首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Canary Islands are an Atlantic volcanic archipelago with a rich flora of ~570 endemic species. The endemics represent ~40% of the native flora of the islands, and ~20% of the endemics are in the E (endangered) category of the International Union for Conservation of Nature. A review of allozyme variation in 69 endemic species belonging to 18 genera and eight families is presented. The average species-level genetic diversity (H(T)) at allozyme loci is 0.186, which is twice as high as the mean reported for endemics of Pacific archipelagos. Possible factors contributing to this higher diversity are discussed, but the reasons remain obscure. An average of 28% of the allozyme diversity within species resides among populations, indicating a high level of interpopulational differentiation. Studies of reproductive biology indicate that many of the endemic species are outcrossers. The high total diversity within species, the relatively high differentiation among populations, and the outcrossing breeding systems have implications for species conservation. Decreased population sizes in outcrossing species would promote biparental inbreeding and increase inbreeding depression. The relatively high proportion of allozyme diversity among populations indicates that the most effective strategy for preserving genetic variation in species is to conserve as many populations as possible. The genetic diversity in many Canary Island endemics is endangered by: (1) overgrazing by introduced animals, such as barbary sheep, goats, mouflons, rabbits, and sheep; (2) interspecific hybridization following habitat disturbance or planting of endemics along roadsides or in public gardens; (3) competition with alien plant species; and (4) decline of population size because of urban development and farming.  相似文献   

2.
Genetic diversity was examined at 16 allozyme loci in 21 wild populations of the medicinal plant American ginseng, Panax quinquefolius L. (Araliaceae). This species has been harvested from forests in North America for more than 250 years. Average expected heterozygosity was significantly greater within protected populations (H(e) = 0.076) than within populations in which harvesting was permitted (H(e) = 0.070). More notably, genetic structure was greater among unprotected populations (G(ST) = 0.491) than among protected populations (G(ST) = 0.167). These differences in the level and distribution of genetic diversity in American ginseng populations indicate that harvesting may have significant evolutionary implications for this species. Age class structure also shifted toward smaller, nonreproductive plants in unprotected populations. Juvenile plants had lower genetic diversity (H(e) = 0.067) than reproductive plants (H(e) = 0.076) suggesting that conserving a proportion of the largest (oldest) plants in each population is important to protect reproductive fitness and the evolutionary potential of the species. Due to its high genetic structure, conservation recommendations include protecting populations throughout the range of P. quinquefolius.  相似文献   

3.
4.
Genetic diversity was examined at 17 putative allozyme loci in 18 populations of the insular endemic plant Aster miyagii (Asteraceae). This species is geographically restricted to only three islands of the Ryukyu Islands and is on the federal list of threatened plants. Genetic differentiation within an island is small, suggesting that gene flow among populations on the same island is sufficiently large to prevent divergence. By contrast, genetic differentiation among islands is large, especially between Amamioshima Island and the other two islands, suggesting that gene flow between the islands is highly restricted. Two unique alleles are nearly fixed in populations on Amamioshima Island, which is the southernmost island of the three. Comparatively, genetic diversity is the smallest on Amamioshima Island. This genetic paucity on Amamioshima Island is probably a result of a population bottleneck at colonization or the small effective population size on this island. Genetic diversity at the species level of A. miyagii is larger than those of the species with a similar life history and of the congeneric widespread species, suggesting that the species has an old origin as an insular endemic species.  相似文献   

5.
Abstract: Hanabusaya asiatica (Nakai) Nakai (Campanulaceae), a bee- pollinated, perennial herb, is restricted to the mountainous regions of the eastern-central Korean peninsula. Allozyme analyses for 348 individuals assessed the levels of genetic diversity for five populations. Spatial autocorrelation statistics were also used to examine the spatial distribution of allozyme polymorphisms. The species maintains high levels of allozyme diversity ( H eS = 0.217) and it exhibits low allozyme differentiation among populations ( G ST = 0.132) compared with other endemics (mean H e = 0.096, G ST = 0.248). There is an apparent pattern of isolation by distance among populations. These results suggest that H. asiatica is at a genetic equilibrium. A considerable deficit in numbers of heterozygotes suggests mating among relatives in populations. At least three populations of H. asiatica should be sampled or conserved to capture or maintain > 99 % of the genetic diversity in the species as a whole. Within local populations, individuals are distributed in a structured, isolation by distance, manner. Approximate genetic patch width in the populations of H. asiatica examined is 5 - 8 m. For conservation purposes, it is suggested that, in general, the sampling of H. asiatica should be conducted at intervals in order to efficiently sample the genetic diversity across an entire population.  相似文献   

6.
The aim of this study was to estimate genetic diversity and assess its importance for plant fitness in a species belonging to the most endangered species in Europe, Dracocephalum austriacum L., and to select the most valuable populations for conservation of genetic diversity within the species in the studied regions. We analyzed allozyme variation of 12 populations in three distinct regions (Czech Karst, Moravia and Slovak Karst) in Central Europe. The results showed high genetic diversity within populations (80.14%) and relatively low differentiation among populations within regions (9.42%) and between regions (10.45%). Seed production was significantly higher in larger, genetically more diverse and less inbred populations. The results suggest that genetic diversity has important effect on seed production in this species and thus can be expected to have strong direct consequences for plant fitness and vitality of the whole populations. They also show large variation in genetic diversity between populations and indicate which populations should get a priority in attempts to conserve all the genetic diversity within the region.  相似文献   

7.
Few studies of genetic variation have been conducted on plants of the Pacific coastal desert and neighboring Andes of Peru, although the region has many endemic taxa. Enzyme electrophoresis was employed to examine allozyme diversities of four species of the family Malesher-biaceae, an endemic to the arid Andes and coastal desert. One population ofMalesherbia splendens and two ofM. tubulosa, both endemics of the department of Lima, one population ofM. weberbaueri var.weberbaueri, an endemic of the Andean department Huancavélica, and the two Lima populations ofM. scarlatiflora were studied. Fifteen loci were examined for all populations and an additional seven loci were resolved forM. weberbaueri andM. splendens. Malesherbia splendens, which is known from three populations, has a low mean number of alleles per locus (A), proportion of polymorphic loci (P), and expected heterozygosity (Hs) (A=1.214, P=0.214, Hs=0.057).Malesherbia weberbaueri (A=1.231, P=0.154, Hs=0.079) andM. scarlatiflora (A=1.364, P=0.273, Ht=0.083) both have average expected heterozygosities and relatively low mean numbers of alleles per locus and proportions of polymorphic loci. InM. tubulosa, all measures of genetic diversity are high in comparison with other endemics (A=1.818, P=0.364, Ht=0.206).Malesherbia tubulosa has high interpopulation differentiation, whereasM. scarlatiflora has low among-population diversity. The relatively low allozyme diversities, restricted habitats, narrow ranges ofM. splendens andM. weberbaueri, and the morphological similarities of all four species suggest that they evolved recently by founder events. Greater allozyme diversities inM. tubulosa could be attributable to its maintenance of larger populations in a greater variety of habitats.  相似文献   

8.
Pinus flexilis (limber pine) is patchily distributed within its large geographic range; it is mainly restricted to high elevations in the Rocky Mountains and the Basin and Range region of western North America. We examined patterns of allozyme diversity in 30 populations from throughout the species' range. Overall genetic diversity (H(e) = 0.186) was high compared with that of most other pine species but was similar to that of other pines widespread in western North America. The proportion of genetic diversity occurring among populations (G(ST) = 0.101) was also high relative to that for other pines. Observed heterozygosity was less than expected in 28 of the 30 populations. When populations were grouped by region, there were notable differences. Those in the Basin and Range region had more genetic diversity within populations, a higher proportion of genetic diversity among populations, and higher levels of inbreeding within populations than populations from either the Northern or Utah Rocky Mountain regions. Patterns of genetic diversity in P. flexilis have likely resulted from a complex distribution of Pleistocene populations and subsequent gene flow via pollen and seed dispersal.  相似文献   

9.
Maki M  Yamashiro T  Matsumura S 《Heredity》2003,91(3):300-306
Genetic diversity and genetic differentiation within and among island populations was examined by allozyme electrophoresis in Suzukia luchuensis (Labiatae), which is endemic to four of the Ryukyu Islands, southern Japan, and one island near Taiwan. Intrapopulation allozyme diversity was very low in all the four Ryukyu Islands, probably due to the effects of random drift in small populations. In contrast, genetic diversity at the species level was high, possibly because of an ancient origin of populations and/or multiple colonization of the species on different islands. Genetic differentiation among the overall populations was high (G(ST)=0.863), while gene flow (Nm) as estimated from allozyme frequency data was 0.041, suggesting that its occurrence among populations is highly restricted. Hierarchical analysis of genetic differentiation indicated that a high proportion of the total allelic variance is attributed to variation among islands, corresponding to the fact that several alleles were fixed on only one island. However, intraisland genetic differentiation was small on all islands except Yonaguni Island, where S. luchuensis is relatively widely distributed. Most diversity was thus due to differences among islands.  相似文献   

10.
The woodySonchus alliance consists of 19 species ofSonchus subg.Dendrosonchus, one species ofSonchus subg.Sonchus and species of five genera (i.e.Babcockia, Sventenia, Taeckholmia, Lactucosonchus, Prenanthes), and is restricted primarily to the archipelago of the Canaries in the Macaronesian phytogeographical region. An enzyme electrophoretic study, including 13 loci, was conducted to assess genetic diversity within and divergence among species of the alliance. Nei's genetic identities (distances) between genera and/or subgenera range from 0.490 (0.714) to 0.980 (0.013), and pairwise comparisons of all populations show relatively high genetic identities, with a mean of 0.804. The high identities further support the genetic cohesiveness of the alliance and its single origin on the Macaronesian islands. Species in the alliance also show about 50%; higher total genetic diversity (HT) than the mean for other oceanic endemics. There is greater divergence between endemics or species on older islands compared to those on younger islands, which suggests that time is a factor for divergence at allozyme loci. Furthermore, populations on older islands have higher total genetic diversities and lower identities than conspecific populations on younger islands. These results imply early colonization, radiation, and divergence of the woodySonchus alliance on older islands followed by subsequent colonization to younger islands. The taxonomic distribution of alleles in the alliance indicates lineage sorting also played a role in divergence among species. Lineage sorting may also produce nonconcordance with either taxonomic designation or the pattern of variation obtained from other molecular markers such as ITS sequences of nrDNA. Timing for the origin and radiation of the alliance agrees with the estimate based on ITS sequences, and suggests that the early divergence and rapid radiation took place during the Late Tertiary on either Gran Canaria or Tenerife.  相似文献   

11.
Vakkari P  Blom A  Rusanen M  Raisio J  Toivonen H 《Genetica》2006,127(1-3):231-241
The genetic structure of 33 natural Quercus robur stands in Finland was studied using 13 allozyme loci to analyze the effects of fragmentation in a wind-pollinated tree species. The present fragmented and discontinuous distribution of oak is a result of both short-term human impact and long-term climatic and geological change, including post-glacial land uplift. In accordance with general expectations, genetic diversity in small populations was lower than that in large populations, and differentiation among small populations was higher than that among large populations. Heterozygote deficiency was more pronounced in large populations, which is proposed to be a Wahlund effect created by either spatial sub-structuring or the existence of synchronized flowering lineages. Also genetic differentiation was higher and diversity lower in Finland than the estimates reported for Central Europe. There were differences in the genetic structure on sites of different geological age. We suggest that on most geologically old sites drift has a prominent effect whereas on younger sites also founder effects may be important.  相似文献   

12.
The identification and assessment of island endemics is a conservation priority. We genotyped 115 rock ptarmigan from five insular populations in the Aleutian-Commander archipelago and two Alaska mainland populations to identify conservation units, assess genetic diversity and gene flow, and to determine whether populations have declined over time. We found four distinct populations that appear to be completely isolated and which correspond closely to recognized subspecies. The most geographically isolated populations also have the lowest genetic diversity. Three populations (Attu Island, Rat Islands, and Adak Island), which each experienced historic introductions of an exotic predator, showed genetic signals of declines, but the timing did not correspond with the introduction. We recommend management of each endemic group as a unique conservation unit.  相似文献   

13.
Question: How do studies of the distribution of genetic diversity of species with different life forms contribute to the development of conservation strategies? Location: Old‐growth forests of the southeastern United States. Methods: Reviews of the plant allozyme literature are used to identify differences in genetic diversity and structure among species with different life forms, distributions and breeding systems. The general results are illustrated by case studies of four plant species characteristic of two widespread old‐growth forest communities of the southeastern United States: the Pinus palustris – Aristida stricta (Longleaf pine – wiregrass) savanna of the Coastal Plain and the Quercus – Carya – Pinus (Oak‐hickory‐pine) forest of the Piedmont. Genetic variation patterns of single‐gene and quantitative traits are also reviewed. Results: Dominant forest trees, represented by Pinus palustris(longleaf pine) and Quercus rubra (Northern red oak), maintain most of their genetic diversity within their populations whereas a higher proportion of the genetic diversity of herbaceous understorey species such as Sarracenia leucophylla and Trillium reliquum is distributed among their populations. The herbaceous species also tend to have more population‐to‐population variation in genetic diversity. Higher genetic differentiation among populations is seen for quantitative traits than for allozyme traits, indicating that interpopulation variation in quantitative traits is influenced by natural selection. Conclusion: Developing effective conservation strategies for one or a few species may not prove adequate for species with other combinations of traits. Given suitable empirical studies, it should be possible to design efficient conservation programs that maintain natural levels of genetic diversity within species of conservation interest.  相似文献   

14.
Forest musk deer ( Moschus berezovskii ) were once distributed widely in China. However, wild populations have declined dramatically because of poaching and habitat loss. Captive breeding populations have been established for several decades, but the genetic backgrounds of most captive populations were unclear and the population sizes increased very slowly. To provide useful information for conservation and management of this species, we investigated the genetic diversity and population structure of forest musk deer by analysing a 582-bp fragment of the mitochondrial DNA (mtDNA) control region (CR) in three captive breeding populations in Sichuan Province, China. Ninety-four variable sites and 27 haplotypes were observed in 109 individuals, and the nucleotide and haplotype diversities were relatively high compared with those of other endangered mammals. Of the three investigated populations, the Maerkang population had the highest nucleotide diversity ( π  = 0.0568), haplotype diversity ( h  =   0.836) and average intra-population genetic distance (0.062). The analysis of molecular variance demonstrated that most variation occurred within samples and that there was significant differentiation of the three populations. Estimates of gene flow indicated that there were few genetic exchanges among the three populations. Building pedigree records and increasing gene flow between populations will be helpful for conserving these populations and this species.  相似文献   

15.
Based on population genetic theory and empirical studies of small populations, we expect that species with very small ranges (narrow endemics) will exhibit reduced genetic diversity, increasing their susceptibility to the negative effects of genetic homogeneity. Although this pattern of reduced diversity applies to most narrow endemics, conservation biologists have yet to identify a general pattern for the degree of spatial population genetic structure expected in species with very small ranges. In part, this is because the degree of population structure within narrow endemics will be highly variable depending on the equilibrium between the homogenizing effects of dispersal and the diversifying effects of drift and local selection in small populations, thus precluding general predictions about the relative importance of small range, small population sizes, and habitat patchiness for maintaining genetic diversity in narrowly-distributed species. We document a striking example of high population structure in the tiny geographic range of a stream-dwelling catfish, Trichogenes longipinnis , endemic to the Atlantic Forest of Brazil. The maintenance of this diversity results from a combination of asymmetrical and limited dispersal, and drift in small populations. Our results highlight the need to understand population structure, and not only overall genetic diversity, of narrowly-distributed species for their conservation planning.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 259–274.  相似文献   

16.
Current threats to the planet's biodiversity are unprecedented, and they particularly imperil insular floras. In this investigation, we use the threat factors identified by the Millennium Ecosystem Assessment as the main drivers of biodiversity loss on islands to define and rank 13 current, continuing threats to the plant diversity of nine focal archipelagos where volcanic origin (or in the Seychelles a prolonged isolation after a continental origin) has produced a high degree of endemicity and fragility in the face of habitat alteration. We also conduct a global endangerment assessment based on the numbers of insular endemic plants in the endangered (EN) and critically endangered (CR) IUCN categories for 53 island groups with an estimated 9951 endemic plant species, providing a representative sample of the world's insular systems and their floristic richness. Our analyses indicate that isolation does not significantly influence endangerment, but plant endemics from very small islands are more often critically endangered. We estimate that between 3500 and 6800 of the estimated 70,000 insular endemic plant species worldwide might be highly threatened (CR+EN) and between ca. 2000 and 2800 of them in critical danger of extinction (CR). Based on these analyses, and on a worldwide literature review of the biological threat factors considered, we identify challenging questions for conservation research, asking (i) what are the most urgent priorities for the conservation of insular species and floras, and (ii) with the knowledge and assets available, how can we improve the impact of conservation science and practice on the preservation of island biodiversity? Our analysis indicates that the synergistic action of many threat factors can induce major ecological disturbances, leading to multiple extinctions. We review weaknesses and strengths in conservation research and management in the nine focal archipelagos, and highlight the urgent need for conservation scientists to share knowledge and expertise, identify and discuss common challenges, and formulate multi-disciplinary conservation objectives for insular plant endemics worldwide. To our knowledge, this is the most up-to-date and comprehensive survey yet to review the threat factors to native plants on oceanic islands and define priority research questions.  相似文献   

17.
Plants endemic to oceanic islands represent some of the most unusual and rare taxa in the world. Enzyme electrophoresis was used to assess genetic diversity within and divergence among all endemic species of a small genus of plants on the Canary Islands. Our results show that the genus Tolpis is similar to many other island groups in having generally low allozyme divergence among species, with the highest divergence found among four groups of endemics. The two rare and highly localized species T. glabrescens and T. crassiuscula are each divergent from all other species in the Canaries. Tolpis coronopifolia is also divergent at allozyme loci; this is the only endemic species that is a self-compatible annual (or weak biennial). A large, morphologically variable species complex consisting of T. laciniata and T. lagopoda together with several named and unnamed morphological variants shows low allozyme divergence among its elements. The evolution of polyploidy from diploid ancestors in situ in oceanic archipelagos is uncommon, but the tetraploid T. glabrescens is an exception. Allozyme data do not implicate any extant diploid Tolpis species as parents of the polyploid. It is possible that T. glabrescens originated early in the evolution of Tolpis in the Canary Islands and that its parents are now extinct. The nonendemic T. barbata shows no greater divergence from the Canary Island endemics than some endemics exhibit among themselves. Both changes in allele frequencies and unique alleles are responsible for genetic divergence among species of Tolpis.  相似文献   

18.
BACKGROUND AND AIMS: Genetic diversity in Castilleja grisea, an endangered, perennial herb endemic to San Clemente Island, California was investigated. Subsequent to the elimination of goats from the island in 1992, many populations of C. grisea have reappeared and have been increasing in size. METHODS: Nineteen populations were surveyed for their genotype at 19 allozyme loci. KEY RESULTS: At the taxon level, 57.9 % of loci are polymorphic with A(P) = 3.09 and H(E) = 0.137. Populations averaged 33.0 % polymorphic loci with A(P) = 2.43 and H(E) = 0.099. Most variation is found within rather than among populations (G(ST) = 0.128), although differentiation among populations is significant. Genetic identities range from I = 0.960 to I = 1.000 with mean I = 0.990. There is no significant relationship between genetic and geographic distance. Gene flow among populations is Nm = 2.50 based on private alleles and Nm = 1.70 based on F(ST). Outcrossing rates based on fixation indices average t = 1.01, indicating a primarily out-crossed mating system. CONCLUSIONS: The observed genetic variation is moderately high, unusually so for an insular endemic species, suggesting that C. grisea may not have lost substantial genetic variation during 150 years of overgrazing, and indicating that it is unlikely to be endangered by genetic factors.  相似文献   

19.
We examined levels of genetic variation and genetic structure in the leafy cactus (Pereskia guamacho) in arid and semiarid zones in Venezuela. We surveyed genetic diversity within 17 populations using 19 allozyme loci. Genetic diversity was relatively high at both the species (P(s) = 89%, A(s) = 3.26, AP(s) = 3.53, H(es) = 0.24) and population (P(p) = 63%, A(p) = 1.90, AP(p) = 2.42, H(ep) = 0.20) levels. A significant deficit of heterozygote individuals was detected within populations in the Paraguana Peninsula region (F(IS) = 0.301). Relatively low levels of population differentiation were detected at macrogeographic (G(ST) = 0.112) and regional levels (G(ST) = 0.044 for peninsula region and G(ST) = 0.074 for mainland region), suggesting substantial genetic exchange among populations; however, gene flow in this species seems to be regulated by the distance among populations. Overall, estimates of genetic diversity found in P. guamacho are concordant with the pattern observed for other cacti surveyed, namely high levels of polymorphism and genetic diversity with one common allele and several rare alleles per locus. Differences in gene dispersal systems between this species and other cacti studied were not reflected in the patterns of genetic diversity observed. The concentration of the highest estimates of genetic variation in northwestern Venezuela suggests a potential reservoir of plant genetic diversity within xerophilous ecosystems in northern South America.  相似文献   

20.
The giant spiny frog(Quasipaa spinosa) is an endangered species with a relatively small distribution limited to southern China and Northern Vietnam. This species is becoming increasingly threatened because of over-exploitation and habitat degradation. This study provides data on the genetic diversity and population genetic structure of the giant spiny frog to facilitate the further development of effective conservation recommendations for this economically important but threatened species. We examined 10 species-specific microsatellite loci and Cyt b genes(562 bp) collected from 13 wild populations across the entire range of this species. Results of 10 microsatellite loci analysis showed a generally high level of genetic diversity. Moreover, the genetic differentiation among all 12 populations was moderate to large(overall F_(ST) = 0.1057). A total of 51 haplotypes were identified for Cyt b, which suggests high haplotype nucleotide diversities. Phylogeographic and population structure analyses using both DNA markers suggested that the wild giant spiny frog can be divided into four distinct major clades, i.e., Northern Vietnam, Western China, Central China, and Eastern China. The clades with significant genetic divergence are reproductively isolated, as evidenced by a high number of private alleles and strong incidence of failed amplification in microsatellite loci. Our research, coupled with other studies, suggests that Q. spinosa might be a species complex within which no detectable morphological variation has been revealed. The four phylogenetic clades and some subclades with distinct geographical distribution should be regarded as independent management units for conservation purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号