首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of auxin on cell wall mass in the epidermis of third internodes of Pisum sativum L. cv. Alaska grown in dim red light was investigated using epidermal peels, to determine whether epidermal peels reflect the behavior of the outer epidermal cell wall. In contrast to the outer epidermal wall itself, where auxin caused thinning in proportion to growth (M.S. Bret-Harte et al, 1991, Planta 185, 462–471), auxin promoted an increase in wall mass in epidermal peels from treated internode segments in the absence of exogenously supplied sugar. The percentage gain in mass was smaller than the percentage elongation, however, so mass per unit length decreased in peels from auxin-treated segments. Epidermal peels from auxin-treated segments gained more wall mass than control peels even when adhering internal tissue at the basal end of the peel was removed. Epidermal peels also had a gross composition different from that of the outer wall alone (M.S. Bret-Harte and L.D. Talbott, 1993, Planta 190, 369–378). These discrepancies can be explained by the observation that the outer wall makes up only 30% of the mass of the epidermal peel. It appears that the inner walls of the epidermis, and walls of the outer layer of cortical cells that remain attached to the epidermis during peeling, nearly maintain their thickness by biosynthesis while the outer wall loses mass as previously described (Bret-Harte et al. 1991). These results indicate that epidermal peels may not be a good system for examining the biochemical and physiological properties of the outer epidermal cell wall.I would like to thank Dr. Peter M. Ray, of Stanford University, for the use of experimental facilities, helpful discussions, and technical and editorial assistance, Dr. Winslow R. Briggs, of the Carnegie Institute of Washington, for helpful discussions and for the use of experimental facilities, Dr. Paul B. Green, of Stanford University, for financial support, and Dr. Wendy K. Silk, of the Department of Land, Air, and Water Resources, University of California, Davis, for financial support. This work was supported by a National Science Foundation Graduate Fellowship, National Science Foundation grant DCB8801493 to Paul B. Green, and the generosity of Wendy K. Silk in the final writing.  相似文献   

2.
The gross composition of the outer epidermal cell wall from third internodes of Pisum sativum L. cv. Alaska grown in dim red light, and the effect of auxin on that composition, was investigated using interference microscopy. Pea outer epidermal walls contain as much cellulose as typical secondary walls, but the proportion of pectin to hemicellulose resembles that found in primary walls. The pectin and hemicellulose fractions from epidermal peels, which are enriched for outer epidermal wall but contain internal tissue as well, are composed of a much higher percentage of glucose and glucose-related sugars than has been found previously for pea primary walls, similar to non-cellulosic carbohydrate fractions of secondary walls. The epidermal outer wall thus has a composition rather like that of secondary walls, while still being capable of elongation. Auxin induces a massive breakdown of hemicellulose in the outer epidermal wall; nearly half the hemicellulose present is lost during 4 h of growth in the absence of exogenous sugar. The percentage breakdown is much greater than has been seen previously for whole pea stems. It has been proposed that a breakdown of xyloglucan could be the basis for the mechanical loosening of the outer wall. This study provides the first evidence that such a breakdown could be occurring in the outer wall.M.S. Bret-Harte would like to thank Dr. Peter M. Ray, of Stanford University, for helpful discussions and for technical and editorial assistance, Dr. Winslow R. Briggs, of the Camegie Institude of Washington, for the use of experimental facilities and for helpful discussions, Dr. Wendy K. Silk, of the University of California, Davis, for helpful discussions and financial support, Dr. Paul B. Green for financial support, and Drs. John M. Labavitch and L.C. Greve, of the University of California, Davis, for performing the -cellulose analysis on short notice, in response to a request by an anonymous reviewer. This work was supported by a National Science Foundation Graduate Fellowship to M.S. B.-H., National Science Foundation Grant DCB8801493 to Paul B. Green, and the generosity of Wendy K. Silk (Department of Land, Air, and Water Resources, University of California, Davis) during the final writing.  相似文献   

3.
H. Edelmann  R. Bergfeld  P. Schonfer 《Planta》1989,179(4):486-494
The involvement of cell-wall polymer synthesis in auxin-mediated elongation of coleoptile segments from Zea mays L. was investigated with particular regard to the growth-limiting outer epidermis. There was no effect of indole acetic acid (IAA) on the incorporation of labeled glucose into the major polysaccharide wall fractions (cellulose, hemicellulose) within the first 2 h of IAA-induced growth. 2,6-Dichlorobenzonitrile inhibited cellulose synthesis strongly but had no effect on IAA-induced segment elongation even after a pretreatment period of 24 h, indicating that the growth response is independent of the apposition of new cellulose microfibrils at the epidermal cell wall. The incorporation of labeled leucine into total and cell-wall protein of the epidermis was promoted by IAA during the first 30 min of IAA-induced growth. Inhibition of IAA-induced growth by protein and RNA-synthesis inhibitors (cycloheximide, cordycepin) was accompanied by an inhibition of leucine incorporation into the epidermal cell wall during the first 30 min of induced growth but had no effect on the concomitant incorporation of monosaccharide precursors into the cellulose or hemicellulose fractions of this wall. It is concluded that at least one of the epidermal cell-wall proteins fulfills the criteria for a growth-limiting protein induced by IAA at the onset of the growth response. In contrast, the synthesis of the polysaccharide wall fractions cellulose and hemicellulose, as well as their transport and integration into the growing epidermal wall, appears to be independent of growth-limiting protein and these processes are therefore no part of the mechanism of growth control by IAA.Abbreviations CHI cycloheximide - COR cordycepin - DCB 2,6-dichlorobenzonitrile - GLP growth-limiting protein(s) - IAA indole-3-acetic acid  相似文献   

4.
Cell wall synthesis was studied by determining the incorporation of [14C]-glucose into epidermal and cortical cell walls of etiolated Pisum sativum L. cv. Alaska stem segments. Walls were fractionated into the matrix and cellulose components, and incorporation into these components assessed in terms of the total uptake of label into that tissue. When segments were allowed to elongate, the stimulation of total glucose uptake by indole-3-acetic acid (IAA) and fusicoccin (FC) was greater than their stimulation of incorporation. IAA and FC thus did not stimulate precursor incorporation in elongating segments. When elongation was inhibited by calcium, however, IAA and FC significantly promoted wall synthesis in the cortex and vasular tissue (which shows almost no growth or acidification response to auxin). In these tissues incorporation into matrix and cellulose was promoted approximately equally. In the epidermis (thought to be the tissue responsive to auxin in the control of growth), FC promoted a significant increase in wall synthesis, although less than that in the cortex, while there was some evidence of a similar promotion by IAA. Both IAA and FC had a greater effect on incorporation into the matrix component of the wall than into cellulose. The results that FC caused a substantial promotion of cell wall synthesis which was not due solely to elongation, and that the inner non-growth responsive cortical tissues can respond to IAA. Moreover, a comparison of the effects of IAA and FC on the different components of the wall suggests that the response in the epidermis differs from that in the other tissues.  相似文献   

5.
Differential growth of the nodal regions of graviresponding Tradescantia fluminensis (Wandering Jew) was analysed with special respect to the extension-restricting epidermal cells of the opposite growing and growth-inhibited organ flanks. Gravicurvature of horizontally gravistimulated isolated nodes depends on auxin (indolyl-3-acetic acid, IAA) and shows a node-specific profile in which the third node below the tip showed the greatest response. Exogenously supplied gibberellic acid induced no gravitropic growth. Vertically oriented isolated nodes supplied with exogenous IAA showed, on an electron microscopical level, conspicuous membrane invaginations with adjacent wall depositions restricted to the outer tangential epidermal cell walls. Their number was more than doubled by exogenously supplied Ca2+, which inhibited IAA-induced growth. No such changes could be detected in water-incubated segments or inner tissues of IAA-supplied segments. Gravistimulated differential growth of nodes of intact shoots and of nodal segments was characterized by changes similar to the ones induced by exogenous IAA, with greatly increased numbers of wall depositions within the epidermal cells of the growth-inhibited upper organ flank. Similar to the gravistimulated wall depositions, an asymmetric distribution pattern of Ca2+ was detected in the epidermal cell walls employing x-ray energy spectrum analysis (EDX). The results indicate that growth of nodes of Tradescantia fluminensis is regulated via IAA-induced secretion and subsequent infiltration of wall components enabling wall extension. The data support the hypothesis that temporary differential growth during gravicurvature of Tradescantia fluminensis is mediated by the antagonistic effect of Ca(2+)-ions on the infiltration of IAA-induced wall-loosening components into the outer, extension-restricting epidermal walls thereby inhibiting growth.  相似文献   

6.
The effects of auxin and gibberellic acid on cell wall composition in various regions of epicotyls of azuki bean ( Vigna angularis Ohwi and Ohashi cv. Takara) were investigated with the following results. (1) Young segments excised from apical regions of the epicotyl elongated in response to added 10−4 M indole-3-acetic acid (IAA). When the segments were supplied with 50 m M sucrose, the IAA-induced segment growth was accompanied by enhanced overall synthesis of cell wall polysaccharides, such as xyloglucans, polyuronides and cellulose. This IAA effect on the cell wall synthesis is a consequence of extension growth induced by IAA. Gibberellic acid (GA) at 10−4 M synergistically enhanced the IAA-induced cell wall synthesis as well as IAA-induced extension growth, although GA by itself neither stimulated the cell wall synthesis nor extension growth. In the absence of sucrose, cell wall synthesis was not induced by IAA or GA. (2) In mature segments excised from basal regions of the epicotyl, no extension growth was induced by IAA or GA. GA enhanced the synthesis of xylans and cellulose when the segments were supplied with 50 m M sucrose. IAA had no effect on the cell wall synthesis. These findings indicate that synthesis of polyuronides, xyloglucans and cellulose, which occurs during extension growth of the apical region of the epicotyl, is regulated chiefly by auxin whereas synthesis of xylans and cellulose during cell maturation in the basal region of the epicotyl is regulated by GA.  相似文献   

7.
H. Edelmann  P. Schopfer 《Planta》1989,179(4):475-485
The kinetics of inhibition by protein- and RNA-synthesis inhibitors (cycloheximide and cordycepin, respectively) of indole-3-acetic acid (IAA)-induced elongation growth were investigated using abraded coleoptile segments of Zea mays L. Removal of the cuticle — a diffusion barrier for solutes — by mechanical abrasion of the outer epidermal cell wall increased the effectiveness of inhibitors tremendously. In an attempt to elucidate the role of growth-limiting protein(s) (GLP) in the growth mechanism the following results were obtained. The elongation induced by IAA was completely inhibited when cycloheximide (10 mol·l-1) was applied to abraded coleoptile segments as shortly as 10 min before the onset of the growth response (=5 min after administration of IAA). However, when cycloheximide was applied after 60 min of IAA treatment (when a steady-state growth rate is reached), the time required for complete cessation of growth was much longer (about 40 min). Cycloheximide inhibited the incorporation of [3H]leucine into protein within about 5 min. Cordycepin (400 mol·l-1) prevented IAA-induced growth when applied as shortly as 25 min before the onset of the growth response (=10 min before administration of IAA) but required more than 60 min for a full inhibition of steady-state growth. The incorporation of [3H]adenosine into RNA was inhibited by cordycepin within 10 min. It is concluded that, contrary to previous investigations with nonabraded organ segments, the initiation of growth by IAA depends directly on the synthesis of GLP. Moreover, the apparent lifetime of GLP is at least four times longer than the time required by cycloheximide to inhibit the initiation of growth by IAA. This is interpreted to mean that GLP is not present before IAA starts to act but is synthesized as a consequence of IAA action starting a few minutes before the initiation of growth. Interpreting the kinetics of growth inhibition by cordycepin in a similar way, we further conclude that GLP synthesis is mediated by IAA-induced synthesis of the corresponding mRNA which starts about 10 min before the onset of GLP synthesis. Inhibition by cycloheximide and cordycepin of IAA-induced growth cannot be alleviated by acidifying the cell wall to pH 4-5, indicating that these inhibitors do not act on growth via an inhibition of auxin-mediated proton excretion.Abbreviations CHI cycloheximide - COR cordycepin - GLP growth-dimiting protein(s) - IAA indole-3-acetic acid - mRNAGLP mRNA coding for GLP  相似文献   

8.
Effects of indole-3-acetic acid (IAA) on the mechanical properties of cell walls and structures of cell wall polysaccharides in outer and inner tissues of segments of dark grown squash (Cucurbita maxima Duch.) hypocotyls were investigated. IAA induced the elongation of unpeeled, intact segments, but had no effect on the elongation of peeled segments. IAA induced the cell wall loosening in outer tissues as studied by the stress-relaxation analysis but not in inner tissues. IAA-induced changes in the net sugar content of cell wall fractions in outer and inner tissues were very small. Extracted hemicellulosic xyloglucans derived from outer tissues had a molecular weight about two times as large as in inner tissues, and the molecular weight of xyloglucans in both outer and inner tissues decreased during incubation. IAA substantially accelerated the depolymerization of xyloglucans in outer tissues, while it prevented that in inner tissues. These results suggest that IAA-induced growth in intact segments is due to the cell wall loosening in outer tissues, and that IAA-accelerated depolymerization of hemicellulosic xyloglucans in outer tissues is involved in the cell wall loosening processes.  相似文献   

9.
The function of the epidermis in auxinmediated elongation growth of maize (Zea mays L.) coleoptile segments was investigated. The following results were obtained: i) In the intact organ, there is a strong tissue tension produced by the expanding force of the inner tissues which is balanced by the contracting force of the outer epidermal wall. The compression imposed by the stretched outer epidermal wall upon the inner tissues gives rise to a wall-pressure difference which can be transformed into a water-potential difference between inner tissues and external medium (water) by removal of the outer epidermal wall. ii) Peeled segments fail to respond to auxin with normal growth. The plastic extensibility of the inner-tissue cell walls (measured with a constant-load extensiometer using living segments) is not influenced by auxin (or abscisic acid) in peeled or nonpeeled segments. It is concluded that auxin induces (and abscisic acid inhibits) elongation of the intact segment by increasing (decreasing) the extensibility specifically in the outer epidermal wall. In addition, tissue tension (and therewith the pressure acting on the outer epidermal wall) is maintained at a constant level over several hours of auxin-mediated growth, indicating that the inner cells also contribute actively to organ elongation. However, this contribution does not involve an increase of cell-wall extensibility, but a continuous shifting of the potential extension threshold (i.e., the length to which the inner tissues would extend by water uptake after peeling) ahead of the actual segment length. Thus, steady growth involves the coordinated action of wall loosening in the epidermis and regeneration of tissue tension by the inner tissues. iii) Electron micrographs show the accumulation of striking osmiophilic material (particles of approx. 0.3 m diameter) specifically at the plasma membrane/cell-wall interface of the outer epidermal wall of auxin-treated segments. iv) Peeled segments fail to respond to auxin with proton excretion. This is in contrast to fusicoccin-induced proton excretion and growth which can also be readily demonstrated in the absence of the epidermis. However, peeled and nonpeeled segments show the same sensitivity to protons with regard to the induction of acid-mediated in-vivo elongation and cell-wall extensibility. The observed threshold at pH 4.5–5.0 is too low to be compatible with a second messenger function of protons also in the growth response of the inner tissues. Organ growth is described in terms of a physical model which takes into account tissue tension and extensibility of the outer epidermal wall as the decisive growth parameters. This model states that the wall pressure increment, produced by tissue tension in the outer epidermal wall, rather than the pressure acting on the inner-tissue walls, is the driving force of growth.Abbreviations and symbols E el, E pl elastic and plastic in-vitro cell-wall extensibility, respectively - E tot E el+E pl - FC fusicoccin - IAA indole-3-acetic acid - IT inner tissue - ITW inner-tissue walls - OEW outer epidermal wall - osmotic pressure - P wall pressure - water potential  相似文献   

10.
The effect of red (R) and far-red (FR) light on stem elongation and indole-3-acetic acid (IAA) levels was examined in dwarf and tall Pisum sativum L. seedlings. Red light reduced the extension-growth rate of etiolated seedlings by 70–90% after 3 h, and this inhibition was reversible by FR. Inhibition occurred throughout the growing zone. After 3 h of R, the level of extractable IAA in whole stem sections from the growing zone of etiolated plants either increased or showed no change. By contrast, extractable IAA from epidermal peels consistently decreased 3 h after R treatments. Decreases of 40% were observed for epidermal peels from the top 1 cm of tall plants receiving 3 h R. Brief R treatments resulted in smaller decreases in epidermal IAA levels and these decreases were not as great when FR followed R. In lightgrown plants, end-of-day FR stimulated growth during the following dark period in a photoreversible manner. The uppermost 1 cm of expanding third internodes was most responsive to the FR. Extractable IAA from epidermal peels from the upper 1 cm of third internodes increased by 30% or more 5 h after FR. When R followed the FR the increases were smaller. Levels of IAA in whole stem sections did not change and were twofold greater than in dark-grown plants. In both dark- and light-grown tall plants, IAA levels were lower in epidermal peels than in whole stem segments. These results provide evidence that IAA is compartmentalized at the tissue level within the growing stem and that phytochrome regulation of stem elongation rates may be partly based on modulating the level of IAA within the epidermis.Abbreviations IAA indole-3-acetic acid - R red light - FR farred light We thank Yu-Xian Zhu for helping to develop methods for IAA analysis, James Reid for supplying the genetic lines of Pisum and Richard Cyr for the use of microscopy equipment. This work was supported by NSF grant DCB-8801880 and by Hatch funds from the College of Agriculture and Life Sciences at Cornell University. The gas chromatograph-mass spectrometer was funded by NSF grant DMB-8505974 and funds from the College of Agriculture and Life Sciences at Cornell University. A preliminary report of some of these experiments has appeared in Plant Growth Substances, 1991 (Behringer et al. 1992 b).  相似文献   

11.
Studies were made on the structure of cell walls in Avena coleoptilesegments incubated in sucrose and buffer without IAA (indoleaceticacid), with 8 p.p.m. IAA, and with 8 p.p.m. IAA+o·2 or0·3 M mannitol respectively. Examination in electronand polarizing microscopes revealed no difference in the structureof walls from segments grown in IAA and in IAA+mannitol. Measurementsof the weight of wall material showed that in the presence ofmannitol, wall deposition was inhibited. Measurements on theuptake of oxygen by segments showed that mannitol eliminateda respiratory stimulus produced by IAA. It is suggested thatnew wall material is only deposited on cell walls which arebeing thinned by elongation, and that the respiratory stimulusproduced by IAA and eliminated by mannitol may be in part amanifestation of metabolism involved in the synthesis of newwall material. Wall extension does not appear to be dependenton deposition of new material.  相似文献   

12.
Edelmann HG  Sievers A 《Planta》1995,196(2):396-399
In various studies, auxin (IAA)-induced coleoptile growth has been reported to be closely correlated with an increased occurrence of osmiophilic particles (OPs) at the inner surface of the outer, growth-limiting epidermal cell wall, indicating a possible function related to the mechanism of IAA-induced wall loosening. In order to test whether changes in cell elongation rates of upper and lower flanks (UFs, LFs, respectively) during graviresponsive growth are reflected in appropriate changes in the occurrence of OPs, rye (Secale cereale L.) coleoptiles either as segments or as part of intact seedlings, were gravitropically stimulated by positioning them horizontally for 2 h. Ultrastructural analyses within the UFs and LFs of the upward-bending coleoptiles revealed a distinct imbalance in the occurrence of OPs. The number of OPs per transverse epidermal cell section of the elongation-inhibited UF on average amounted to twice the number of OPs counted in epidermal cell sections of the faster-growing LF. As a hypothesis, the results lead us to suggest that OPs are involved in the mechanism of wall loosening and that temporary growth inhibition of epidermal cells of the UF during upward bending is mediated by inhibition of OP entry into the cell walls. Thereby, more OPs accumulate near the inner surface of the outer wall of epidermal cells of the UF compared with the LF.  相似文献   

13.
M. J. Vesper 《Planta》1985,166(1):96-104
To determine the relationship between apparent pH of the wall solution and shoot segment elongation, curves for the initial growth rates as a function of pH of the external solution were determined for maize (Zea mays L.) coleoptiles and sunflower (Helianthus annuus L.) hypocotyls and used to predict apparent wall pH in segments responding to indole-3-acetic acid (IAA) and fusicoccin (FC). When a solution having a pH predicted for walls of coleoptile segments responding to IAA was applied to the segments in the presence of IAA, this pH was not maintained. However, when the same was done for coleoptile segments responding to FC, the predicted pH was maintained in the external solution. Sunflower hypocotyl tissue did not maintain the external pH at the predicted value in the presence of either IAA or FC. The results indicate that wall loosening in coleoptiles caused by IAA may not be solely controlled by pH in the wall, yet growth (wall loosening) caused by FC apparently is directly related to wall pH. In sunflower the growth response to neither IAA nor FC appears to be directly correlated with wall pH.  相似文献   

14.
Mary Jo Vesper  Carol L. Kuss 《Planta》1990,182(4):486-491
To locate functionally the primary site of auxin action in growing cells, the pool of auxin relevant to induction of growth in maize (Zea mays L.) coleoptile sections was determined. A positive correlation was consistently noted between growth and intracellular levels of indole-3-acetic acid (IAA), i.e. growth appears to be relatively independent of the external level of IAA. N-1-Naphthylphthalamic acid (NPA), a potent inhibitor of auxin transport, was used to enhance accumulation of IAA in coleoptile cells. From the use of NPA, it is shown that: 1) increasing the accumulation of IAA in cells, while the external concentration is held constant, resulted in a concomitant increase in growth, and 2) blocking the exit of IAA from cells with NPA sustained an IAA-induced growth response in the absence of externally applied IAA. Furthermore, the absence of any alterations in auxin binding to microsomal fractions by NPA indicates that the action of NPA in causing enhancement of auxin-induced growth is based upon its inhibition of efflux of IAA from the cells. This research was supported by National Science Foundation grant No. DMB 8515925. The careful assistance of Laurie Brulport is gratefully acknowledged.  相似文献   

15.
Raphanusanin is a plant growth-inhibiting substance which plays an important role in light growth inhibition and phototropism of radish hypocotyls. We investigated the effect of raphanusanin on indole-3-acetic acid (IAA)-mediated orientation of microtubules (MT) in the outer epidermal cells of radish hypocotyl segments using immunofluorescence microscopy. IAA-mediated MT reorientation preceded cell elongation induced by IAA. A change of IAA-mediated MT orientation from longitudinal to transverse started within less than 15 min after IAA treatment, while significant growth promotion induced by IAA was found within about 30 min. The IAA-mediated transverse MT orientations were significantly inhibited by simultaneously added raphanusanin. We also investigated the effect of raphanusanin on the MT orientation of the segments pretreated with IAA. The change of MT orientation induced by raphanusanin preceded growth inhibition of the segments. Within about 60 min after its application, raphanusanin initiated inhibition of the steady-state elongation pre-induced by IAA, while IAA-mediated transverse MT orientations started to change into longitudinal orientations within less than 30 min after application of raphanusanin. Based on these results, it is suggested that raphanusanin induces growth inhibition through interference with the auxin-mediated MT orientations.  相似文献   

16.
《Plant science》1988,54(1):23-28
The interaction between cortical cylinder (cortex plus vascular tissue) and epidermis during auxin (indole-3-acetic acid, IAA)-induced growth of third internode sections from red light-grown pea seedlings (Pisum sativum L. cv. Alaska) was investigated. A quantitative comparison of the relative effects of IAA on growth of intact and peeled sections showed that intact segments are nearly 20-fold more sensitive to IAA than peeled cortical cylinders. Tissue tension, determined with the ‘split section test’, was constant during IAA-induced growth of intact sections. Peeled sections also displayed a small amount of tissue tension, which was likewise independent of IAA. The incorporation of myo-[2-3H(N)]inositol ([3H]Ins) into non-cellulosic polysaccharides in the cell walls was stimulated by IAA in both the cortical cylinder and the epidermis by + 70% and + 55%, respectively, after 4 h. A mich higher amount of incorporation was detectable in the epidermis than in the cortical cylinder on a unit weight basis. During a 4-h growth period in IAA the cortical cylinder lost about 50 μg of its initial dry weight per section whereas the epidermis increased in dry weight by about + 24 μg. We conclude that during IAA-induced long-term growth the cortical cylinder (1) provides the driving force for organ growth, (2) responds to IAA by an increase in matrix cell wall synthesis and (3) releases material, some of which is transferred to the attached epidermal cells.  相似文献   

17.
Summary Aiming to elucidate the possible involvement of pectins in auxin-mediated elongation growth the distribution of pectins in cell walls of maize coleoptiles was investigated. Antibodies against defined epitopes of pectin were used: JIM 5 recognizing pectin with a low degree of esterification, JIM 7 recognizing highly esterified pectin and 2F4 recognizing a pectin epitope induced by Ca2+. JIM 5 weakly labeled the outer third of the outer epidermal wall and the center of filled cell corners in the parenchyma. A similar labeling pattern was obtained with 2F4. In contrast, JIM 7 densely labeled the whole outer epidermal wall except the innermost layer, the middle lamellae, and the inner edges of open cell corners in the parenchyma. Enzymatic de-esterification with pectin methylesterase increased the labeling by JIM 5 and 2F4 substantially. A further increase of the labeling density by JIM 5 and 2F4 and an extension of the labeling over the whole outer epidermal wall could be observed after chemical de-esterification with alkali. This indicates that both methyl- and other esters exist in maize outer epidermal walls. Thus, in the growth-controlling outer epidermal wall a clear zonation of pectin fractions was observed: the outermost layer (about one third to one half of wall thickness) contains unesterified pectin epitopes, presumably cross-linked by Ca2+ extract. Tracer experiments with3H-myo-inositol showed rapid accumulation of tracer in all extractable pectin fractions and in a fraction tightly bound to the cell wall. A stimulatory effect of IAA on tracer incorporation could not be detected in any fraction. Summarizing the data a model of the pectin distribution in the cell walls of maize coleoptiles was developed and its implications for the mechanism of auxin-induced wall loosening are discussed.Abbreviations CDTA trans-1,2-diaminocyclohexane-N,N,N,N-tetraacetic acid - CWP cell-wall pellet - IAA indole-3-acetic acid - LSE low-salt extract - TCA trichloroacetic acid; Tris tris-(hydroxy-methyl)aminoethane  相似文献   

18.
M. Hohl  P. Schopfer 《Planta》1992,188(3):340-344
Plant organs such as maize (Zea mays L.) coleoptiles are characterized by longitudinal tissue tension, i.e. bulk turgor pressure produces unequal amounts of cell-wall tension in the epidermis (essentially the outer epidermal wall) and in the inner tissues. The fractional amount of turgor borne by the epidermal wall of turgid maize coleoptile segments was indirectly estimated by determining the water potential * of an external medium which is needed to replace quantitatively the compressive force of the epidermal wall on the inner tissues. The fractional amount of turgor borne by the walls of the inner tissues was estimated from the difference between -* and the osmotic pressure of the cell sap (i) which was assumed to represent the turgor of the fully turgid tissue. In segments incubated in water for 1 h, -* was 6.1–6.5 bar at a i of 6.7 bar. Both -* and i decreased during auxin-induced growth because of water uptake, but did not deviate significantly from each other. It is concluded that the turgor fraction utilized for the elastic extension of the inner tissue walls is less than 1 bar, i.e. less than 15% of bulk turgor, and that more than 85% of bulk turgor is utilized for counteracting the high compressive force of the outer epidermal wall which, in this way, is enabled to mechanically control elongation growth of the organ. This situation is maintained during auxin-induced growth.Abbreviations and Symbols i osmotic pressure of the tissue - 0 external water potential - * water potential at which segment length does not change - IAA indole-3-acetic acid - ITW longitudinal inner tissue walls - OEW outer epidermal wall - P turgor Supported by Deutsche Forschungsgemeinschaft (SFB 206).  相似文献   

19.
Summary The occurrence of elongation growth-related osmiophilic particles (OPs) was investigated in hypocotyls of sunflower, bean, and spruce as well as in pea epicotyls and in cress roots of intact seedlings. In all analyzed species, OPs were found to occur specifically within the periplasmic space between plasma membrane and the outer epidermal cell walls of elongating parts of hypocotyls, epicotyls, and roots, whereas cells of nonelongating parts were devoid of OPs. Auxin (IAA) markedly increased the number of OPs in epicotyl and hypocotyl segments. Treatment of pea epicotyl segments with the lectin concanavalin A inhibited their elongation growth in the presence of IAA. At a subcellular level this effect was characterized by the occurrence of a pronounced osmiophilic layer in the periplasmic space of the outer periclinal and the outer part of the anticlinal epidermal cell walls. Treatment of IAA-incubated segments with the secretion inhibitor brefeldin A inhibited both elongation growth and periplasmic occurrence of OPs. This effect was accompanied by complementary accumulation of OPs in the peripheral cytoplasm of epidermal cells. Together the results indicate that IAA-induced epidermis-specific secretion of OPs is closely related to cell elongation growth not only in organs of monocotyledonous species, but also in dicotyledonous angiosperms as well as in gymnosperms.Abbreviations OPs osmiophilic particles - ConA concanavalin A - BFA brefeldin A - IAA -indolyl acetic acid  相似文献   

20.
The role of cell wall synthesis in sustained auxin-induced growth   总被引:2,自引:0,他引:2  
The dependence of auxin-induced growth on continued cell wall synthesis was investigated in stem segments of etiolated pea ( Pisum sativum L. cv. Alaska) seedlings using the cell wall synthesis inhibitors monensin and 2,6-dichlorobenzonitrile (DCB). Monensin (5 μ M ) potently inhibited indole-3-acetic acid (IAA)-induced growth, particularly during the second hour of treatment, whereas growth in fusicoccin (FC) was inhibited much less effectively. Incorporation of [14C]-glucose into both matrix and cellulose fractions of the wall showed a sharp increase beginning after about 60 min, this rise being promoted by both IAA and FC. Monensin inhibited this rise in incorporation of label and completely removed the promotion of this by IAA, although some promotion by FC remained. Monensin inhibited incorporation into cellulose in a manner similar to that into matrix, but the use of the apparently specific cellulose synthesis inhibitor DCB showed that cellulose synthesis could be strongly inhibited without effect on growth, at least in the short term. The results support the view that sustained auxin-induced growth depends upon the incorporation of new matrix cell wall components into the wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号