首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The UV-visible absorption and magnetic circular dichroism (MCD) spectra of the ferric, ferrous, CO-ligated forms and kinetic photolysis intermediates of the tetraheme electron-transfer protein cytochrome c3 (Cc3) are reported. Consistent with bis-histidinyl axial coordination of the hemes in this Class III c-type cytochrome, the Soret and visible region MCD spectra of ferric and ferrous Cc3 are very similar to those of other bis-histidine axially coordinated hemeproteins such as cytochrome b5. The MCD spectra indicate low spin state for both the ferric (S = 1/2) and ferrous (S = 0) oxidation states. CO replaces histidine as the axial sixth ligand at each heme site, forming a low-spin complex with an MCD spectrum similar to that of myoglobin-CO. Photodissociation of Cc3-CO (observed photolysis yield = 30%) produces a transient five-coordinate, high-spin (S = 2) species with an MCD spectrum similar to deoxymyoglobin. The recombination kinetics of CO with heme Fe are complex and appear to involve at least five first-order or pseudo first-order rate processes, corresponding to time constants of 5.7 microseconds, 62 microseconds, 425 microseconds, 2.9 ms, and a time constant greater than 1 s. The observed rate constants were insensitive to variation of the actinic photon flux, suggesting noncooperative heme-CO rebinding. The growing in of an MCD signal characteristic of bis-histidine axial ligation within tens of microseconds after photodissociation shows that, although heme-CO binding is thermodynamically favored at 1 atm CO, binding of histidine to the sixth axial site competes kinetically with CO rebinding.  相似文献   

2.
Time-resolved circular dichroism (TRCD) and absorption spectroscopy are used to follow the photolysis reaction of (carbonmonoxy)myoglobin (MbCO). Following the spectral changes associated with the initial loss of CO, a subtle change is observed in the visible absorption spectrum of the Mb product on a time scale of a few hundred nanoseconds. No changes are seen in the CD spectrum of Mb in the visible and near-UV regions subsequent to the loss of CO. The data suggest the existence of an intermediate found after ligand loss from MbCO that is similar in structure to the final Mb product.  相似文献   

3.
Absorption, circular dichroism (CD), magnetic circular dichroism (MCD) and emission spectra of rat liver and rat kidney cadmium-, zinc- and copper-containing metallothioneins (MT) are reported. The absorption, CD and MCD data of native rat kidney Cd,Cu-MT protein closely resemble data recorded for the rat liver Cd,Zn-MT. This suggests that the major features in all three spectra of the native Cd,Cu-MT are dominated by cadmium-related bands. The CD spectrum of the Cd,Cu-MT recorded at pH 2.7 has the same band envelope that is observed for a Cd,Cu-MT formed in vitro by titration of Cd,Zn-MT with Cu(I), suggesting that the copper occupies the zinc sites in Cd,Cu-MT formed both in vivo and, at low molar ratios, in vitro. Remetallalion of the metallothionein from low pH in the presence of both copper and cadmium results in considerably less cadmium bound to the protein than was present in the native sample. It is suggested that this is due to the effect of the distribution of the copper amongst all available binding sites, thus inhibiting cluster formation by the cadmium. Emission spectra are reported for the first time for a cadmium- and copper-containing metallothionein. An emission band at 610 nm is shown to be a sensitive indicator of Cu(I) binding to metallothionein. Both the native Cd,Cu-MT and a Cd,Cu-MT formed in vitro exhibit an excitation spectrum with a band in the copper-thiolate charge-transfer region.  相似文献   

4.
On the basis of amino acid sequences and crystal structures of similar enzymes, it is proposed that Met95 of the heme-regulated phosphodiesterase from Escherichia coli (Ec DOS) acts as a heme axial ligand. In accordance with this proposal, the Soret and visible optical absorption and magnetic circular dichroism spectra of the Fe(II) complexes of the Met95Ala and Met95Leu mutant proteins indicate that these complexes are five-coordinated high-spin, suggesting that Met95 is an axial ligand for the Fe(II) complex. However, the Fe(III) complexes of these mutants are six-coordinated low-spin, like the wild-type enzyme. The latter spectral findings are inconsistent with the proposal that the axial ligand to the Fe(III) heme is Met95. To determine the possibility of a redox-dependent ligand switch in Ec DOS, we further analyzed Soret CD spectra and redox potentials, which provide direct evidence on the environmental structure of the heme protein. CD spectra of Fe(III) Met95 mutants were all different from those of the wild-type protein, suggesting indirect coordination of Met95 to the Fe(III) wild-type heme. The redox potentials of the Met95Leu, Met95Ala and Met95His mutants were considerably lower than that of the wild-type enzyme (+70 mV) at -1, -26, and -122 mV vs. SHE, respectively. Thus, it is reasonable to speculate that water (or hydroxy anion) interacting with Met95, rather than Met95 itself, is the axial ligand to the Fe(III) heme.  相似文献   

5.
6.
Marquardt and Powell optimization methods without constraintson the optimized spectral parameters were employed for decompositionof complex i.r., c.d. and absorption spectra into componentbands. The procedure resolved experimental spectra into eightcomponent bands and it can be easily adjusted for a larger setof component bands. The CPU time required for achievement ofsatisfactory convergence of parameters for eight component bandsis rather large even when using mainframe computers and thereforedivision of spectra into a few non-overlapped parts is advisable.The program also can be used for calculation of absorption,c.d. and difference spectra from formatted raw spectral data. Received on January 13, 1986; accepted on April 7, 1986  相似文献   

7.
The DeVoe polarizability theory is used to calculate vibrational circular dichroism (VCD) and infrared (IR) absorption spectra of four polyribonucleotides: poly(rA) x poly(rU), poly(rU) x poly(rA) x poly(rU), poly(rG) x poly(rC), and poly(rC+) x poly(rI) x poly(rC). This is the first report on the use of the DeVoe theory to calculate VCD, oriented VCD, IR absorption, and IR linear dichroism (LD) spectra of double- and triple-stranded polyribonucleotides. Results are reported for DeVoe theory calculations--within the base-stretching 1750-1550 cm(-1) spectral region--on several proposed multistranded polyribonucleotide geometries. The calculated spectra obtained from these proposed geometries are compared with previously reported measured and calculated VCD and IR spectral results. Base-base hydrogen-bonding effects on the frequencies and magnitudes of the base carbonyl stretching modes are explicitly considered. The good agreements found between calculated and measured spectra are proposed to be further evidence of the usefulness of the DeVoe theory in drawing three-dimensional structural conclusions from measured polyribonucleotide VCD and IR spectra.  相似文献   

8.
Infrared (IR) vibrational circular dichroism (VCD), absorption, and linear dichroism (LD) spectra of four homopolyribonucleotides, poly(rA), poly(rG), poly(rC), and poly(rU), have been calculated, in the 1750-1550 cm-1 spectral region, using the DeVoe polarizability theory. A newly derived algorithm, which approximates the Hilbert transform of imaginaries to reals, was used in the calculations to obtain real parts of oscillator polarizabilities associated with each normal mode. The calculated spectra of the polynucleotides were compared with previously measured solution spectra. The good agreement between calculated and measured polynucleotide spectra indicates, for the first time, that the DeVoe theory is a useful means of calculating the VCD and IR absorption spectra of polynucleotides. For the first time, calculated DeVoe theory VCD and IR absorption spectra of oriented polynucleotides are presented. The calculated VCD spectra for the oriented polynucleotides are used to predict the spectra for such measurements made in the future. The calculated IR spectra for the oriented polynucleotides are useful in interpreting the linear dichroism of the polynucleotides.  相似文献   

9.
Dartigalongue T  Hache F 《Chirality》2006,18(4):273-278
A calculation of the circular dichroism (CD) spectra of carbonmonoxy- and deoxy-myoglobin is carried out in relation to a time-resolved CD experiment. This calculation allows us to assign a dominant role to the proximal histidine in the definition of the electronic normal modes and to interpret the transient CD structure observed in a strain of the proximal histidine. This strain builds up in 10 ps and relaxes in 50 ps as the protein evolves towards its deoxy form.  相似文献   

10.
11.
IscS from Escherichia coli is a cysteine desulfurase that has been shown to be involved in Fe-S cluster formation. The enzyme converts L-cysteine to L-alanine and sulfane sulfur (S(0)) in the form of a cysteine persulfide in its active site. Recently, we reported that IscS can donate sulfur for the in vitro biosynthesis of 4-thiouridine (s(4)U), a modified nucleotide in tRNA. In addition to IscS, s(4)U synthesis in E. coli also requires the thiamin biosynthetic enzyme ThiI, Mg-ATP, and L-cysteine as the sulfur donor. We now report evidence that the sulfane sulfur generated by IscS is transferred sequentially to ThiI and then to tRNA during the in vitro synthesis of s(4)U. Treatment of ThiI with 5-((2-iodoacetamido)ethyl)-1-aminonapthalene sulfonic acid (I-AEDANS) results in irreversible inhibition, suggesting the presence of a reactive cysteine that is required for binding and/or catalysis. Both ATP and tRNA can protect ThiI from I-AEDANS inhibition. Finally, using gel shift and protease protection assays, we show that ThiI binds to unmodified E. coli tRNA(Phe). Together, these results suggest that ThiI is a recipient of S(0) from IscS and catalyzes the ultimate sulfur transfer step in the biosynthesis of s(4)U.  相似文献   

12.
The effect of temperature on the rate constants of hydrolysis of various substrates by penicillopepsin is dependent on the length of the substrate. For the series Ac-(Ala)m-Lys-Nph-(Ala)n-amide (where Ac- is acetyl- and Nph- is p-nitrophenylalanyl-), where m and n = 0-2, substrates lacking both P'2 and P3 residues give linear Arrhenius plots with an energy of activation of about 55 kJ.mol-1. The Arrhenius plots of substrates in which an alanine residue occupies P'2 show a sharp break at an average transition temperature of 10.5 degrees C. The activation energies are approximately 90 kJ.mol-1 below and approximately 54 kJ.mol-1 above the transition temperature, respectively. For substrates in which P3 is occupied, the average transition temperature is 14.2 degrees C. In this case, the activation energies are 66 kJ.mol-1 below and from 26 to 39 kJ.mol-1 above the transition point. The most probable explanation of these phenomena is that substrate interaction at subsites S3 and/or S'2 of the enzyme induces a temperature-dependent conformational change. Physical evidence for this comes from the observation that the temperature dependence of a CD absorption band at 242 nm of a penicillopepsin-pepstatin complex shows a sharp break that corresponds to those observed in the Arrhenius plots of substrates with alanine at P'2 and P3, whereas the same CD band in the free enzyme is linearly dependent on temperature.  相似文献   

13.
The enzyme ThiI is common to the biosynthetic pathways leading to both thiamin and 4-thiouridine in tRNA. We earlier noted the presence of a motif shared with sulfurtransferases, and we reported that the cysteine residue (Cys-456 of Escherichia coli ThiI) found in this motif is essential for activity (Palenchar, P. M., Buck, C. J., Cheng, H., Larson, T. J., and Mueller, E. G. (2000) J. Biol. Chem. 275, 8283-8286). In light of that finding and the report of the involvement of the protein IscS in the reaction (Kambampati, R., and Lauhon, C. T. (1999) Biochemistry 38, 16561-16568), we proposed two mechanisms for the sulfur transfer mediated by ThiI, and both suggested possible involvement of the thiol group of another cysteine residue in ThiI. We have now substituted each of the cysteine residues with alanine and characterized the effect on activity in vivo and in vitro. Cys-108 and Cys-202 were converted to alanine with no significant effect on ThiI activity, and C207A ThiI was only mildly impaired. Substitution of Cys-344, the only cysteine residue conserved among all sequenced ThiI, resulted in the loss of function in vivo and a 2700-fold reduction in activity measured in vitro. We also examined the possibility that ThiI contains an iron-sulfur cluster or disulfide bonds in the resting state, and we found no evidence to support the presence of either species. We propose that Cys-344 forms a disulfide bond with Cys-456 during turnover, and we present evidence that a disulfide bond can form between these two residues in native ThiI and that disulfide bonds do form in ThiI during turnover. We also discuss the relevance of these findings to the biosynthesis of thiamin and iron-sulfur clusters.  相似文献   

14.
The reconstitution reaction of ferric cyanomyoglobin from apomyoglobin and hemin dicyanide was investigated with a stopped-flow apparatus by the use of five kinds of probes; (a) Soret absorption, (b) fluorescence quenching of tryptophan, (c) far-ultraviolet CD, (d) near-ultraviolet CD, and (e) Soret CD. After mixing of apomyoglobulin with equimolar amounts of hemin dicyanide, the Soret absorption band was shifted to longer wavelengths within 10 ms. The shifted band kept its shape for a few seconds, and then gradually shifted to shorter wavelengths. A rate constant of the slow reaction was 1.1 x 10(-2) s-1. Time courses of fluorescence quenching followed a second-order reaction with a rate constant of 9 x 10(7) M-1 s-1. Far-ultraviolet CD recovered to the level of native state within the response time of an apparatus (= 64 ms). Near-ultraviolet CD and Soret CD changed with first-order rate constants of 5-30 s-1 and 5 x 10(-3) s-1 respectively. On the basis of the kinetic results we propose the following reconstitution pathway of myoglobin. Apomyoglobin has essentially a highly folded structure similar to myoglobin, but there are some differences in the secondary structure between them. In the first step, heme enters the pocket-like site of apomyoglobin and interacts with surrounding hydrophobic residues in the pocket, and then the interaction may give a complete ordered structure to the protein. Second, the tertiary structure of the heme pocket is partly constructed. Third, the iron-proximal His bond occurs, followed by the attainment of the final conformation. This sequence of the events shows that the polypeptide chain is entirely folded before the completion of three-dimensional structure of the heme pocket. The reconstitution pathway is fairly different from that of the alpha subunit of hemoglobin reported by Leutzinger and Beychok [Proc. Natl Acad. Sci. USA (1981) 78, 780-784], which described how a drastic recovery in helicity was observed on the heme-binding, and that the recovery is introduced by the formation of the heme pocket structure. The difference in the results found for the alpha subunit and myoglobin suggests a difference in conformation: in apomyoglobin most of the helices are arranged and folded around a helix core to form a compact structure as a whole, while in apo-alpha subunit some helices are not folded around the helix core. Helix D, which is absent in the alpha subunit, may play an important role in folding of the helices.  相似文献   

15.
Protein unfolding during guanidine HCl denaturant titration of the reduced and oxidized forms of cytochrome c is monitored with magnetic circular dichroism (MCD), natural CD, and absorption of the heme bands and far-UV CD of the amide bands. Direct MCD spectral evidence is presented for bis-histidinyl heme ligation in the unfolded states of both the reduced and oxidized protein. For both redox states, the unfolding midpoints measured with MCD, which is an indicator of tertiary structure, are significantly lower than those measured with far-UV CD, an indicator of secondary structure. The disparate titration curves are interpreted in terms of a compound mechanism for denaturant-induced folding and unfolding involving a molten globulelike intermediate state (MG) with near-native secondary structure and nonnative tertiary structure and heme ligation. A comparison of the dependence of the free energy of formation of the MG intermediate on the redox state with the known contributions from heme ligation and solvation suggests that the heme is significantly more accessible to solvent in the MG intermediate than it is in the native state.  相似文献   

16.
Pexiganan (Gly-Ile-Gly-Lys-Phe-Leu-Lys-Lys-Ala-Lys-Lys-Phe-Gly-Lys-Ala-Phe-Val-Lys-Ile-Leu-Lys-Lys), a 22 amino acid peptide, is an analogue of the magainin family of antimicrobial peptides present in the skin of the African clawed frog. Conformational analysis of pexiganan was carried out in different solvent environments for the first time. Organic solvents, trifluoroethanol (TFE) and methanol, were used to study the secondary structural preferences of this peptide in the membrane-mimicking environments. In addition, aqueous (D2O) and dimethyl sulfoxide (DMSO) solutions were also investigated to study the role of hydrogen bonding involved in the secondary structure formation. Fourier transform infrared absorption, vibrational circular dichroism (VCD), and electronic circular dichroism (ECD) measurements were carried out under the same conditions to ascertain the conformational assignments in different solvents. All these spectroscopic measurements suggest that the pexiganan peptide has the tendency to adopt different structures in different environments. Pexiganan appears to adopt an alpha-helical conformation in TFE, a sheet-stabilized beta-turn structure in methanol, a random coil with beta-turn structure in D2O, and a solvated beta-turn structure in DMSO.  相似文献   

17.
The chromatophore of a novel thermophilic purple photosynthetic bacterium, Chromatium tepidum, had light-harvesting BChl proteins which gave absorption maxima at 917, 855 and 800 nm at 20°C. These antenna complexes were found to have BChl of the a type [4]. This is, therefore, the first example of a BChl a antenna complex which shows a long-wavelength absorption up to 917 nm. Treatment by Triton X-100 and successive sodium dodecyl sulfate polyacrylamide gel electrophoresis separated these antenna complexes into two groups. One of them has one antenna component which absorbs around 917 nm (B917). The other contains at least an antennae which absorb maximally at 800 and 855 nm (B800–855). The temperature-dependent changes of absorption, circular dichroism and emission spectra were reversible up to 70°C in the intact chromatophore and in the isolated B800–855 complex. On the contrary, the isolated complex B917 lost its absorption irreversibly over the temperature of 50°C. These results suggest a membrane structure which is essential for the thermostability of chromatophores from C. tepidum.  相似文献   

18.
Two new double-headed protease inhibitors from black-eyed peas have amino acid compositions typical of the low molecular weight protease inhibitors from legume seeds. Black-eyed pea chymotrypsin and trypsin inhibitor (BEPCI) contains no tryptophan, 1 tyrosine, and 14 half-cystines out of 83 amino acid residues per monomer. Black-eyed pea trypsin inhibitor (BEPTI) contains no tryptophan, 1 tyrosine, and 14 half-cystines out of 75 residues per monomer. The molar extinctions at 280 nm are 2770 for BEPCI and 3440 for BEPTI. The single tyrosyl residue is very inaccessible to solvent in native BEPCI and BEPTI at neutral pH and titrates anomalously with an apparent pK = 12. Ionization of tyrosine is complete in 13 hours above pH 12. No heterogeneity of the local environment of the tyrosyl residues in different subunits can be detected spectrophotometrically. The large number of cystine residues leads to an intense and complex near-ultraviolet CD spectrum with cystine contributions in the regions of 248 and 280 nm and tyrosine contributions at 233 and 280 nm. An intact disulfide structure is required for appearance of the tyrosyl CD bands. The inhibitors are unusually resistant to denaturation when compared with similar low molecular weight proteins of high disulfide content. All observations are consistent with a far more rigid structure for BEPCI and BEPTI than for a typical protein.  相似文献   

19.
20.
The effect of a cationic detergent, lauryl pyridiniumchloride (LPC), and an anionic one, sodium n-octylbenzenesulfonate (SOBS), on the conformation of unfractionated Escherichia coli tRNA was investigated at various molar ratios of detergent to tRNA (D/R) in the presence and absence of Mg2+ and Na+ ions by measuring the circular dichroism (CD) at 265 nm and 340 nm, which reflects conformational change involving base pairs and/or base stacking, and the disymmetry in the vicinity of 4-thiouridylate (4-TU), respectively. In the presence of Mg2+ and Na+ ions, the tRNA retains its native structure even in the presence of high molar ratios of detergent to tRNA (D/R congruent to 40 at 265 nm and D/R congruent to 20 at 340 nm). However, in the absence of these metal ions, the ellipticity at 340 nm was very sensitive to LPC concentration and decreased from 5,600 to nearly--1,600 at 25 degrees C with the increase of D/R ratios up to 20, and a similar decrease in the ellipticity at 340 nm was observed on thermal denaturation. This result suggests that the local environment involving the 4-TU region might be readily influenced by LPC, reflecting a large conformational change. However, no effect was observed in the case of the SOBS: tRNA system. On the other hand, secondary base pairing and/or base stacking structure was virtually invariant on adding both LPC and SOBS even at high D/R ratios in the absence of Mg2+ and Na+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号