cell death pathways. CHK1 has a pivotal role in such S-phase responses. It helps maintain fork integrity during replication stress and protects cells from several catastrophic fates including premature mitosis, premature chromosome condensation and apoptosis. Here we investigated the role of CHK1 in protecting cancer cells from premature mitosis and apoptosis. We show that premature mitosis (characterized by the induction of histone H3 phosphorylation, aberrant chromatin condensation, and persistent RPA foci in arrested S-phase cells) is induced in p53-deficient tumour cells depleted of CHK1 when DNA synthesis is disrupted. These events are accompanied by an activation of Aurora kinase B in S-phase cells that is essential for histone H3 Ser10 phosphorylation. Histone H3 phosphorylation precedes the induction of apoptosis in p53−/− tumour cell lines but does not appear to be required for this fate as an Aurora kinase inhibitor suppresses phosphorylation of both Aurora B and histone H3 but has little effect on cell death. In contrast, only a small fraction of p53+/+ tumour cells shows this premature mitotic response, although they undergo a more rapid and robust apoptotic response. Taken together, our results suggest a novel role for CHK1 in the control of Aurora B activation during DNA replication stress and support the idea that premature mitosis is a distinct cell fate triggered by the disruption of DNA replication when CHK1 function is suppressed.  相似文献   

12.
Mitkova AV  Biswas EE  Biswas SB 《Biochemistry》2002,41(16):5255-5265
Plasmid DNA replication in nuclear extracts of Saccharomyces cerevisiae in vitro has been shown to be S-phase specific, similar to that observed in vivo. We report here a reconstituted in vitro system with partially purified replication proteins, purified replication protein A (RPA), and recombinant proliferating cell nuclear antigen (PCNA). Nuclear extracts from S-phase, G(1)-phase, and unsynchronized yeast cells were fractionated by phosphocellulose chromatography. Protein fraction (polymerase fraction) enriched with replication proteins, including DNA polymerases (alpha, delta, etc.), was isolated, which was not capable of in vitro replication of supercoiled plasmid DNA. However, when purified yeast RPA and recombinant PCNA together were added to the polymerase fraction obtained from S-phase synchronized cells, in vitro plasmid DNA replication was restored. In vitro plasmid DNA replication with polymerase fractions from unsynchronized and G(1)-phase cells could not be reconstituted upon addition of purified RPA and PCNA. RPA and PCNA isolated from various phases of the cell cycle complemented the S-phase polymerase pool to the same extent. Reconstituted systems with the S-phase polymerase pool, complemented with either the RPA- and PCNA-containing fraction or purified RPA and recombinant PCNA together, were able to produce replication intermediates (ranging in size from 50 to 1500 bp) similar to that observed with the S-phase nuclear extract. Results presented here demonstrate that both RPA and PCNA are cell cycle-independent in their ability to stimulate in vitro plasmid DNA replication, whereas replication factors in the polymerase fractions are strictly S-phase dependent.  相似文献   

13.
Induction of chromosomal aberrations and sister-chromatid exchanges (SCEs) was studied in wild-type Chinese hamster ovary (CHO-K1) cells and its 2 X-ray-sensitive mutants xrs 5 and xrs 6 (known to be deficient in repair of DNA double-strand breaks (DSBs] by restriction endonucleases (REs) and inhibitors of DNA topoisomerase II known to induce DNA strand breaks. Five different types of REs, namely CfoI, EcoRI, HpaII (which induce cohesive DSBs), HaeIII and AluI (which induce blunt DSBs) were employed. REs that induce blunt-end DNA DSBs were found to be more efficient in inducing chromosomal aberrations than those inducing cohesive breaks. xrs 5 and xrs 6 mutants responded with higher sensitivity (50-100% increase in the frequency of aberrations per aberrant cell) to these REs than wild-type CHO-K1 cells. All these REs were also tested for their ability to induce SCEs. The frequency of SCEs increased in wild-type as well as mutant CHO cells, the induced frequency being about 2-fold higher in xrs mutants than in the wild-type cells. We also studied the effect of inhibitors of DNA topoisomerase II, namely 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) and etoposid (VP 16), at different stages of the cell cycle of these 3 types of cells. Both drugs increased the frequency of chromosomal aberrations in G2 cells. The mutants showed increased sensitivity to m-AMSA and VP 16, xrs 6 cells being 10- and 2-fold more sensitive than wild-type CHO-K1 cells respectively, and xrs 5 responding with 2-fold higher sensitivity than xrs 6 cells. G1 treatment of CHO cells with m-AMSA increased both chromosome- and chromatid-type aberrations, xrs mutants being about 3-fold more sensitive than CHO-K1 cells. The frequency of SCEs increased also after treatment of exponentially growing and S-phase CHO cells with m-AMSA and the higher sensitivity of xrs mutants (2-fold) was evident. The S-phase appeared to be a specific stage which is most prone for the induction of SCEs by m-AMSA. The results indicate that DNA DSBs induced by REs and inhibitors of DNA topoisomerase II correlate closely with induced chromosomal aberrations and SCEs in these cell lines, indicating that DSBs are responsible for the production of these 2 genetic endpoints.  相似文献   

14.
A cell-free nuclear replication system that is S-phase specific, that requires the activity of DNA polymerase alpha, and that is stimulated three- to eightfold by cytoplasmic factors from S-phase cells was used to examine the temporal specificity of chromosomal DNA synthesis in vitro. Temporal specificity of DNA synthesis in isolated nuclei was assessed directly by examining the replication of restriction fragments derived from the amplified 200-kilobase dihydrofolate reductase domain of methotrexate-resistant CHOC 400 cells as a function of the cell cycle. In nuclei prepared from cells collected at the G1/S boundary of the cell cycle, synthesis of amplified sequences commenced within the immediate dihydrofolate reductase origin region and elongation continued for 60 to 80 min. The order of synthesis of amplified restriction fragments in nuclei from early S-phase cells in vitro appeared to be indistinguishable from that in vivo. Nuclei prepared from CHOC 400 cells poised at later times in the S phase synthesized characteristic subsets of other amplified fragments. The specificity of fragment labeling patterns was stable to short-term storage at 4 degrees C. The occurrence of stimulatory factors in cytosol extracts was cell cycle dependent in that minimal stimulation was observed with early G1-phase extracts, whereas maximal stimulation was observed with cytosol extracts from S-phase cells. Chromosomal synthesis was not observed in nuclei from G1 cells, nor did cytosol extracts from S-phase cells induce chromosomal replication in G1 nuclei. In contrast to chromosomal DNA synthesis, mitochondrial DNA replication in vitro was not stimulated by cytoplasmic factors and occurred at equivalent rates throughout the G1 and S phases. These studies show that chromosomal DNA replication in isolated nuclei is mediated by stable replication forks that are assembled in a temporally specific fashion in vivo and indicate that the synthetic mechanisms observed in vitro accurately reflect those operative in vivo.  相似文献   

15.
Single-cell genomics is revolutionizing basic genome research and clinical genetic diagnosis. However, none of the current research or clinical methods for single-cell analysis distinguishes between the analysis of a cell in G1-, S- or G2/M-phase of the cell cycle. Here, we demonstrate by means of array comparative genomic hybridization that charting the DNA copy number landscape of a cell in S-phase requires conceptually different approaches to that of a cell in G1- or G2/M-phase. Remarkably, despite single-cell whole-genome amplification artifacts, the log2 intensity ratios of single S-phase cells oscillate according to early and late replication domains, which in turn leads to the detection of significantly more DNA imbalances when compared with a cell in G1- or G2/M-phase. Although these DNA imbalances may, on the one hand, be falsely interpreted as genuine structural aberrations in the S-phase cell’s copy number profile and hence lead to misdiagnosis, on the other hand, the ability to detect replication domains genome wide in one cell has important applications in DNA-replication research. Genome-wide cell-type-specific early and late replicating domains have been identified by analyses of DNA from populations of cells, but cell-to-cell differences in DNA replication may be important in genome stability, disease aetiology and various other cellular processes.  相似文献   

16.
c-Myc interacts with components of the pre-replication complex and directly regulates DNA replication [1]. However the consequences of this novel c-Myc function on cell cycle dynamics and replication-associated damage are unknown. Here, we show that c-Myc overexpression in primary human fibroblasts markedly accelerates S-phase while c-Myc deficient fibroblasts exhibit a prolonged S-phase. We also show that the Werner DNA helicase protein (WRN) plays a critical role in supporting c-Myc-driven S-phase, as depletion of WRN in c-Myc overexpressing cells increases DNA damage specifically at sites of DNA synthesis. This excess DNA damage activates a “replication stress” pathway involving ATR, CHK1, CHK2, and p53, leading to rapid senescence of WRN deficient c-Myc overexpressing cells. Indeed, depletion of p53 rescues this senescence response. We propose that WRN functions to repair abnormal replication structures caused by the acceleration of DNA replication by c-Myc. This work provides an additional mechanistic explanation for c-Myc-induced DNA damage and senescence, and reveals a vulnerability of c-Myc overexpressing cells that could potentially be exploited in cancer therapy.  相似文献   

17.
Cell cycle regulation and DNA repair following damage are essential for maintaining genome integrity. DNA damage activates checkpoints in order to repair damaged DNA prior to exit to the next phase of cell cycle. Recently, we have shown the role of Ada3, a component of various histone acetyltransferase complexes, in cell cycle regulation, and loss of Ada3 results in mouse embryonic lethality. Here, we used adenovirus-Cre-mediated Ada3 deletion in Ada3fl/fl mouse embryonic fibroblasts (MEFs) to assess the role of Ada3 in DNA damage response following exposure to ionizing radiation (IR). We report that Ada3 depletion was associated with increased levels of phospho-ATM (pATM), γH2AX, phospho-53BP1 (p53BP1) and phospho-RAD51 (pRAD51) in untreated cells; however, radiation response was intact in Ada3−/− cells. Notably, Ada3−/− cells exhibited a significant delay in disappearance of DNA damage foci for several critical proteins involved in the DNA repair process. Significantly, loss of Ada3 led to enhanced chromosomal aberrations, such as chromosome breaks, fragments, deletions and translocations, which further increased upon DNA damage. Notably, the total numbers of aberrations were more clearly observed in S-phase, as compared with G₁ or G₂ phases of cell cycle with IR. Lastly, comparison of DNA damage in Ada3fl/fl and Ada3−/− cells confirmed higher residual DNA damage in Ada3−/− cells, underscoring a critical role of Ada3 in the DNA repair process. Taken together, these findings provide evidence for a novel role for Ada3 in maintenance of the DNA repair process and genomic stability.  相似文献   

18.
Bacteria are powerful models for understanding how cells divide and accomplish global regulatory programs. In Caulobacter crescentus, a cascade of essential master regulators supervises the correct and sequential activation of DNA replication, cell division, and development of different cell types. Among them, the response regulator CtrA plays a crucial role coordinating all those functions. Here, for the first time, we describe the role of a novel factor named CcnA (cell cycle noncoding RNA A), a cell cycle–regulated noncoding RNA (ncRNA) located at the origin of replication, presumably activated by CtrA, and responsible for the accumulation of CtrA itself. In addition, CcnA may be also involved in the inhibition of translation of the S-phase regulator, GcrA, by interacting with its 5′ untranslated region (5′ UTR). Performing in vitro experiments and mutagenesis, we propose a mechanism of action of CcnA based on liberation (ctrA) or sequestration (gcrA) of their ribosome-binding site (RBS). Finally, its role may be conserved in other alphaproteobacterial species, such as Sinorhizobium meliloti, representing indeed a potentially conserved process modulating cell cycle in Caulobacterales and Rhizobiales.

During cell cycle progression in the bacterium Caulobacter crescentus, the master cell cycle regulator CtrA is controlled by CcnA, a cell cycle-regulated non-coding RNA transcribed from a gene located at the origin of replication.  相似文献   

19.
20.
Conventional paradigm ascribes the cell proliferative function of the human oncoprotein mouse double minute2 (MDM2) primarily to its ability to degrade p53. Here we report that in the absence of p53, MDM2 induces replication stress eliciting an early S-phase checkpoint response to inhibit further firing of DNA replication origins. Partially synchronized lung cells cultured from p53−/−:MDM2 transgenic mice enter S phase and induce S-phase checkpoint response earlier than lung cells from p53−/− mice and inhibit firing of DNA replication origins. MDM2 activates chk1 phosphorylation, elevates mixed lineage lymphoma histone methyl transferase levels and promotes checkpoint-dependent tri-methylation of histone H3 at lysine 4, known to prevent firing of late replication origins at the early S phase. In the absence of p53, a condition that disables inhibition of cyclin A expression by MDM2, MDM2 increases expression of cyclin D2 and A and hastens S-phase entry of cells. Consistently, inhibition of cyclin-dependent kinases, known to activate DNA replication origins during firing, inhibits MDM2-mediated induction of chk1 phosphorylation indicating the requirement of this activity in MDM2-mediated chk1 phosphorylation. Our data reveal a novel pathway, defended by the intra-S-phase checkpoint, by which MDM2 induces unscheduled origin firing and accelerates S-phase entry of cells in the absence of p53.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号