首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The kinetic parameters of ten different enzymic mechanisms in which bimolecular transfer reactions occur concomitantly with the hydrolysis of the donor molecule have been studied. The usefulness of these parameters for making a choice of mechanism is discussed. The analysis has been extended to the use of alternative substrates in bimolecular transfer reactions that proceed without the hydrolysis of the donor molecule.  相似文献   

2.
3.
gamma-Glutamyl transpeptidase (purified from rat kidney) was incubated with glutathione and a mixture of amino acids that closely approximates the amino acid composition of blood plasma, and the relative extents of transpeptidation and hydrolysis were determined by quantitative measurement of the products formed (glutamate, cysteinylglycine, gamma-glutamyl amino acids). At pH 7.4, in the presence of 50 microM glutathione and the amino acid mixture, about 50% of the glutathione that was utilized participated in transpeptidation. Studies in which the formation of individual gamma-glutamyl amino acids was determined in the presence of glutathione and the amino acid mixture showed that L-cystine and L-glutamine are the most active amino acid acceptors, and that other neutral amino acids also participate in transpeptidation to a significant extent. These in vitro experiments are consistent with a number of other findings which indicate that transpeptidation is a significant physiological function of gamma-glutamyl transpeptidase.  相似文献   

4.
5.
6.
7.
8.
The glycylglycine endopeptidase in lysostaphin has been found capable of catalysing both hydrolysis and transpeptidation reactions when acting on glycyl peptides. The ability of the enzyme to utilize dansyldiglycine (5-dimethylaminoaphthalene-1-sulphonylglycylglycine) as an acceptor molecule in transpeptidation reactions, although it is incapable of hydrolysing the peptide bond in this compound, indicates the enzyme must be capable of forming the equivalent of an imino-enzyme intermediate during the catalytic process.  相似文献   

9.
10.
A variety of phosphonates (XPO32-; X = H-, CH3-, CL3C-, CH3CH2-, and phenyl-) as well as methylarsonate have been shown to be suitable phosphate analogs for the reactions catalyzed by yeast glyceraldehyde-3-phosphate dehydrogenase and calf spleen purine nucleoside phosphorylase. The reactivity of the phosphate analogs with these two enzymes is independent of the pKa of the analog.  相似文献   

11.
12.
13.
Protease-catalyzed rearrangements of amino acid residues in peptides are observed during enzymatic digestion of proteins. When two enzyme-specific cleavage sites are within one or two residues of each other in the protein sequence, only one of the two sites usually is hydrolyzed by the protease, resulting in a peptide that contains an extra cleavage site near one of its termini. It is observed that in this type of peptide, the residues between the two cleavage sites often rearrange from one terminus of the peptide to the other terminus, catalyzed by the protease that created the peptide. It is proposed that the rearrangement is caused by protease-catalyzed intramolecular transpeptidation through a cyclic peptide intermediate. Several cases of this type of rearrangement were observed for different peptides generated by different proteases, indicating that this type of rearrangement is a general phenomenon occurring during enzymatic digestion of proteins.  相似文献   

14.
Murein synthesized in ether-permeabilized cells of Escherichia coli deficient in individual penicillin-binding proteins (PBPs) and in the presence of certain beta-lactam antibiotics was analyzed by high-pressure liquid chromatography separation of the muramidase split products. PBP 1b was found to to be the major murein synthesizing activity that was poorly compensated for by PBP 1a. A PBP 2 mutant as well as mecillinam-inhibited cells showed increased activity in the formation of oligomeric muropeptides as well as UDP-muramylpeptidyl-linked muropeptides, the reaction products of transpeptidation, bypassing the lipid intermediate. In contrast, penicillin G and furazlocillin severely inhibited these reactions but stimulated normal dimer production. It is concluded that two distinct transpeptidases exist in E. coli: one, highly sensitive to penicillin G and furazlocillin, catalyzes the formation of hyper-cross-linked muropeptides, and a second one, quite resistant to these antibiotics, synthesizes muropeptide dimers.  相似文献   

15.
The carboxypeptidase Y-catalyzed reaction of acyl transfer of acylamino acid and peptide residues from the corresponding esters to ammonia and to amides of amino acids has been studied, and conditions for obtaining amides of amino acids and peptides with the yields up to 90% found.  相似文献   

16.
The effect of pH upon the transpeptidation and hydrolytic reactions of gamma-glutamyltransferase [5-glutamyl)-peptide:amino-acid 5-glutamyltransferase, EC 2.3.2.2) have been investigated. It was found that the enzyme was irreversibly inactivated below pH 7.5 or above pH 9.4. Transpeptidation was markedly pH-dependent, while hydrolysis was pH-independent. The pH optimum for transpeptidation was found to vary for different acceptors. The ascending limb of the pH-optimum curve is attributed to the pK of the alpha-amino group of the acceptor, while the descending limb of the pH-optimum curve is attributed to an ionisable group in the active site of the enzyme. These observations provide much information about the interaction of the enzyme with the acceptor: (1) the true acceptor for gamma-glutamyltransferase is the deprotonated form of the amino acid; (2) glycylglycine has a similar acceptor activity to methionine, its apparent higher activity being due to the low pK of the alpha-amino group; (3) the enzyme is reversibly inactivated at higher pH by the deprotonation of a group in the active site which is involved in both binding of acceptor and catalysis of transpeptidation (this group is not involved in the hydrolysis reaction); (4) at pH 8.5, the normal pH for assay, only 47% of the enzyme is active, while at pH 7.4 gamma-glutamyltransferase is 93% in the active form.  相似文献   

17.
18.
Accumulation of K+ ions and glutamate plays a primary role in maintaining osmotic balance in Escherichia coli, as illustrated by the high concentrations of these ions present in cells growing in medium of high osmolality. We found that two gamma-glutamyl peptides and glutamine also accumulated during growth at high osmolarity. In a mutant unable to make trehalose growing in 1.3 osM medium, glutathione, gamma-glutamylglutamine, and glutamine accumulated to levels of 73, 33, and 140 mumol/g of protein, respectively. In such cells, K+ was present at 1,450 mumol/g of protein, indicating that glutathione and gamma-glutamylglutamine accounted for less than 10% of the low-molecular-weight anions accumulated with K+. However, glutathione is needed for wild-type osmotolerance in this species. A mutant deficient in glutathione because of an insertion in the gshA gene was unable to grow above 1.4 osM, grew more slowly at intermediate osmolarities, and took longer to adapt to growth following osmotic upshock. The involvement of glutathione in osmoregulation was independent of the effect of glutathione on K+ retention.  相似文献   

19.
Enzymic cleavage of the blocked amino terminal residues of peptides   总被引:3,自引:0,他引:3  
The substrate specificity of an enzyme that removes some N-terminal blocked amino acids from blocked peptides has been further explored with several naturally-occurring peptides. Chloride ion is an effective modulator of enzyme activity. Although the relative efficiency of the enzyme varies considerably with different peptide substrates, in each case there was significant although less than quantitative release of the N-terminal blocked amino acid. The possible application of this enzyme to structural studies on polypeptides is evaluated.  相似文献   

20.
The occurrence of in vitro thiol exchange reactions involving selenotrisulfides has been documented by HPLC analyses of reaction solutions. Asymmetric selenotrisulfide (RSSeSR') (R,R' = penicillamine, cysteine, glutathione) was formed by the reactions between (i) a mixture of thiols and selenite, (ii) thiol (R'SH) and symmetric selenotrisulfide (RSSeSR), and (iii) symmetric selenotrisulfides (RSSeSR and R'SSeSR'). Further reaction of an asymmetric selenotrisulfide with thiol (R'SH) produced another symmetric selenotrisulfide (R'SSeSR'). These thiol exchange reactions may offer significant information to elucidate intake and metabolism of selenium in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号