首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The DNA polymerases (gp43s) of the two related phages T4 and RB69 are DNA-binding proteins that also function as mRNA-binding autogenous translational repressors. As repressors, T4 gp43 is narrowly specific to its own mRNA whereas RB69 gp43 is equally effective against mRNA for either protein. We used in vitro RNase-sensitivity and RNA footprinting assays to identify features of the non-identical T4 and RB69 mRNA targets (translational operators) that allow for their identical binding affinities and biological responses to RB69 gp43. We observed that T4 gp43 and RB69 gp43 produce identical footprints on RNA substrates bearing the T4-derived operator, suggesting that the two gp43s make identical contacts with this operator. In contrast, the footprint produced by RB69 gp43 on its autogenous RNA target was shorter than its footprint on operator RNA from T4. As expected, we also observed only weak protection of RB69-derived operator RNA from RNase by T4 gp43; however, photocross-linking studies suggested that T4 gp43 recognizes structural features of the RB69-derived operator that are not detected by RNase- sensitivity assays. The results suggest that RB69 gp43 and T4 gp43 differ in their abilities to use RNA-sequence-independent interactions to configure potential RNA targets for translational repression.  相似文献   

2.
The organization and proper assembly of proteins to the primer-template junction during DNA replication is essential for accurate and processive DNA synthesis. DNA replication in RB69 (a T4-like bacteriophage) is similar to those of eukaryotes and archaea and has been a prototype for studies on DNA replication and assembly of the functional replisome. To examine protein-protein interactions at the DNA replication fork, we have established solution conditions for the formation of a discrete and homogeneous complex of RB69 DNA polymerase (gp43), primer-template DNA, and RB69 single-stranded DNA-binding protein (gp32) using equilibrium fluorescence and light scattering. We have characterized the interaction between DNA polymerase and single-stranded DNA-binding protein and measured a 60-fold increase in the overall affinity of RB69 single-stranded DNA-binding protein (SSB) for template strand DNA in the presence of DNA polymerase that is the result of specific protein-protein interactions. Our data further suggest that the cooperative binding of the RB69 DNA polymerase and SSB to the primer-template junction is a simple but functionally important means of regulatory assembly of replication proteins at the site of action. We have also shown that a functional domain of RB69 single-stranded DNA-binding protein suggested previously to be the site of RB69 DNA polymerase-SSB interactions is dispensable. The data from these studies have been used to model the RB69 DNA polymerase-SSB interaction at the primer-template junction.  相似文献   

3.
The synthesis of the DNA polymerase of bacteriophage T4 is autogenously regulated. This protein (gp43), the product of gene 43, binds to a segment of its mRNA that overlaps its ribosome binding site, and thereby blocks translation. We have determined the Kd of the gp43-operator interaction to be 1.0 x 10(-9) M. The minimum operator sequence to which gp43 binds consists of 36 nucleotides that include a hairpin (containing a 5 base-pair helix and an 8 nucleotide loop) and a single-stranded segment that contains the Shine-Dalgarno sequence of the ribosome binding site. In the distantly related bacteriophage RB69 there is a remarkable conservation of this hairpin and loop sequence at the ribosome binding site of its DNA polymerase gene. We have constructed phage operator mutants that overproduce gp43 in vivo, yet are unchanged for in vivo replication rates and phage yield. We present data that show that the replicative and autoregulatory functions are mutually exclusive activities of this polymerase, and suggest a model for gp43 synthesis that links autoregulation to replicative demand.  相似文献   

4.
The DNA polymerases (gp43s) of the related bacteriophages T4 and RB69 are B family (polymerase alpha class) enzymes that determine the fidelity of phage DNA replication. A T4 whose gene 43 has been mutationally inactivated can be replicated by a cognate RB69 gp43 encoded by a recombinant plasmid in T4-infected Escherichia coli. We used this phage-plasmid complementation assay to obtain rapid and sensitive measurements of the mutational specificities of mutator derivatives of the RB69 enzyme. RB69 gp43s lacking proofreading function (Exo(-) enzymes) and/or substituted with alanine, serine, or threonine at the conserved polymerase function residue Tyr(567) (Pol(Y567(A/S/T)) enzymes) were examined for their effects on the reversion of specific mutations in the T4 rII gene and on forward mutation in the T4 rI gene. The results reveal that Tyr(567) is a key determinant of the fidelity of base selection and that the Pol and Exo functions are strongly coupled in this B family enzyme. In vitro assays show that the Pol(Y567A) Exo(-) enzyme generates mispairs more frequently but extends them less efficiently than does a Pol(+) Exo(-) enzyme. Other replicative DNA polymerases may control fidelity by strategies similar to those used by RB69 gp43.  相似文献   

5.
6.
The DNA-binding DNA polymerase (gp43) of phage T4 is also an RNA-binding protein that represses translation of its own mRNA. Previous studies implicated two segments of the untranslated 5′-leader of the mRNA in repressor binding, an RNA hairpin structure and the adjacent RNA to the 3′ side, which contains the Shine–Dalgarno sequence. Here, we show by in vitro gp43–RNA binding assays that both translated and untranslated segments of the mRNA contribute to the high affinity of gp43 to its mRNA target (translational operator), but that a Shine–Dalgarno sequence is not required for specificity. Nucleotide sequence specificity appears to reside solely in the operator’s hairpin structure, which lies outside the putative ribosome-binding site of the mRNA. In the operator region external to the hairpin, RNA length rather than sequence is the important determinant of the high binding affinity to the protein. Two aspects of the RNA hairpin determine specificity, restricted arrangement of purine relative to pyrimidine residues and an invariant 5′-AC-3′ in the unpaired (loop) segment of the RNA structure. We propose a generalized structure for the hairpin that encompasses these features and discuss possible relationships between RNA binding determinants of gp43 and DNA binding by this replication enzyme.  相似文献   

7.
8.
Replicative DNA polymerases, as exemplified by the B family polymerases from bacteriophages T4 and RB69, not only replicate DNA but also have the ability to proofread misincorporated nucleotides. Because the two activities reside in separate protein domains, polymerases must employ a mechanism that allows for efficient switching of the primer strand between the two active sites to achieve fast and accurate replication. Prior mutational and structural studies suggested that a beta hairpin structure located in the exonuclease domain of family B polymerases might play an important role in active site switching in the event of a nucleotide misincorporation. We show that deleting the beta hairpin loop in RB69 gp43 affects neither polymerase nor exonuclease activities. Single binding event studies with mismatched primer termini, however, show that the beta hairpin plays a role in maintaining the stability of the polymerase/DNA interactions during the binding of the primer DNA in the exonuclease active site but not on the return of the corrected primer to the polymerase active site. In addition, the deletion variant showed a more stable incorporation of a nucleotide opposite an abasic site. Moreover, in the 2.4 A crystal structure of the beta hairpin deletion variant incorporating an A opposite a templating furan, all four molecules in the crystal asymmetric unit have DNA in the polymerase active site, despite the presence of DNA distortions because of the misincorporation, confirming that the primer strand is not stably bound within the exonuclease active site in the absence of the beta hairpin loop.  相似文献   

9.
The replication DNA polymerase (gp43) of the bacteriophage T4 is a member of the pol B family of DNA polymerases, which are found in all divisions of life in the biosphere. The enzyme is a modularly organized protein that has several activities in one polypeptide chain (900 amino acid residues). These include two catalytic functions, POL (polymerase) and EXO (3-exonuclease), and specific binding activities to DNA, the mRNA for gp43, deoxyribonucleotides (dNTPs), and other T4 replication proteins. The gene for this multifunctional enzyme (gene 43) has been preserved in evolution of the diverse group of T4-like phages in nature, but has diverged in sequence, organization, and specificity of the binding functions of the gene product. We describe here examples of T4-like phages where DNA rearrangements have created split forms of gene 43 consisting of two cistrons instead of one. These gene 43 variants specify separate gp43A (N-terminal) and gp43B (C-terminal) subunits of a split form of gp43. Compared to the monocistronic form, the interruption in contiguity of the gene 43 reading frame maps in a highly diverged sequence separating the code for essential components of two major modules of this pol B enzyme, the FINGERS and PALM domains, which contain the dNTP binding pocket and POL catalytic residues of the enzyme. We discuss the biological implications of these gp43 splits and compare them to other types of pol B splits in nature. Our studies suggest that DNA mobile elements may allow genetic information for pol B modules to be exchanged between organisms.Translated from Biokhimiya, Vol. 69, No. 11, 2004, pp. 1489–1496.Original Russian Text Copyright © 2004 by Petrov, Karam.  相似文献   

10.
Sun S  Geng L  Shamoo Y 《Proteins》2006,65(1):231-238
In vivo, replicative DNA polymerases are made more processive by their interactions with accessory proteins at the replication fork. Single-stranded DNA binding protein (SSB) is an essential protein that binds tightly and cooperatively to single-stranded DNA during replication to remove adventitious secondary structures and protect the exposed DNA from endogenous nucleases. Using information from high resolution structures and biochemical data, we have engineered a functional chimeric enzyme of the bacteriophage RB69 DNA polymerase and SSB with substantially increased processivity. Fusion of RB69 DNA polymerase with its cognate SSB via a short six amino acid linker increases affinity for primer-template DNA by sixfold and subsequently increases processivity by sevenfold while maintaining fidelity. The crystal structure of this fusion protein was solved by a combination of multiwavelength anomalous diffraction and molecular replacement to 3.2 A resolution and shows that RB69 SSB is positioned proximal to the N-terminal domain of RB69 DNA polymerase near the template strand channel. The structural and biochemical data suggest that SSB interactions with DNA polymerase are transient and flexible, consistent with models of a dynamic replisome during elongation.  相似文献   

11.
The RegA proteins from the bacteriophage T4 and RB69 are translational repressors that control the expression of multiple phage mRNAs. RegA proteins from the two phages share 78% sequence identity; however, in vivo expression studies have suggested that the RB69 RegA protein binds target RNAs with a higher affinity than T4 RegA protein. To study the RNA binding properties of T4 and RB69 RegA proteins more directly, the binding sites of RB69 RegA protein on synthetic RNAs corresponding to the translation initiation region of two RB69 target genes were mapped by RNase protection assays. These assays revealed that RB69 RegA protein protects nucleotides –9 to –3 (relative to the start codon) on RB69 gene 44, which contains the sequence GAAAAUU. On RB69 gene 45, the protected site (nucleotides –8 to –3) contains a similar purine-rich sequence: GAAAUA. Interestingly, T4 RegA protein protected the same nucleotides on these RNAs. To examine the specificity of RNA binding, quantitative RNA gel shift assays were performed with synthetic RNAs corresponding to recognition elements (REs) in three T4 and three RB69 mRNAs. Comparative gel shift assays demonstrated that RB69 RegA protein has an ~7-fold higher affinity for T4 gene 44 RE RNA than T4 RegA protein. RB69 RegA protein also binds RB69 gene 44 RE RNA with a 4-fold higher affinity than T4 RegA protein. On the other hand, T4 RegA exhibited a higher affinity than RB69 RegA protein for RB69 gene 45 RE RNA. With respect to their affinities for cognate RNAs, both RegA proteins exhibited the following hierarchy of affinities: gene 44 > gene 45 > regA. Interestingly, T4 RegA exhibited the highest affinity towards RB69 gene 45 RE RNA, whereas RB69 RegA protein had the highest affinity for T4 gene 44 RE RNA. The helix–loop groove RNA binding motif of T4 RegA protein is fully conserved in RB69 RegA protein. However, homology modeling of the structure of RB69 RegA protein reveals that the divergent residues are clustered in two areas of the surface, and that there are two large areas of high conservation near the helix–loop groove, which may also play a role in RNA binding.  相似文献   

12.
Hanwool Yoon  Arieh Warshel 《Proteins》2016,84(11):1616-1624
Understanding the origin of discrimination between rNTP and dNTP by DNA/RNA polymerases is important both for gaining fundamental knowledge on the corresponding systems and for advancing the design of specific drugs. This work explores the nature of this discrimination by systematic calculations of the transition state (TS) binding energy in RB69 DNA polymerase (gp43) and T7 RNA polymerase. The calculations reproduce the observed trend, in particular when they included the water contribution obtained by the water flooding approach. Our detailed study confirms the idea that the discrimination is due to the steric interaction between the 2′OH and Tyr416 in DNA polymerase, while the electrostatic interaction is the source of the discrimination in RNA polymerase. Proteins 2016; 84:1616–1624. © 2016 Wiley Periodicals, Inc.  相似文献   

13.
Bacteriophage RB69 encodes a replicative B-family DNA polymerase (RB69 gp43) with an associated proofreading 3' exonuclease. Crystal structures have been determined for this enzyme with and without DNA substrates. We previously described the mutation rates and kinds of mutations produced in vivo by the wild-type (Pol(+) Exo(+)) enzyme, an exonuclease-deficient mutator variant (Pol(+) Exo(-)), mutator variants with substitutions at Tyr(567) in the polymerase active site (Pol(M) Exo(+)), and the double mutator Pol(M) Exo(-). Comparing the mutational spectra of the Pol(+) Exo(-) and Pol(+) Exo(+) enzymes revealed the patterns and efficiencies of proofreading, while Tyr(567) was identified as an important determinant of base-selection fidelity. Here, we sought to determine how well the fidelities of the same enzymes are reflected in vitro. Compared to their behavior in vivo, the three mutator polymerases exhibited modestly higher mutation rates in vitro and their mutational predilections were also somewhat different. Although the RB69 gp43 accessory proteins exerted little or no effect on total mutation rates in vitro, they strongly affected mutation rates at many specific sites, increasing some rates and decreasing others.  相似文献   

14.
Mutational Analysis of the mRNA Operator for T4 DNA Polymerase   总被引:2,自引:0,他引:2       下载免费PDF全文
M. D. Andrake  J. D. Karam 《Genetics》1991,128(2):203-213
Biosynthesis of bacteriophage T4 DNA polymerase is autogenously regulated at the translational level. The enzyme, product of gene 43, represses its own translation by binding to its mRNA 5' to the initiator AUG at a 36-40 nucleotide segment that includes the Shine-Dalgarno sequence and a putative RNA hairpin structure consisting of a 5-base-pair stem and an 8-base loop. We constructed mutations that either disrupted the stem or altered specific loop residues of the hairpin and found that many of these mutations, including single-base changes in the loop sequence, diminished binding of purified T4 DNA polymerase to its RNA in vitro (as measured by a gel retardation assay) and derepressed synthesis of the enzyme in vivo (as measured in T4 infections and by recombinant-plasmid-mediated expression). In vitro effects, however, were not always congruent with in vivo effects. For example, stem pairing with a sequence other than wild-type resulted in normal protein binding in vitro but derepression of protein synthesis in vivo. Similarly, a C----A change in the loop had a small effect in vitro and a strong effect in vivo. In contrast, an A----U change near the base of the hairpin that was predicted to increase the length of the base-paired stem had small effects both in vitro and in vivo. The results suggest that interaction of T4 DNA polymerase with its structured RNA operator depends on the spatial arrangement of specific nucleotide residues and is subject to modulation in vivo.  相似文献   

15.
Yang G  Franklin M  Li J  Lin TC  Konigsberg W 《Biochemistry》2002,41(32):10256-10261
Many DNA polymerases select their natural substrates, deoxy- as opposed to ribonucleoside triphosphates, with a selectivity greater than 10000-fold. The function of a highly conserved residue, Tyr416, in the palm domain of the parental enzyme, an exo(-) derivative of RB69 DNA polymerase (gp43), a member of the pol alpha DNA polymerase family, was examined for its role in helping the polymerase discriminate between ribo-, dideoxyribo-, and deoxyribonucleoside triphosphates. The parental enzyme selected dNTPs vs rNTPs with about the same preference as dNTPs vs ddNTPs. Pre-steady-state kinetic analysis was carried out with the parental enzyme and two mutants, Y416A and Y416F. The Y416A mutant incorporated ribonucleotide residues much more efficiently than the parental enzyme, whereas the Y416F mutant was more permissive toward ddNTP vs rNTP utilization than either the Y416A mutant or the parental enzyme. We also found that both dCDP and rCDP inhibited dCTP incorporation by the Y416A mutant, while only dCDP but not rCDP inhibited dCTP incorporation by the parental enzyme and the Y416F mutant. The parental enzyme and the Y416A and Y416F mutants were all able to add araCTP (1-beta-D-arabinofuranosylcytosine-5'-triphosphate) to a primer but with reduced efficiency relative to dCTP. Based on our kinetic results, interpreted in the context of the crystal structure of the RB69 gp43 ternary complex, we suggest that sugar discrimination is provided mainly by the Tyr416 side chain which can sterically block the 2'-OH group of an incoming rNTP.  相似文献   

16.
We have completely sequenced and annotated the genomes of several relatives of the bacteriophage T4, including three coliphages (RB43, RB49 and RB69), three Aeromonas salmonicida phages (44RR2.8t, 25 and 31) and one Aeromonas hydrophila phage (Aeh1). In addition, we have partially sequenced and annotated the T4-like genomes of coliphage RB16 (a close relative of RB43), A. salmonicida phage 65, Acinetobacter johnsonii phage 133 and Vibrio natriegens phage nt-1. Each of these phage genomes exhibited a unique sequence that distinguished it from its relatives, although there were examples of genomes that are very similar to each other. As a group the phages compared here diverge from one another by several criteria, including (a) host range, (b) genome size in the range between approximately 160 kb and approximately 250 kb, (c) content and genetic organization of their T4-like genes for DNA metabolism, (d) mutational drift of the predicted T4-like gene products and their regulatory sites and (e) content of open-reading frames that have no counterparts in T4 or other known organisms (novel ORFs). We have observed a number of DNA rearrangements of the T4 genome type, some exhibiting proximity to putative homing endonuclease genes. Also, we cite and discuss examples of sequence divergence in the predicted sites for protein-protein and protein-nucleic acid interactions of homologues of the T4 DNA replication proteins, with emphasis on the diversity in sequence, molecular form and regulation of the phage-encoded DNA polymerase, gp43. Five of the sequenced phage genomes are predicted to encode split forms of this polymerase. Our studies suggest that the modular construction and plasticity of the T4 genome type and several of its replication proteins may offer resilience to mutation, including DNA rearrangements, and facilitate the adaptation of T4-like phages to different bacterial hosts in nature.  相似文献   

17.
Zahn KE  Belrhali H  Wallace SS  Doublié S 《Biochemistry》2007,46(37):10551-10561
Damage to DNA involving excision of the nucleobase at the N-glycosidic bond forms abasic sites. If a nucleotide becomes incorporated opposite an unrepaired abasic site during DNA synthesis, most B family polymerases obey the A-rule and preferentially incorporate dAMP without instruction from the template. In addition to being potentially mutagenic, abasic sites provide strong blocks to DNA synthesis. A previous crystal structure of an exonuclease deficient variant of the replicative B family DNA polymerase from bacteriophage RB69 (RB69 gp43 exo-) illustrated these properties, showing that the polymerase failed to translocate the DNA following insertion of dAMP opposite an abasic site. We examine four new structures depicting several steps of translesion DNA synthesis by RB69 gp43 exo-, employing a non-natural purine triphosphate analogue, 5-nitro-1-indolyl-2'-deoxyriboside-5'-triphosphate (5-NITP), that is incorporated more efficiently than dAMP opposite abasic sites. Our structures indicate that a dipole-induced dipole stacking interaction between the 5-nitro group and base 3' to the templating lesion explains the enhanced kinetics of 5-NITP. As with dAMP, the DNA fails to translocate following insertion of 5-NIMP, although distortions at the nascent primer terminus contribute less than previously thought in inducing the stall, given that 5-NIMP preserves relatively undistorted geometry at the insertion site following phosphoryl transfer. An open ternary configuration, novel in B family polymerases, reveals an initial template independent binding of 5-NITP adjacent to the active site of the open polymerase, suggesting that closure of the fingers domain shuttles the nucleotide to the active site while testing the substrate against the template.  相似文献   

18.
The T4 and RB69 DNA replicative polymerases are members of the B family and are highly similar. Both replicate DNA with high fidelity and employ the same mechanism that allows efficient switching of the primer terminus between the polymerase and exonuclease sites. Both polymerases have a β hairpin loop (hereafter called the β loop) in their exonuclease domains that plays an important role in active-site switching. The β loop is involved in strand separation and is needed to stabilize partially strand-separated exonuclease complexes. In T4 DNA polymerase, modification of the β-loop residue G255 to Ser confers a strong mutator phenotype in vivo due to a reduced ability to form editing complexes. Here, we describe the RB69 DNA polymerase mutant with the equivalent residue (G258) changed to Ser but showing only mild mutator activity in vivo. On the other hand, deletion of the tip of the RB69 β loop confers a strong mutator phenotype in vivo. Based on detailed mutational spectral analyses, DNA binding activities, and coupled polymerase/exonuclease assays, we define the differences between the T4 and RB69 polymerases. We propose that their β loops facilitate strand separation in both polymerases, while the residues that form the loop have low structural constraints.  相似文献   

19.
The Gp59 protein of bacteriophage T4 promotes DNA replication by loading the replicative helicase, Gp41, onto replication forks and recombination intermediates. Gp59 also blocks DNA synthesis by Gp43 polymerase until Gp41 is loaded, ensuring that synthesis is tightly coupled to unwinding. The distinct polymerase blocking and helicase loading activities of Gp59 likely involve different binding interactions with DNA and protein partners. Here, we investigate how interactions of Gp59 with DNA and Gp32, the T4 single-stranded DNA (ssDNA)-binding protein, are related to these activities. A previously characterized mutant, Gp59-I87A, exhibits markedly reduced affinity for ssDNA and pseudo-fork DNA substrates. We demonstrate that on Gp32-covered ssDNA, the DNA binding defect of Gp59-I87A is not detrimental to helicase loading and translocation. In contrast, on pseudo-fork DNA the I87A mutation is detrimental to helicase loading and unwinding in the presence or absence of Gp32. Other results indicate that Gp32 binding to lagging strand ssDNA relieves the blockage of Gp43 polymerase activity by Gp59, whereas the inhibition of Gp43 exonuclease activity is maintained. Our findings suggest that Gp59-Gp32 and Gp59-DNA interactions perform separate but complementary roles in T4 DNA metabolism; Gp59-Gp32 interactions are needed to load Gp41 onto D-loops, and other nucleoprotein structures containing clusters of Gp32. Gp59-DNA interactions are needed to load Gp41 onto nascent or collapsed replication forks lacking clusters of Gp32 and to coordinate bidirectional replication from T4 origins. The dual functionalities of Gp59 allow it to promote the initiation or re-start of DNA replication from a wide variety of recombination and replication intermediates.  相似文献   

20.
G Yang  T Lin  J Karam  W H Konigsberg 《Biochemistry》1999,38(25):8094-8101
The function of six highly conserved residues (Arg482, Lys483, Lys486, Lys560, Asn564, and Tyr567) in the fingers domain of bacteriophage RB69 DNA polymerase (RB69 gp43) were analyzed by kinetic studies with mutants in which each of these residues was replaced with Ala. Our results suggest that Arg482, Lys486, Lys560, and Asn564 contact the incoming dNTP during the nucleotidyl transfer reaction as judged by variations in apparent Km and kcat values for dNTP incorporation by these mutants compared to those for the exonuclease deficient parental polymerase under steady-state conditions. On the basis of our studies, as well as on the basis of the crystal structure of RB69 gp43, we propose that a conformational change in the fingers domain, which presumably occurs prior to polymerization, brings the side chains of Arg482, Lys486, Lys560, and Asn564 into the vicinity of the primer-template terminus where they can contact the triphosphate moiety of the incoming dNTP. In particular, on the basis of structural studies reported for the "closed" forms of two other DNA polymerases and from the kinetic studies reported here, we suggest that (i) Lys560 and Asn564 contact the nonbonding oxygens of the alpha and beta phosphates, respectively, and (ii) both Arg482 and Lys486 contact the gamma phosphate oxygens of the incoming dNTP of RB69 gp43 prior to the nucleotidyl transfer reaction. We also found that Ala substitutions at each of these four RB69 gp43 sites could incorporate dGDP as a substrate, although with markedly reduced efficiency compared to that with dGTP. In contrast in the parental exo- background, the K483A and Y567A substituted enzymes could not use dGDP as a substrate for primer extension. These results, taken together, are consistent with the putative roles of the four conserved residues in RB69 gp43 as stated above.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号