首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The epilimnetic phytoplankton and its relations to nutrient content in Lake Verevi through the whole vegetation period in 2000 were studied. Lake Verevi (surface 12.6 ha, mean depth 3.6 m, maximum depth 11 m) is a hypertrophic hard-water lake, where the so-called spring meromixis occurs due to an extremely warm spring. Most dissolved nutrients in the epilimnion were low already in spring, and their concentrations were quite stable during the study period. The concentration of total silicon was very low in spring but increased rapidly in summer. Total phosphorus followed the pattern for stratified eutrophic lakes, and total nitrogen was quite high. The stoichiometric N:P ratio fluctuated between 25 and 81. The dynamics of phytoplankton biomass with a spring peak from April to May and a late summer peak from July to August is typical of Estonian eutrophic lakes. Green algae and chrysophytes occurred in the phytoplankton throughout the vegetation period. The spring peak was dominated by diatoms (Synedra ulna and Synedra acus var. angustissima) and the summer peak was caused by Aphanizomenon klebahnii and Ceratium hirundinella. The study showed that in physically stratified systems, the total concentration of limiting resources and plain physical factors (light and temperature) may be more important in the determination of phytoplankton dominants than different resource ratios. A combination of light and temperature optimum, along with nutrient utilization and transport capacity, effectively segregates phytoplankton species and can be used for the explanation of seasonal succession pattern.  相似文献   

2.
R. I. Jones 《Hydrobiologia》1988,161(1):75-87
The vertical distributions and migrations are described of the most abundant flagellated phytoplankton species from the summer community of a small forest lake in southern Finland. The lake showed a steep and stable thermal stratification with a shallow oxygenated epilimnion. Horizontal variation of phytoplankton distribution within the lake was tested on two scales and found to be statistically significant only in the case of Mallomonas reginae. The vertical distribution of flagellated phytoplankton was assessed by reference to the distribution of a non-motile, neutrally buoyant species Ankyra judayi. Statistically significant, active vertical positioning was demonstrated for all the flagellates examined with the exception of Spiniferomonas bourrellyi. Diel vertical migrations were apparent for all species showing active positioning and the pattern of an evening descent and a morning ascent was ubiquitous. The extent and timing of diel migrations varied between species. The most extensive migrations were by Cryptomonas marssonii which crossed a temperature gradient of 14 °C and penetrated far into the anoxic hypolimnion. Several categories of competitive advantage can be gained by species undertaking such diel vertical migrations.  相似文献   

3.
Temponeras  M.  Kristiansen  J.  Moustaka-Gouni  M. 《Hydrobiologia》2000,424(1-3):109-122
Phytoplankton species composition, seasonal dynamics and spatial distribution in the shallow Lake Doïrani were studied during the growth season of 1996 along with key physical and chemical variables of the water. Weak thermal stratification developed in the lake during the warm period of 1996. The low N:P ratio suggests that nitrogen was the potential limiting nutrient of phytoplankton in the lake. In the phytoplankton of the lake, Chlorophyceae were the most species-rich group followed by Cyanophyceae. The monthly fluctuations of the total phytoplankton biomass presented high levels of summer algal biomass resembling that of other eutrophic lakes. Dinophyceae was the group most represented in the phytoplankton followed by Cyanophyceae. Diatomophyceae dominated in spring and autumn. Nanoplankton comprised around 90% of the total biomass in early spring and less than 10% in summer. The seasonal dynamics of phytoplankton generally followed the typical pattern outlined for other eutrophic lakes. R-species (small diatoms), dominant in the early phase of succession, were replaced by S-species (Microcystis, Anabaena, Ceratium) in summer. With cooling of the water in September, the biomass of diatoms (R-species) increased. The summer algal maxima consisted of a combination of H and M species associations (sensu Reynolds). Phytoplankton development in 1996 was subject to the combined effect of the thermal regime, the small depth of mixing and the increased sediment-water interactions in the lake, which caused changes in the underwater light conditions and nutrient concentrations.  相似文献   

4.
Some ciliated Protozoa (e.g. Loxodes magnus, L. striatus, Spirostomum teres, S. ambiguum and Frontonia leucas) are abundant during summer in the hypolimnion of a eutrophic pond in north-west England but are absent from the epilimnion. The work described in this paper was begun with the aim of investigating the suggestion that high pH values caused by phytoplankton photosynthesis contributed to the exclusion of these ciliates from the epilimnion. In July 1973, phytoplankton photosynthesis and high pH were found only in the epilimnion, hence conditions were compatible with the above suggestion. Ciliates were, therefore, kept in the laboratory in hypolimnion water and were exposed to phytoplankton photosynthesis, both with and without pH increase. It was found that Loxodes died under both treatments hence there is no evidence that high pH is lethal to Loxodes. It seemed possible, therefore, that either light or toxins released by algae during photosynthesis are lethal to Loxodes. L. magnus was, therefore, exposed to light in the absence of phytoplankton (in filtered hypolimnion water) both in the laboratory and in the pond and it was found that light was lethal. High light intensities might, therefore, contribute to the exclusion of at least Loxodes species from the surface water of the pond, although other adverse factors are probably operative since Loxodes species do not migrate into the epilimnion at night.  相似文献   

5.
The seasonal changes in phytoplankton biomass and species diversity in a shallow, eutrophic Danish lake are described and related to different disturbance events acting on the phytoplankton community.Both the spring diatom maximum and the summer bloom of the filamentous blue-green alga, Aphanizomenon flos-aquae (L.) Ralfs, coincided with low values of phytoplankton species diversity and equitability. Diatom collapse was mainly due to internal modifications as nutrient depletion (Si, P) caused by rapid growth of phytoplankton, and increased grazing activity from zooplankton. A large population of Daphnia longispina O.F. Müller in June effectively removed smaller algal competitors, thus favouring the development of a huge summer bloom (140 mm3 l–1) of Aphanizomenon flos-aquae. Heavy rainfall and storms in late July increased the loss of Apahnizomenon by out-flow and disturbed the stratification of the lake. These events caused a marked decline in phytoplankton biomass but had no effect on species diversity. A second storm period in late August circulated the lake completely and was followed by a rapid increase in phytoplankton diversity, and a change in the phytoplankton community structure from dominance of large, slow-growing K-selected species (Aphanizomenon) to small, fast-growing r-selected species (cryptomonads).  相似文献   

6.
Calanoid copepods are major components of most lacustrine ecosystems and their grazing activities may influence both phytoplankton biomass and species composition. To assess this we conducted four seasonal, in situ, grazing experiments in eutrophic Lake Rotomanuka, New Zealand. Ambient concentrations of late stage copepodites and adults of calanoid copepods (predominantly Calamoecia lucasi, but with small numbers of Boeckella delicata) were allowed to feed for nine days on natural phytoplankton assemblages suspended in the lake within 1160 litre polyethylene enclosures. The copepods reduced the total phytoplankton biomass of the dominant species in all experiments but were most effective in summer (the time of highest grazer biomass) followed by spring and autumn. In response to grazing pressure the density of individual algal species showed either no change or a decline. There were no taxa which increased in density in the presence of the copepods. The calanoid copepods suppressed the smallest phytoplankton species (especially those with GALD (Greatest Axial Linear Dimension) < µm) and there appeared to be no selection of algae on the basis of biovolume. Algal taxa which showed strong declines in abundance in the presence of the copepods include Cyclotella stelligera, Coelastrum spp., Trachelomonas spp., Cryptomonas spp., and Mallomonas akrokomos. Calanoid copepods are considered important grazers of phytoplankton biomass in this lake. The study supports the view that high phytoplankton:zooplankton biomass ratios and large average algal sizes characteristic of New Zealand lake plankton may, at least partly, be caused by year round grazing pressure on small algae shifting the competitive balance in favour of larger algal species.  相似文献   

7.
Otero Lake is the main water body of Cierva Point, Danco Coast (SSSI No. 15). During the 1992/1993 and 1994/1995 seasons, abiotic parameters and the structure and dynamics of the phytoplankton were studied. Algal assemblages from the phytoplankton, from algal clumps encased in the lake ice and from the benthic algal felt were compared. Low Jaccard similarity indices between these three assemblages suggest different survival strategies. The higher species richness of phytoplankton when studied during the whole summer also suggests that external propagule inputs can heavily influence the structure of this community. High levels of phosphate, nitrate and ammonium throughout the study periods indicate that they do not limit summer growth of the phytoplankton community. Blooms of Chlamydomonas subcaudata Wille are apparently characteristic. This group of features define Otero Lake as a highly eutrophic water body, in which outflow seems to be the main cause of phytoplankton loss during summer. Received: 23 December 1996 / Accepted: 29 August 1997  相似文献   

8.
In lakes, spatial and temporal variability of water chemistry and phytoplankton are characteristic phenomena although often difficult to link together. This motivated us to study their interplay in Lake Vanajanselkä, a eutrophic lake in Finland. We hypothesized that in summer spatial and temporal differences in phytoplankton and water chemistry can be extended in comparison to spring and autumn. Therefore, chlorophyll a and water chemistry was examined by six sampling campaigns with 15 sampling sites over the lake in May–October 2009–2010. In summer, chlorophyll, pH, and oxygen were horizontally and vertically unevenly distributed in the lake, and in the epilimnion pH and oxygen showed a distinct diurnal variability suggesting high photosynthesis during the day. Daily >1 pH unit difference between the sites and 2.5 pH unit difference between the epi- and hypolimnion were found. In agreement with pH and oxygen, NO3-N and NH4-N could be unevenly distributed in the epilimnion. In autumn no spatial differences were found, however. The results emphasized that algae and cyanobacteria were responsible, at least partly, for the variability in water chemistry in the surface layer, and short- and long-term gradients in space and time need to be considered when productive lakes are studied.  相似文献   

9.
Flagellate grazing on bacteria in a small dystrophic lake   总被引:9,自引:9,他引:0  
Fluorescent beads were used to determine the grazing on bacteria by heterotrophic and mixotrophic flagellates in a highly humic (water colour 300–600 mg Pt l–1) small lake. In summer phagotrophic flagellates constituted about three quarters of the numbers of phytoplankton (including heterotrophic or mixotrophic flagellates) in the uppermost epilimnion. Due to their small size their respective contribution to the biomass was about one quarter. The most important phagotrophic species were Ochromonas sp., and Chromulina spp. which ingested 75–203% of their body carbon per day from bacteria.In view of the abundance and biomass of phagotrophic and mixotrophic flagellates and their very high growth potential, they clearly play a significant role in the food chains of this lake. In addition to providing energy, bacteriovory also represents an important supply of inorganic and organic nutrients under nutrient limiting conditions.  相似文献   

10.
SUMMARY. 1. Potential phosphatase activity and phytoplankton from several lakes of different character were compared in order to evaluate the importance of lake water pH and phytoplankton composition for the activity and pH optimum of lake water phosphatases.
2. In oligotrophic lakes, in which phytoplankton biomass was most often dominated by Ochromonadaceae spp., optimum phosphate activity was found at pH values <6. In eutrophic lakes, where species of Cyanophyceae and Bacillariophyceae dominated the phytoplankton biomass, optimum phosphatase activity was found at pH 7.5 or 8.5.
3. The pH optimum of phosphatase activity often differed from the corresponding lake water pH.
4. Experimental variation in phosphorus availability resulted in predictable changes in phosphatase activity. However, specific phosphatase activity, calculated per biomass of phytoplankton, was dependent on plankton species composition.  相似文献   

11.
The relationship between total phosphorus and chlorophyll a concentration was determined for Skinner Lake, Indiana over an annual cycle in 1978–79. Total nitrogen:total phosphorus ratios in the epilimnion ranged from 19 to 220 suggesting a phosphorus-dependent algal yield in the epilimnion. Approximately 90% of annual TP loading reached the lake via streamflow, and 93% of this entered during snowmelt and spring-overturn periods. At that time incoming water flushed the lake 2.4 times. Atmospheric loading accounted for 1.4% of annual TP load. Internal hypolimnetic TP loading occurred during summer stratification. Mean [chl a] for the ice-free period was 15.15 mg m–3, within the range expected for eutrophic lakes.The 1978–79 data were used in conjuction with the Vollenweider & Kerekes (1980) model to produce a model specific for the Skinner Lake system. The model predicted mean epilimnetic total phosphorus and chlorophyll a concentrations from mean total phosphorus concentration in inlet streams and from lake water residence time during the period of spring overturn and summer stratification. The Skinner-specific model was tested in 1982 and it closely predicted observed mean epilimnetic [TP] and [chl a] during the ice-free period. This study shows that variability in lake models which average data over an annual period can be reduced by considering lake-specific seasonal variation in hydrology and external TP loading.  相似文献   

12.
Bacterioplankton biomass and dark fixation of inorganic carbon were measured in the highly humic (water colour up to 550 mg Pt l?1) and acidic lake, Mekkojärvi. Strong thermal and chemical stratification developed in the water column early in spring and led rapidly to anoxia in the hypolimnion, which extended to less than 1.0 m from the surface. In the epilimnion only small bacteria were abundant. In the anoxic zone both the abundance and the mean size of bacteria were considerably higher than in the epilimnion. These differences are thought to be the result of different grazing pressure from zooplankton in the two zones. In late summer a high concentration of bacteriochlorophyll d in the upper hypolimnion indicated a high density of photosynthetic bacteria. Bacterial biomass was similar to that of phytoplankton in the epilimnion, but 23 times higher in the whole water column. In August, dark fixation of inorganic radiocarbon in the anaerobic zone was 51% of the total 14C-incorporation and the contribution of light fixation was only 5.4%. In the polyhumic Mekkojarvi, bacterioplankton was evidently a potentially significant carbon source for higher trophic levels, but bacterioplankton production could not be supported by phytoplankton alone. Allochthonous inputs of dissolved organic matter probably support most of the bacterial production.  相似文献   

13.
Primary Production of Phytoplankton in a Strongly Stratified Temperate Lake   总被引:7,自引:7,他引:0  
Lake Verevi (12.6 ha, maximum depth 11.0 m, mean depth 3.6 m) is a strongly eutrophic and stratified lake. Planktothrix agardhii is the most characteristic phytoplankton species in summer and autumn, while photosynthesizing sulphur bacteria can occur massively in the metalimnion. Primary production (PP) and chlorophyll a concentration (Chl a) were seasonally studied in 1991, 1993, 2000, and 2001. Vertical distribution of PP was rather complex, having usually two peaks, one at or near the surface (0–1 m), and another deeper (at 3–7 m) in the metalimnion. The values of dark fixation of CO2 in the metalimnion were in most cases higher than those in the upper water layer. Considering the average daily PP 896 mg C m−2 and yearly PP 162 mg C m−2, Secchi depth 2.34 m, and epilimnetic concentrations of chlorophyll a (19.6 mg m−3), total nitrogen and total phosphorus (TP, 52 mg m−3) in 2000, L. Verevi is a eutrophic lake of a ‘good’ status. Considering the total amounts of nutrients stored in the hypolimnion, the average potential concentrations in the whole water column could achieve 1885 mg m−3 of TN and 170 mg m−3 of TP reflecting hypertrophic conditions and a ‚bad’ status. Improvement of the epilimnetic water quality from the 1990s to the 2000s may have resulted from incomplete spring mixing and might not reflect the real improvement. A decreased nutrient concentration in the epilimnion has supported the establishment of a ‘clear epilimnion state’ allowing light to penetrate into the nutrient-rich metalimnion and sustaining a high production of cyanobacteria and phototrophic sulphur bacteria.  相似文献   

14.
Anabaena spiroides has the ability to maintain intense biomass production for extensive periods in the epilimnion of a small eutrophic lake characterized by conditions shown to cause photooxidative death in a number of other phytoplankton. By the enhancement of carotenoid synthesis chlorophyll a was protected from photooxidation and prevented from catalyzing other photooxidative reactions within the cells. By temporally separating CO(2) and N(2) fixation, maximum utilization of photosynthetically active radiation was achieved. Because CO(2) fixation was more sensitive than N(2) fixation to a high oxygen concentration, the former was maximized during morning hours, before the afternoon buildup of dissolved oxygen. The diurnal partitioning of carbon and N(2) fixation has two additional advantages; possible competition for reductant-generating compounds is minimized, and adequate endogenous pools of carbon skeletons are assured to accept newly fixed ammonia. Hence, Anabaena, far from undergoing photooxidative death, appears to utilize a physiological strategy which allows optimization of radiant energy use for reductive processes and dominance of surface waters and shading of deeper phytoplankton during summer blooms.  相似文献   

15.
To study experimentally the relation between zooplankton and phytoplankton, laboratory cultures of Daphnia hyalina Leydig were set up. The combined influence of food quality and quantity on growth, birth-rate and longevity was measured. The effect of seven different food regimes was tested. Natural unfiltered lake water from the eutrophic lake Tjeukemeer was used in one regime. The food value of the natural unfiltered lake water appeared to be relatively low, which was most likely caused by the abundance of large sized algae in the lake water.  相似文献   

16.
Nixdorf  Brigitte 《Hydrobiologia》1994,(1):173-186
The polymictic properties of Lake Müggelsee, a eutrophic shallow lake in Berlin, are described by the water column stability (N 2) and gradients in saturation of oxygen at the deepest site of the lake (7.5 m). Mixing and stratification changed irregularly up to 7 times during the vegetation season (April to September), as was indicated by all of the stratification parameters. Thermally stable conditions generally lasted 1–2 weeks. A maximum of 5 weeks stratification was observed in 1982.In order to investigate the response of algal development, the internal rates of change of the dominant algal species in the lake during the vegetation period were estimated from weekly measurements of phytoplankton biomass from 1980 to 1990. The necessity taking a mixed sample in a shallow lake is discussed. The polymictic properties favoured the development of specific blue-green algal species; there dominance was also favoured by the trophic conditions. Among the dominant blue-greens the growth of Limnothrix redekei was independent of polymixis whereas stratification supported the starting conditions for the summer blue-greens Aphanizomenon flos-aquae and Planktothrix agardhii. After these algae reached a distinct level of biomass, they grew under mixing as well as under stratified conditions.For the development of solitary centric diatoms during summer regulation by growth restriction through nutrient limitation, esp. dissolved silicon was more important. However, Melosira sp. developed well under stratified conditions but collapsed due to increased sinking losses when the water column became too stable.An attempt is made to apply Reynolds' possibility matrix of the most likely phytoplankton assemblages as a function of nutrients and mixing in the shallow Lake Müggelsee.  相似文献   

17.
1. It is well accepted that fish, if abundant, can have a major impact on the zooplankton community structure during summer, which, particularly in eutrophic lakes, may cascade to phytoplankton and ultimately influence water clarity. Fish predation affects mean size of cladocerans and the zooplankton grazing pressure on phytoplankton. Little is, however, known about the role of fish during winter. 2. We analysed data from 34 lakes studied for 8–9 years divided into three seasons: summer, autumn/spring and winter, and four lake classes: all lakes, shallow lakes without submerged plants, shallow lakes with submerged plants and deep lakes. We recorded how body weight of Daphnia and then cladocerans varied among the three seasons. For all lake types there was a significant positive correlation in the mean body weight of Daphnia and all cladocerans between the different seasons, and only in lakes with macrophytes did the slope differ significantly from one (winter versus summer for Daphnia). 3. These results suggest that the fish predation pressure during autumn/spring and winter is as high as during summer, and maybe even higher during winter in macrophyte‐rich lakes. It could be argued that the winter zooplankton community structure resembles that of the summer community because of low specimen turnover during winter mediated by low fecundity, which, in turn, reflects food shortage, low temperatures and low winter hatching from resting eggs. However, we found frequent major changes in mean body weight of Daphnia and cladocerans in three fish‐biomanipulated lakes during the winter season. 4. The seasonal pattern of zooplankton : phytoplankton biomass ratio showed no correlation between summer and winter for shallow lakes with abundant vegetation or for deep lakes. For the shallow lakes, the ratio was substantially higher during summer than in winter and autumn/spring, suggesting a higher zooplankton grazing potential during summer, while the ratio was often higher in winter in deep lakes. Direct and indirect effects of macrophytes, and internal P loading and mixing, all varying over the season, might weaken the fish signal on this ratio. 5. Overall, our data indicate that release of fish predation may have strong cascading effects on zooplankton grazing on phytoplankton and water clarity in temperate, coastal situated eutrophic lakes, not only during summer but also during winter.  相似文献   

18.
Eutrophication and rising water temperature in freshwaters may increase the total production of a lake while simultaneously reducing the nutritional quality of food web components. We evaluated how cyanobacteria blooms, driven by agricultural eutrophication (in eutrophic Lake Köyliöjärvi) or global warming (in mesotrophic Lake Pyhäjärvi), influence the biomass and structure of phytoplankton, zooplankton, and fish communities. In terms of the nutritional value of food web components, we evaluated changes in the ω‐3 and ω‐6 polyunsaturated fatty acids (PUFA) of phytoplankton and consumers at different trophic levels. Meanwhile, the lakes did not differ in their biomasses of phytoplankton, zooplankton, and fish communities, lake trophic status greatly influenced the community structures. The eutrophic lake, with agricultural eutrophication, had cyanobacteria bloom throughout the summer months whereas cyanobacteria were abundant only occasionally in the mesotrophic lake, mainly in early summer. Phytoplankton community differences at genus level resulted in higher arachidonic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) content of seston in the mesotrophic than in the eutrophic lake. This was also reflected in the EPA and DHA content of herbivorous zooplankton (Daphnia and Bosmina) despite more efficient trophic retention of these biomolecules in a eutrophic lake than in the mesotrophic lake zooplankton. Planktivorous juvenile fish (perch and roach) in a eutrophic lake overcame the lower availability of DHA in their prey by more efficient trophic retention and biosynthesis from the precursors. However, the most efficient trophic retention of DHA was found with benthivorous perch which prey contained only a low amount of DHA. Long‐term cyanobacterial blooming decreased the nutritional quality of piscivorous perch; however, the difference was much less than previously anticipated. Our result shows that long‐term cyanobacteria blooming impacts the structure of plankton and fish communities and lowers the nutritional quality of seston and zooplankton, which, however, is mitigated at upper trophic levels.  相似文献   

19.
In late summer, a large flagellated alga, Gonyostomum semen(Raphidophyceae), constituted most of the phytoplankton biomassin a small steeply-stratified humic lake. Its diel verticalmigration (DVM) was very distinct and extended at night intothe anoxic hypolimnion. After midsummer, the depletion of hypolimneticoxygen led to a gradual release of soluble reactive phosphorus(SRP) from the sediment, but one month later, irrespective ofcontinuing stratification, the concentrations again returnedto undetectable levels down to the bottom. As this coincidedwith the rapid increase in G.semen population, the latter wasprobably responsible for the depletion of SRP. The flux of SRPfrom the sediment to the epilimnion was virtually interrupted,making non-migrating phytoplankton dependent only on regeneratedand inflowing inorganic phosphorus. Besides nutrient availability,DVM also benefited G.semen in the reduction of metabolic andgrazing losses. In this lake, the remarkable multiple advantagesof DVM probably explain the dominance of the large G.semen inthe late summer phytoplankton biomass over much smaller algae.  相似文献   

20.
SUMMARY. I. Movement of 33P from hypolimnion to epilimnion in a small, dystrophic lake was investigated using small-diameter experimental tubes enclosing thermally stratified water columns. This approach was made possible by the extremely sharp stratification found in such lakes, in which the euphotic zone closely coincides with the epilimnion.
2. The vertical distribution of inorganic phosphorus in the lake showed a sharp increase across the thermocline so that enhanced concentrations were available to phytoplankton just below the thermocline. Inorganic nitrogen concentrations did not show such a marked relation to thermal stratification.
3. One abundant motile alga ( Cryptomonas marssonii ) showed striking and regular vertical migrations in the lake, moving below the thermocline at night and returning to the surface waters in early morning. These migrations took cells across a 10°C temperature gradient. Non-motile phytoplankton showed constant vertical distributions.
4. In the experimental tubes an upward movement of phosphorus took place from hypolimnion to epilimnion which was only attributable to transport by phytoplankton cells undertaking active vertical migrations. No equivalent movement of phosphorus occurred in control tubes from which algae were absent.
5. The possible significance of such nutrient retrieval is discussed with reference to plankton phosphorus budgets and competition between phytoplankton species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号