共查询到20条相似文献,搜索用时 15 毫秒
1.
Claes Persson 《Nordic Journal of Botany》2000,20(3):257-270
Chloroplast DNA (cpDNA) sequences of the rps 16 intron and the trn L (UAA)-F(GAA) intergenic spacer were obtained from 59 species, to evaluate phylogenetic relationships among members of the Gardenieae, Rubiaceae. The results indicate that Gardenieae is polyphyletic and that genera included in the subtribe Diplosporinae should be transferred to the Coffeeae and Octotropideae. The Octotropideae tribe may also be polyphyletic. It is also demonstrated that the tribe Pavetteae is polyphyletic. In addition, the present data support a basal position for the disputed genus Bertiera within the Coffeeae clade. Of the informal groups proposed by Robbrecht & Puff within the Gardenieae, the Alibertia group is strongly supported, and is estimated to also include Ibetralia, Genipa aff. williamsii , and one undescribed taxon. However, Genipa americana was not part of this clade suggesting that Genipa is polyphyletic. The Tetrad group is not supported, and character optimisations suggest that pollen released in tetrads may have arisen three times. Most of these genera appear in the same clade as the three neotropical genera Sphinctanthus, Rosenbergiodendron , and Tocoyena , all of which bear pollen in monads. Atractogyne, Mitriostigma , and Oxyanthus form the second group with pollen in tetrads, whereas Gardenia is embedded in a third group. Massularia , with polyads, occurs either singly on a large polytomy or at the base of the Atractocarpus-Porterandia-Trukia clade. 相似文献
2.
FIROUZEH JAVADI MARTIN F. WOJCIECHOWSKI HIROFUMI YAMAGUCHI 《Botanical journal of the Linnean Society. Linnean Society of London》2007,154(2):175-186
Cicer L. (Leguminosae: Papilionoideae) consists of 42 species of herbaceous or semi-shrubby annuals and perennials distributed throughout the temperate zones of the Northern Hemisphere. The origin and geographical relationships of the genus are poorly understood. We studied the geographical diversification and phylogenetic relationships of Cicer using DNA sequence data sampled from two plastid regions, trnK / matK and trnS - trnG , and two nuclear regions, the internal transcribed spacer (ITS) and external transcribed spacer (ETS) regions of nuclear ribosomal DNA, from 30 species. The results from the phylogenetic analyses of combined nuclear and chloroplast sequence data revealed four well-supported geographical groups: a Middle Eastern group, a West-Central Asian group, an Aegean–Mediterranean group, and an African group. Age estimates for Cicer based on methods that do not assume a molecular clock (for example, penalized likelihood) demonstrate that the genus has a Mediterranean origin with considerable diversification in the Miocene/Pliocene epochs. Geological events, such as mountain orogenesis and environmental changes, are major factors for the dispersal of Cicer species. The early divergence of African species and their geographically distinct region in the genus suggest a broader distribution pattern of the genus in the past than at present. © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society, 2007, 154 , 175–186. 相似文献
3.
The monophyly of the Peltophorum group, one of nine informal groups recognized by Polhill in the Caesalpinieae, was tested using sequence data from the trnL-F, rbcL, and rps16 regions of the chloroplast genome. Exemplars were included from all 16 genera of the Peltophorum group, and from 15 genera representing seven of the other eight informal groups in the tribe. The data were analyzed separately and in combined analyses using parsimony and Bayesian methods. The analysis method had little effect on the topology of well-supported relationships. The molecular data recovered a generally well-supported phylogeny with many intergeneric relationships resolved. Results show that the Peltophorum group as currently delimited is polyphyletic, but that eight genera plus one undescribed genus form a core Peltophorum group, which is referred to here as the Peltophorum group sensu stricto. These genera are Bussea, Conzattia, Colvillea, Delonix, Heteroflorum (inedit.), Lemuropisum, Parkinsonia, Peltophorum, and Schizolobium. The remaining eight genera of the Peltophorum group s.l. are distributed across the Caesalpinieae. Morphological support for the redelimited Peltophorum group and the other recovered clades was assessed, and no unique synapomorphy was found for the Peltophorum group s.s. A proposal for the reclassification of the Peltophorum group s.l. is presented. 相似文献
4.
Varela ES Lima JP Galdino AS Pinto Lda S Bezerra WM Nunes EP Alves MA Grangeiro TB 《Phytochemistry》2004,65(1):59-69
The complete sequences of nuclear ribosomal DNA (nrDNA) internal transcribed spacer regions (ITS/5.8S) were determined for species belonging to six genera from the subtribe Diocleinae as well as for the anomalous genera Calopogonium and Pachyrhizus. Phylogenetic trees constructed by distance matrix, maximum parsimony and maximum likelihood methods showed that Calopogonium and Pachyrhizus were outside the clade Diocleinae (Canavalia, Camptosema, Cratylia, Dioclea, Cymbosema, and Galactia). This finding supports previous morphological, phytochemical, and molecular evidence that Calopogonium and Pachyrhizus do not belong to the subtribe Diocleinae. Within the true Diocleinae clade, the clustering of genera and species were congruent with morphology-based classifications, suggesting that ITS/5.8S sequences can provide enough informative sites to allow resolution below the genus level. This is the first evidence of the phylogeny of subtribe Diocleinae based on nuclear DNA sequences. 相似文献
5.
基于叶绿体基因rbcL和psbA-trnH间区探讨石杉科植物系统关系 总被引:2,自引:0,他引:2
关于石杉科Huperziaceae植物的分类,一直存在一些争议。在旧的分类体系中石杉科植物被包含在一个混合的石松科Lycopodiaceae和多谱系的石松属Lycopodium中。本文利用叶绿体rbcL基因和psbA-trnH基因间区序列探讨石杉科植物的系统位置及石杉科内部的分类关系,用最大简约法和邻接法对自测序列结合由GenBank下载的rbcL及psbA-trnH基因间区序列进行系统发育分析。结果显示,石杉科与Phylloglossum属关系较近,与石松科关系较疏远。在石杉科中热带石杉属Huperzia植物和马尾杉属Phlegmariurus植物的关系要比它们与其他石杉属植物更近。所以,我们的rbcL基因数据不支持秦仁昌关于石杉科分为石杉属和马尾杉属的分类处理。但是,因为我们的psbA-trnH序列没有包括热带种类,对石杉属植物和马尾杉属植物的关系无验证。因此需要更多的样品和序列数据进一步探讨石杉科的演化关系。 相似文献
6.
The African genus LEONARDOXA: (Leguminosae: Caesalpinioideae) comprises two Congolean species and a group of four mostly allopatric subspecies principally located in Cameroon and clustered together in the L. africana complex. LEONARDOXA: provides a good opportunity to investigate the evolutionary history of ant-plant mutualisms, as it exhibits various grades of ant-plant interactions from diffuse to obligate and symbiotic associations. We present in this paper the first molecular phylogenetic study of this genus. We sequenced both the chloroplast DNA trnL intron (677 aligned base pairs [bp]) and trnL-trnF intergene spacer (598 aligned bp). Inferred phylogenetic relationships suggested first that the genus is paraphyletic. The L. africana complex is clearly separated from the two Congolean species, and the integrity of the genus is thus in question. In the L. africana complex, our data showed a lack of congruence between clades suggested by morphological and chloroplast characters. This, and the low level of molecular divergence found between subspecies, suggests gene flow and introgressive events in the L. africana complex. 相似文献
7.
A phylogeny of the European gentians inferred from chloroplast trnL (UAA) intron sequences 总被引:1,自引:0,他引:1
LUDOVIC GIELLY PIERRE TABERLET 《Botanical journal of the Linnean Society. Linnean Society of London》1996,120(1):57-75
Phylogenetic relationships between the European species of the genus Gentiana L. (Gentianaceae) were inferred from chloroplast trnL , (UAA) intron sequence data. The phylogeny obtained is largely in accordance with the classification of species into sections Gentiana, Megalanthe and Calathianae. Few synapomorphies support the branching of the main lineages and thus could suggest a rapid radiation following the colonization of Europe. Within section Gentiana , our results are highly congruent with the previous distinction of G. montserratii Vivant from G. lutea L. Section Megalanthe is divided into two well separated lineages, both of which comprise calcicole and calcifuge species. The 'star phylogeny' obtained in section Calathianae suggests that most of the taxa speciated almost simultaneously. Relative-rate tests between two lineages suggested that section Chondropliyllae displays higher mutation rates than the rest of the genus Gentiana and that cpDNA can violate assumptions of rate constancy at lower taxonomic level. 相似文献
8.
Jansen RK Wojciechowski MF Sanniyasi E Lee SB Daniell H 《Molecular phylogenetics and evolution》2008,48(3):1204-1217
Chickpea (Cicerarietinum, Leguminosae), an important grain legume, is widely used for food and fodder throughout the world. We sequenced the complete plastid genome of chickpea, which is 125,319bp in size, and contains only one copy of the inverted repeat (IR). The genome encodes 108 genes, including 4 rRNAs, 29 tRNAs, and 75 proteins. The genes rps16, infA, and ycf4 are absent in the chickpea plastid genome, and ndhB has an internal stop codon in the 5'exon, similar to other legumes. Two genes have lost their introns, one in the 3'exon of the transpliced gene rps12, and the one between exons 1 and 2 of clpP; this represents the first documented case of the loss of introns from both of these genes in the same plastid genome. An extensive phylogenetic survey of these intron losses was performed on 302 taxa across legumes and the related family Polygalaceae. The clpP intron has been lost exclusively in taxa from the temperate "IR-lacking clade" (IRLC), whereas the rps12 intron has been lost in most members of the IRLC (with the exception of Wisteria, Callerya, Afgekia, and certain species of Millettia, which represent the earliest diverging lineages of this clade), and in the tribe Desmodieae, which is closely related to the tribes Phaseoleae and Psoraleeae. Data provided here suggest that the loss of the rps12 intron occurred after the loss of the IR. The two new genomic changes identified in the present study provide additional support of the monophyly of the IR-loss clade, and resolution of the pattern of the earliest-branching lineages in this clade. The availability of the complete chickpea plastid genome sequence also provides valuable information on intergenic spacer regions among legumes and endogenous regulatory sequences for plastid genetic engineering. 相似文献
9.
According to chloroplast rps4 sequence data the genus Syntrichia forms a monophyletic clade clearly separated from Tortula, while Pottia is shown to be polyphyletic and the Rhynchostegiae species (with rostrate lid) are very similar to Tortula. Crossidium is probably polyphyletic. The close affinity of Desmatodon, Stegonia, Pterygoneurum and some of the species of Phascum with Tortula is confirmed by the molecular data.
Received May 23, 2002; accepted August 23, 2002 Published online: November 22, 2002
Address of the authors: O. Werner, R. M. Ros, M. J. Cano, J. Guerra (E-mail: werner@um.es) Departamento de Biología Vegetal
(Botánica), Facultad de Biología, Universidad de Murcia, Campus de Espinardo, E-30100-Murcia, Spain. 相似文献
10.
Cladistic biogeography of Gleditsia (Leguminosae) based on ndhF and rpl16 chloroplast gene sequences
We used cladistic analysis of chloroplast gene sequences (ndhF and rpl16) to test biogeographic hypotheses in the woody genus Gleditsia. Previous morphological comparisons suggested the presence of two eastern Asian-eastern North American species pairs among the 13 known species, as well as other intra- and inter-continental disjunctions. Results from phylogenetic analyses, interpreted in light of the amount of sequence divergence observed, led to the following conclusions. First, there is a fundamental division of the genus into three clades, only one of which contains both Asian and North American species. Second, the widespread and polymorphic Asian species, G. japonica, is sister to the two North American species, G. triacanthos and G. aquatica, which themselves are closely related inter se, but are both polymorphic and paraphyletic. Third, the lone South American Gleditsia species, G. amorphoides, forms a clade with two eastern Asian species. Gleditsia thus appears to have only one Asian-North American disjunction and no intercontinental species pairs. Low sequence divergence between G. amorphoides and its closest Asian relatives implicates long-distance dispersal in the origin of this unusual disjunction. Sequence divergence between Asian and North American Gleditsia is much lower than between Asian and North American species of its closest relative, Gymnocladus. Estimates of Asian-North American divergence times for Gymnocladus are in general accordance with fossil data, but estimates for Gleditsia suggest recent divergences that conflict with ages of known North American Gleditsia fossils. 相似文献
11.
Hong-Tao Li Jun-Bo Yang De-Zhu Li Michael Möller Amin Shah 《Plant Systematics and Evolution》2010,285(1-2):23-32
This paper presents the first molecular phylogeny of the genus Hemsleya using nuclear ITS and plastid trnH-psbA, rpl16, and trnL DNA sequences to examine the relationships among Hemsleya species. Phylogenetic relationships were elucidated using a combined analysis of all four datasets, however, the number of parsimony-informative characters was still insufficient to resolve all relationships. Parsimony and Bayesian trees were highly congruent. Twenty-three species of Hemsleya split into two major clades corresponding to two subgenera, i.e., subg. Graciliflorae and subg. Hemsleya. These results are partly in agreement with Li’s sectional classification. However, the molecular data are inconsistent with Li’s classification at the subsectional level. The molecular phylogeny revealed a striking overall correlation between the phylogenetic relationships of the species and their geographical distribution. The Kangdian ancient landmass could be the center of origin of the genus. 相似文献
12.
The phylogenetic positions of Japanese Abies species (A. firma, A. homolepis, A. veitchii, A. sachalinensis, and A. mariesii) were revealed based on nucleotide sequences of chloroplast DNA. First, rbcL sequences of 24 Abies species worldwide were analyzed to clarify the phylogenetic position of the Japanese Abies within this genus. While 4 of the Japanese species formed a monophyletic group with almost no sequence divergence, A. mariesii was placed into a clearly different group with North American species. Second, to clarify the relationships among the species in the monophyletic group, sequences of rbcL, matK, and six spacer regions (total ca. 5 kb) were analyzed for 12 species of the group, with A. mariesii as an outgroup. Although a unique sequence and some species-specific sequences were detected in A. mariesii and in A. firma and A. homolepis, respectively, A. veitchii and A. sachalinensis gave identical sequences for all the sequenced regions. 相似文献
13.
RAY NEYLAND LOWELL E. URBATSCH ALEC M. PRIDGEON 《Botanical journal of the Linnean Society. Linnean Society of London》1995,117(1):13-28
A cladistic analysis of subtribe, Pleurothallidinae (Orchidaceae) is based on 45 anatomical/ morphological characters. The ingroup members comprise 24 genera; the large genus Pleurothallis consists of two subgenera and ten species complexes. Three taxa representing subtribes Laeliinae and Arpophyllinae are designated as outgroup. Eight most parsimonious trees were discovered using computer assisted software (length = 230; CI = 0.27). The hypothesis that subtribe Pleurothallidinae has undergone a unilinear reduction in the number of pollinia is not supported by this study. Although the eight-pollinia state as represented by Octomeria apparently is plesiomorphic, the two-pollinia and four-pollinia states arose early in the phylogeny of the subtribe. Both two-and four-pollinia states subsequently reappeared as parallelisms. The six-pollinia state exhibited in Brachionidium is autapomorphic. This cladistic analysis suggests that Pleurothallis is not a natural genus and, perhaps may be divided into several discrete genera. 相似文献
14.
RAY NEYLAND LOWELL E. URBATSCH ALEC M. PRIDGEON 《Botanical journal of the Linnean Society. Linnean Society of London》1995,117(2):13-28
A cladistic analysis of subtribe, Pleurothallidinae (Orchidaceae) is based on 45 anatomical/ morphological characters. The ingroup members comprise 24 genera; the large genus Pkurothallis consists of two subgenera and ten species complexes. Three taxa representing subtribes Laeliinae and ArpophyUinae are designated as outgroup. Eight most parsimonious trees were discovered using computer assisted software (length = 230; CI = 0.27). The hypothesis that subtribe Pleurothallidinae has undergone a unilinear reduction in the number of pollinia is not supported by this study. Although the eight-pollinia state as represented by Octomeria apparently is plesiomorphic, the two-pollinia and four-pollinia states arose early in the phytogeny of the subtribe. Both two-and four-pollinia states subsequently reappeared as parallelisms. The six-pollinia state exhibited in Brachionidium is autapomorphic. This cladistic analysis suggests that Pkurothallis is not a natural genus and, perhaps may be divided into several discrete genera. 相似文献
15.
The phylogeny of Ptychostomum was first spacer (ITS) region of the nuclear ribosomal (nr) DNA DNA rps4 sequences. Maximum parsimony, maximum undertaken based on analysis of the internal transcribed and by combining data from nrDNA ITS and chloroplast likelihood, and Bayesian analyses all support the conclusion that the reinstated genus Ptychostomum is not monophyletic. Ptychostomum funkii (Schwagr.) J. R. Spence (≡ Bryum funkii Schwaigr.) is placed within a clade containing the type species of Bryum, B. argenteum Hedw. The remaining members of Ptychostomum investigated in the present study constitute another well-supported clade. The results are congruent with previous molecular analyses. On the basis of phylogenetic evidence, we agree with transferring B. amblyodon Mull. Hal. (≡ B. inclinatum (Brid.) Turton≡ Bryum archangelicum Bruch & Schimp.), Bryum lonchocaulon Mull. Hal., Bryum pallescens Schleich. ex Schwaigr., and Bryum pallens Sw. to Ptychostomum. 相似文献
16.
The systematics of the mainly yellow flowered Gagea species complex (Liliaceae) has long been considered difficult because only a few phenotypic features within this genus and as a result of hypothesized interspecific hybridisation. A molecular phylogenetic study of seven Gagea species (G. bohemica, G. lutea, G. minima, G. pomeranica, G. pratenis, G. spathacea and G. villosa) from Germany has been undertaken, based on plastid DNA sequences (trnL(UAA)-trnF(GAA), psbA-trnH) and on the nuclear ribosomal internal transcribed spacer (ITS). Sequence divergence within the Gagea species ranges up to 15.5% for psbA-trnH, 22.0% for trnL-trnF and 23.7% for ITS (ITS1 + 5.8S rRNA + ITS2). Two subspecies of Gagea bohemica: G. bohemica subsp. saxatilis and G. bohemica subsp. bohemica are characterized by trnL-trnF data and morphological features. Analysis of the ITS region shows that G. pomeranica represents a hybrid of G. pratensis and G. lutea. Lloydia serotina was initially used as an outgroup species, but it was placed within the investigated Gagea species in the psbA-trnH and the trnL-trnF phylogenetic tree. 相似文献
17.
Boris Domenech Conny B. Asmussen‐Lange William J. Baker Elodie Alapetite Jean‐Christophe Pintaud Sophie Nadot 《Botanical journal of the Linnean Society. Linnean Society of London》2014,175(4):469-481
Subtribe Archontophoenicinae belongs to Areceae, the largest of all palm tribes. It includes 15 species distributed in five genera, all found in the south‐western Pacific Region. Archontophoenicinae are rather homogeneous in morphology, making phylogenetic relationships problematic to reconstruct using morphological characters. In this study we investigated phylogenetic relationships in Archontophoenicinae based on all 15 species of the subtribe, using a combination of nine plastid and five nuclear DNA sequence markers. The plastid regions used were the coding rbcL, matK, ndhF and rpoC1 (exon 2) and the non‐coding rps16 intron, atpF‐atpH, psbK‐psbI, trnL‐trnF and trnQ‐rps16. The nuclear regions used were AG1, BRSC, ITS2, PRK and RPB2, which have all proved useful in palm systematics. We compared the phylogenetic hypotheses resulting from the plastid versus nuclear datasets, and combined both datasets to retrieve as much phylogenetic information as possible. Our results strongly support a clade composed of all species of Archontophoenix, Actinokentia, Chambeyronia and Kentiopsis, but raise the question of whether Actinorhytis, the fifth genus, should remain in Archontophoenicinae. Interspecific relationships in ‘core Archontophoenicinae’ still remain incompletely resolved, despite the gene and taxon sampling being substantially greater than in previous studies, and question the monophyly of the New Caledonian genera Chambeyronia and Kentiopsis. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 469–481. 相似文献
18.
Somayeh Sadeghian Shahin Zarre Richard K. Rabeler Günther Heubl 《Botanical journal of the Linnean Society. Linnean Society of London》2015,178(4):648-669
The systematics and phylogeny of the genus Arenaria and allied genera are unresolved. The use of morphological data has resulted in contradictory taxonomic concepts in the past due to their homoplastic nature. We present a phylogenetic analysis based on internal transcribed spacer (ITS) and rps16 sequence data of 140 (132 taxa) and 131 (120 taxa) accessions, respectively. Maximum parsimony and Bayesian analyses of each marker produced nearly congruent trees. Monophyly of Arenaria s.s. and Eremogone is confirmed here. Our results corroborate earlier results indicating that Arenaria subgenus Odontostemma is monophyletic, but outside the core group of Arenaria. Arenaria subgenus Solitaria is sister to Odontostemma and also not closely related to the latter; both of these subgenera are excluded from Arenaria and treated as distinct genera. The molecular data indicate that the ‘Arenaria s.s. clade’ consists of a few well‐supported subgroups and that the current subgeneric classification of the genus does not reflect evolutionary history. Arenaria subgenus Leiosperma is clearly monophyletic, but we reduce it to sectional level. Our molecular data show that the monotypic Arenaria subgenera Porphyrantha and Arenariastrum are nested in A. subgenus Arenaria, whereas subgenus Eremogoneastrum is included in Eremogone. None of the species‐rich sections in subgenus Arenaria is monophyletic. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178 , 648–669. 相似文献
19.
Dipterocarpoideae, the largest sub-family of well-known plant family Dipterocarpaceae, dominates in South Asian rain forests. Although several previous studies addressed the phylogeny of the Dipterocarpaceae family, relationships among many of its genera from the Dipterocarpoideae sub-family are still not well understood. In particular, little is known about the relationships of the genera Vateriopsis, Stemonoporus, Vateria and inconsistence remains between phylogenetic results and taxonomic classifications of Shorea and Hopea species. We studied molecular phylogeny of the sub-family Dipterocarpoideae using the trnL-trnF spacer, trnL intron and the matK gene sequences of chloroplast DNA (cpDNA). This study is the first comprehensive phylogeny reconstruction for the sub-family Dipterocarpoideae based on cpDNA, as it includes most genera (14) and a large number of species (79) with most species endemic to Sri Lanka, as well as one species from Seychelles and one species from the genus Monotes from Madagascar. Phylogenetic trees were constructed using the Neighbor Joining (NJ) and Maximum Likelihood (ML) methods using combined set of sequences including all three cpDNA regions. The topologies of the NJ and ML trees were to a certain extent, consistent with the current taxonomy of Dipterocarpoideae based on morphology and with previous molecular phylogenies based on cpDNA. Furthermore, our results provided new evidence regarding the relationships of the following genera: Vateriopsis and Stemonoporus and about the validity of the previous morphology based classifications of Shorea species. In addition, the topology of our trees was consistent with the classification of Shorea species proposed by Maury (1978), Maury-Lechon (1979) and Symington (1943). Finally, our results provided evidence for the affinity of the genus Monotes to Asian Dipterocarpoideae rather than to Tiliaceae and indicated that it is a good candidate for outgroup species for future studies of the former sub-family. 相似文献
20.
A detailed analysis of chloroplast DNA restriction fragment length variation was undertaken to reconstruct the maternal phylogeny of 18 taxa from both sections of the papilionoid tropical forage legume genusStylosanthes. Data were analysed by means of the computer program PAUP, using an heuristic search with Wagner parsimony. The resulting cladogram dividedStylosanthes into four separate clades, which comprised: (i) theS. guianensis complex and related species (i.e.S. gracilis, S. grandifolia andS. montevidensis); (ii)S. hispida, tetraploidS. hamata s. l.,S. sympodialis, S. humilis, S. leiocarpa, S. angustifolia and certain accesions ofS. scabra; (iii)S. calcicola, S. viscosa, diploidS. hamata s. str., andS. fruticosa, plus accessions ofS. scabra, S. capitata and one accession ofS. grandifolia; and (iv)S. macrocephala and other accessions ofS. capitata not included within clade 3. Results are generally congruent with previously established interspecific relationships and, moreover, enabled identification of putative maternal progenitors for four tetraploid taxa:S. humilis was identified as a likely maternal parent of bothS. sympodialis andS. hamata s. l.,S. viscosa as a maternal parent ofS. scabra, andS. macrocephala as a maternal parent ofS. capitata. 相似文献