首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phylogenetic relationships were studied based on DNA sequences obtained from all recognized genera of the family Corvidae sensu stricto . The aligned data set consists 2589 bp obtained from one mitochondrial and two nuclear genes. Maximum parsimony, maximum-likelihood, and Bayesian inference analyses were used to estimate phylogenetic relationships. The analyses were done for each gene separately, as well as for all genes combined. An analysis of a taxonomically expanded data set of cytochrome b sequences was performed in order to infer the phylogenetic positions of six genera for which nuclear genes could not be obtained. Monophyly of the Corvidae is supported by all analyses, as well as by the occurrence of a deletion of 16 bp in the β-fibrinogen intron in all ingroup taxa. Temnurus and Pyrrhocorax are placed as the sister group to all other corvids, while Cissa and Urocissa appear as the next clade inside them. Further up in the tree, two larger and well-supported clades of genera were recovered by the analyses. One has an entirely New World distribution (the New World jays), while the other includes mostly Eurasian (and one African) taxa. Outside these two major clades are Cyanopica and Perisoreus whose phylogenetic positions could not be determined by the present data. A biogeographic analysis of our data suggests that the Corvidae underwent an initial radiation in Southeast Asia. This is consistent with the observation that almost all basal clades in the phylogenetic tree consist of species adapted to tropical and subtropical forest habitats.  相似文献   

2.
The monophyly of the Peltophorum group, one of nine informal groups recognized by Polhill in the Caesalpinieae, was tested using sequence data from the trnL-F, rbcL, and rps16 regions of the chloroplast genome. Exemplars were included from all 16 genera of the Peltophorum group, and from 15 genera representing seven of the other eight informal groups in the tribe. The data were analyzed separately and in combined analyses using parsimony and Bayesian methods. The analysis method had little effect on the topology of well-supported relationships. The molecular data recovered a generally well-supported phylogeny with many intergeneric relationships resolved. Results show that the Peltophorum group as currently delimited is polyphyletic, but that eight genera plus one undescribed genus form a core Peltophorum group, which is referred to here as the Peltophorum group sensu stricto. These genera are Bussea, Conzattia, Colvillea, Delonix, Heteroflorum (inedit.), Lemuropisum, Parkinsonia, Peltophorum, and Schizolobium. The remaining eight genera of the Peltophorum group s.l. are distributed across the Caesalpinieae. Morphological support for the redelimited Peltophorum group and the other recovered clades was assessed, and no unique synapomorphy was found for the Peltophorum group s.s. A proposal for the reclassification of the Peltophorum group s.l. is presented.  相似文献   

3.
Phylogenetic relationships among 95 genera collectively representing 17 of the 18 currently recognized cyclostome braconid wasp subfamilies were investigated based on DNA sequence fragments of the mitochondrial COI and the nuclear 28S rDNA genes, in addition to morphological data. The treatment of sequence length variation of the 28S partition was explored by either excluding ambiguously aligned regions and indel information (28SN) or recoding them (28SA) using the 'fragment-level' alignment method with a modified coding approach. Bayesian MCMC analyses were performed for the separate and combined data sets and a maximum parsimony analysis was also carried out for the simultaneous molecular and morphological data sets. There was a significant incongruence between the two genes and between 28S and morphology, but not for morphology and COI. Different analyses with the 28SA data matrix resulted in topologies that were generally similar to the ones from the 28SN matrix; however, the former topologies recovered a higher number of significantly supported clades and had a higher mean Bayesian posterior probability, thus supporting the inclusion of information from ambiguously aligned regions and indel events in phylogenetic analyses where possible. Based on the significantly supported clades obtained from the simultaneous molecular and morphological analyses, we propose that a total of 17 subfamilies should be recognized within the cyclostome group. The subfamilial placements of several problematic cyclostome genera were also established.  相似文献   

4.
The Caesalpinieae grade (Leguminosae) forms a morphologically and ecologically diverse group of mostly tropical tree species with a complex evolutionary history. This grade comprises several distinct lineages, but the exact delimitation of the group relative to subfamily Mimosoideae and other members of subfamily Caesalpinioideae, as well as phylogenetic relationships among the lineages are uncertain. With the aim of better resolving phylogenetic relationships within the Caesalpinieae grade, we investigated the utility of several nuclear markers developed from genomic studies in the Papilionoideae. We cloned and sequenced the low copy nuclear gene sucrose synthase (SUSY) and combined the data with plastid trnL and matK sequences. SUSY has two paralogs in the Caesalpinieae grade and in the Mimosoideae, but occurs as a single copy in all other legumes tested. Bayesian and maximum likelihood phylogenetic analyses suggest the two nuclear markers are congruent with plastid DNA data. The Caesalpinieae grade is divided into four well-supported clades (Cassia, Caesalpinia, Tachigali and Peltophorum clades), a poorly supported clade of Dimorphandra Group genera, and two paraphyletic groups, one with other Dimorphandra Group genera and the other comprising genera previously recognized as the Umtiza clade. A selection analysis of the paralogs, using selection models from PAML, suggests that SUSY genes are subjected to a purifying selection. One of the SUSY paralogs, under slightly stronger positive selection, may be undergoing subfunctionalization. The low copy SUSY gene is useful for phylogeny reconstruction in the Caesalpinieae despite the presence of duplicate copies. This study confirms that the Caesalpinieae grade is an artificial group, and highlights the need for further analyses of lineages at the base of the Mimosoideae.  相似文献   

5.
Although Codfishes are probably one of the most studied groups of all teleost fishes worldwide owing to their great importance to fisheries, their phylogeny and classification are still far from being firmly established. In this study, we present phylogenetic relationships of 19 out of 22 genera traditionally included in the Gadidae based on the analysis of entire cytochrome b and partial cytochrome oxidase I genes (1530 bp). Maximum Parsimony, Maximum Likelihood, and Bayesian analyses all recovered five main clades that correspond to traditionally recognized groupings within Gadoids. The same clades were recovered with MP analysis based on 30 morphological characters (collected from the literature). Given these findings, we propose a revised provisional classification of Gadoids: one suborder Gadoidei containing two families, the Merlucciidae (1 genus) and the Gadidae (21 genera) distributed into four subfamilies: the Gadinae (12 genera), the Lotinae (3 genera), the Gaidropsarinae (3 genera), and the Phycinae (3 genera). Lastly, nuclear inserts of mitochondrial DNA (Numts) were identified in two species, i.e., Gadiculus argenteus and Melanogrammus aeglefinus.  相似文献   

6.
We sequenced mitochondrial DNA from four protein-coding genes for 26 taxa to test W. E. Lanyon's hypothesis of intergeneric relationships and character evolution in the Empidonax group of tyrant flycatchers. Three genera in this group (Empidonax, Contopus, and Sayornis) successfully occupy north temperate habitats for breeding, while the remaining genera (Mitrephanes, Cnemotriccus, Aphanotriccus, Lathrotriccus, and Xenotriccus) are restricted to neotropical latitudes. Lanyon hypothesized two major clades in the group based on differences in syringeal morphology and proposed relationships among genera using a combination of morphologic, behavioral, and allozymic characters. The mtDNA data strongly support Lanyon's division of genera into two clades. In addition, the molecular and nonmolecular data sets agree in uniting Aphanotriccus and Lathrotriccus as sister taxa, with Cnemotriccus as basal to these genera. Species of Aphanotriccus, Lathrotriccus, and Cnemotriccus form a clade that exploits a distinctive nesting niche relative to other members of the Empidonax group. Within the second major clade, mtDNA sequences support a reconstruction based on allozymes that places Contopus and Empidonax as sister taxa. This hypothesis contradicts that of Lanyon, who allied Contopus with Mitrephanes on the basis of similarity in foraging mode. Genera in the Empidonax group are members of a larger assemblage that radiated in South America. Occupancy of temperate habitats by certain genera in this group is coincident with their evolution of migratory behavior and with independent diversification in foraging modes that reduces potential competition in sympatry.  相似文献   

7.
Molecular phylogeny of the green lacewings (Neuroptera: Chrysopidae)   总被引:1,自引:0,他引:1  
Abstract  The first quantitative analysis of phylogenetic relationships of green lacewings (Chrysopidae) is presented based on DNA sequence data. A single nuclear and two mitochondrial genes are used in the analysis: carbomoylphosphate synthase (CPS) domain of carbamoyl-phosphate synthetase-aspartate transcarbamoylase-dihydroorotase (CAD) (i.e. rudimentary locus), large subunit ribosomal gene (16S) and cytochrome oxidase I (COI). This study represents the first use of the CAD gene to investigate phylogenetic relationships of the lacewings. DNA sequences for 33 chrysopid species from 18 genera, representing all subfamilies and tribes, were compared with outgroups sampled from families Hemerobiidae, Osmylidae and Polystoechotidae. Parsimony analyses of the combined data set recovered all of the previously established subfamilial and tribal groups as monophyletic clades (although relatively weakly supported) except Apochrysinae sensu lato . The enigmatic Nothancyla verreauxi Navás has historically been difficult to place in a subfamily group based on morphological characteristics; molecular data presented herein do not adequately resolve this problem.  相似文献   

8.
Euptychiina is the most species‐rich subtribe of Neotropical Satyrinae, with over 450 known species in 47 genera (14 monotypic). Here, we use morphological characters to examine the phylogenetic relationships within Euptychiina. Taxonomic sampling included 105 species representing the majority of the genera, as well as five outgroups. A total of 103 characters were obtained: 45 from wing pattern, 48 from genitalia and 10 from wing venation. The data matrix was analysed using maximum parsimony under both equal and extended implied weights. Euptychiina was recovered as monophyletic with ten monophyletic genera, contrasting previous DNA sequence‐based phylogenies that did not recover the monophyly of the group. In agreement with sequence‐based hypotheses, however, three main clades were recognized: the ‘Megisto clade’ with six monophyletic and three polyphyletic genera, the ‘Taygetis clade’ with nine genera of which three were monophyletic, and the ‘Pareuptyhia clade’ with four monophyletic and two polyphyletic genera. This is the first morphology‐based phylogenetic hypothesis for Euptychiina and the results will be used to complement molecular data in a combined analysis and to provide critical synapomorphies for clades and genera in this taxonomically confused group.  相似文献   

9.
Phylogenetic relationships among 76 species of Oleaceae, representing all 25 recognized genera of the family, were assessed by a cladistic analysis of DNA sequences from two noncoding chloroplast loci, the rps16 intron and the trnL-F region. Consensus trees from separate and combined analyses are congruent and agree well with nonmolecular data (chromosome numbers, fruit and wood anatomy, leaf glycosides, and iridoids). The two debated genera Dimetra and Nyctanthes, previously suggested to belong to Verbenaceae (sensu lato) or Nyctanthaceae, are shown to belong to Oleaceae, sister to the hitherto genus incertae sedis Myxopyrum. This clade is also supported by anatomical and chemical data. The subfamily Jasminoideae is paraphyletic, and a new classification is presented. The subfamily level is abandoned, and the former Jasminoideae is split into four tribes: Myxopyreae (Myxopyrum, Nyctanthes, and Dimetra), Fontanesieae (Fontanesia), Forsythieae (Abeliophyllum and Forsythia), and Jasmineae (Jasminum and Menodora). The tribe Oleeae (previous subfamily Oleoideae) is clearly monophyletic, comprising the subtribes Ligustrinae (Syringa and Ligustrum), Schreberinae status novus (Schrebera and Comoranthus), Fraxininae status novus (Fraxinus), and Oleinae (12 drupaceous genera). An rps16 sequence obtained from Hesperelaea, known only from the type specimen collected in 1875, confirmed the placement of this extinct taxon in the subtribe Oleinae.  相似文献   

10.
The Malpighiaceae are a family of ~1250 species of predominantly New World tropical flowering plants. Infrafamilial classification has long been based on fruit characters. Phylogenetic analyses of chloroplast DNA nucleotide sequences were analyzed to help resolve the phylogeny of Malpighiaceae. A total of 79 species, representing 58 of the 65 currently recognized genera, were studied. The 3' region of the gene ndhF was sequenced for 77 species and the noncoding intergenic spacer region trnL-F was sequenced for 65 species; both sequences were obtained for the outgroup, Humiria (Humiriaceae). Phylogenetic relationships inferred from these data sets are largely congruent with one another and with results from combined analyses. The family is divided into two major clades, recognized here as the subfamilies Byrsonimoideae (New World only) and Malpighioideae (New World and Old World). Niedenzu's tribes are all polyphyletic, suggesting extensive convergence on similar fruit types; only de Jussieu's tribe Gaudichaudieae and Anderson's tribes Acmanthereae and Galphimieae are monophyletic. Fleshy fruits evolved three times in the family and bristly fruits at least three times. Among the wing-fruited vines, which constitute more than half the diversity in the family, genera with dorsal-winged samaras are fairly well resolved, while the resolution of taxa with lateral-winged samaras is poor. The trees suggest a shift from radially symmetrical pollen arrangement to globally symmetrical pollen at the base of one of the clades within the Malpighioideae. The Old World taxa fall into at least six and as many as nine clades.  相似文献   

11.
A molecular phylogenetic analysis of the Macaronesian endemic species of Convolvulus was undertaken using data from the nuclear ribosomal internal transcribed spacer (ITS) regions. The results of the analysis support two introductions into Macaronesia from distantly related clades within Convolvulus and a subsequent back-colonization to the continent from within one of the clades. Hypothesized relationships between Macaronesian species and New World taxa and between the Canarian endemic C. caput-medusae and the Moroccan C. trabutianus are refuted. Both Macaronesian clades are shown to have Mediterranean sister groups although one is predominantly western Mediterranean and the other predominantly eastern Mediterranean in distribution. The patterns of colonization into Macaronesia demonstrated by Convolvulus and also by other multiple colonizing genera conform to either a pattern of phylogenetic distinctiveness or a checkerboard distribution of island lineages. Both are consistent with the hypothesis that niche preemption is responsible for the limited number of colonizations into the region. A review of sister group relationships demonstrates that, in common with Convolvulus, most Macaronesian groups have sister groups distributed in the near-continent (i.e., western Mediterranean). Disjunct sister group relationships (including Eastern Mediterranean disjunctions) occur in only 18% of groups.  相似文献   

12.
A monophyletic pantropical group of papilionoid legumes, here referred to as the "dalbergioid" legumes, is circumscribed to include all genera previously referred to the tribes Aeschynomeneae and Adesmieae, the subtribe Bryinae of the Desmodieae, and tribe Dalbergieae except Andira, Hymenolobium, Vatairea, and Vataireopsis. This previously undetected group was discovered with phylogenetic analysis of DNA sequences from the chloroplast trnK (including matK) and trnL introns, and the nuclear ribosomal 5.8S and flanking internal transcribed spacers 1 and 2. All dalbergioids belong to one of three well-supported subclades, the Adesmia, Dalbergia, and Pterocarpus clades. The dalbergioid clade and its three main subclades are cryptic in the sense that they are genetically distinct but poorly, if at all, distinguished by nonmolecular data. Traditionally important taxonomic characters, such as arborescent habit, free stamens, and lomented pods, do not provide support for the major clades identified by the molecular analysis. Short shoots, glandular-based trichomes, bilabiate calyces, and aeschynomenoid root nodules, in contrast, are better indicators of relationship at this hierarchical level. The discovery of the dalbergioid clade prompted a re-analysis of root nodule structure and the subsequent finding that the aeschynomenoid root nodule is synapomorphic for the dalbergioids.  相似文献   

13.
By use of nonparametric rate smoothing and nucleotide sequences of the rbcL gene, divergence times in Lycopodiaceae are estimated. The results show that much extant species diversity in Lycopodiaceae stems from relatively recent cladogenic events. These results corroborate previous ideas based on paleobotanical and biogeographical data. Previous molecular phylogenetic analyses recognized a split into neotropical and paleotropical clades in Huperzia, which contains 85-90% of all living species. Connecting this biogeographical pattern with continent movements, the diversification of this epiphytic group was suggested to coincide with that of angiosperms in the mid to Late Cretaceous. Results presented here are consistent with this idea, and the diversification of the two clades is resolved as Late Cretacous (78 and 95 Myr). In the related genera Lycopodium and Lycopodiella, the patterns are somewhat different. Here species diversity is scattered among different subgeneric groups. Most of the high-diversity subgeneric groups seem to have diversified very recently (Late Tertiary), whereas the cladogenic events leading to these groups are much older (Early to Late Cretaceous). Our analysis shows that, although much living species diversity stems from relatively recent cladogenesis, the origins of the family (Early Carboniferous) and generic crown groups (Early Permian to Early Jurassic) are much more ancient events.  相似文献   

14.
We present the results of cladistic analyses of morphology, nrDNA ITS sequences, and a combination of the two for tribe Amaryllideae of the Amaryllidaceae. The morphologically based analysis supports the recognition of Amaryllis as sister to two major clades, equivalent to Snijman and Linder's (1996, Annals of the Missouri Botanical Garden 83: 362-386) Crininae and Amaryllidinae (less Amaryllis). A single tree is found with a successively weighted ITS sequence matrix. Amaryllis and Boophone form a grade at the base of the tree. All the other genera are included in two clades conforming to Snijman and Linder's (1996) subtribes Amaryllidinae (less Amaryllis, thus now Strumariinae) and Crininae (less Boophone). Within Strumariinae, Strumaria sensu lato is resolved as polyphyletic. Strumaria subg. Gemmaria is sister to the rest of the subtribe. Hessea is monophyletic only if Namaquanula is excluded. The monotypic Carpolyza is embedded within Strumaria sensu stricto. The consensus of the combined analysis is highly resolved, and most similar to the sequence topology. Based on the results of the combined analyses, the major clades are recognized as subtribes, and Carpolyza is placed into synonymy under Strumaria.  相似文献   

15.
A higher level phylogeny for the passion-vine butterflies (Nymphalidae, Heliconiinae) was generated by cladistic analysis of 146 morphological characters from all life stages. The 24 species studied were selected representatives of the ten currently accepted genera of the sub-tribe Heliconiiti. Analyses of only characters from larvae and pupae did not produce well resolved trees. However, some characters of the immature stages provided critical support for the monophyly of two clades. Analysis of only adult characters yielded a tree that closely resembled that obtained from all data combined. The phylogeny here derived from the combined analysis of early stage and adult characters differed in topology from all previously proposed hypotheses, and supported the monophyly of all currently recognized genera. Characters supporting each clade are described and illustrated, and various hypotheses of phylogenetic relatedness of passion-vine butterfly taxa are discussed.  相似文献   

16.
The molecular phylogenetics of decapod crustaceans has been based on sequence data from a limited number of genes. These have included rapidly evolving mitochondrial genes, which are most appropriate for studies of closely related species, and slowly evolving nuclear ribosomal RNA genes, which have been most useful for resolution of deep branches within the Decapoda. Here we examine the utility of the nuclear gene that encodes arginine kinase for phylogenetic reconstruction at intermediate levels (relationships among genera and families) within the decapod infraorder Brachyura (the true crabs). Analyses based on arginine kinase sequences were compared and combined with those for the mitochondrial cytochrome oxidase I gene. All of the genera in our taxon sample were resolved with high support with arginine kinase data alone. However, some of these genera were grouped into clades that are in conflict with recognized brachyuran families. A phylogeny based on cytochrome oxidase I was consistent with the arginine kinase phylogeny, but with weaker support. A recently proposed measure of phylogenetic informativeness indicated that arginine kinase was generally more informative than cytochrome oxidase I for relationships above the level of genus. Combined analysis of data from both genes provided strong support for clades that are in conflict with current assignments of genera to the families Epialtidae, Mithracidae, Pisidae, and Portunidae.  相似文献   

17.
Abstract: The infrafamilial relationships of Podostemaceae were deduced from nucleotide sequences of the chloroplast matK gene. The matK phylogenetic analyses show that Podostemaceae are composed of two major clades that correspond to the subfamily Tristichoideae sensu stricto and Weddellina and the subfamily Podostemoideae. Weddellina, which has long been recognized as a member of the Tristichoideae, is sister to the Podostemoideae, supporting the classification that recognized a third subfamily Weddellinoideae. Malaccotristicha malayana and Terniopsis sessilis form a basal clade in Tristichoideae sensu stricto. Tristichoideae show a high morphological diversity and, surprisingly, a close relationship exists between Dalzellia zeylanica and Indotristicha ramosissima, which remarkably differ in their body plans. A few genera defined by particular characters, such as Synstylis and Torrenticola, merge into clades of other larger genera. The Podostemoideae taxa studied are composed of two American clades, an Asian-Australian clade and a Madagascan clade, and may suggest that the subfamily perhaps originated in America and migrated to the Old World.  相似文献   

18.
A phylogenetic analysis of genera within the informal suballiance Beaufortia (family Myrtaceae), largely endemic to Australia and New Caledonia, is presented based on separate and combined data sets for 5S and ITS-1 spacer regions of nuclear ribosomal DNA. The two sets were not in conflict but the 5S data set was more informative. Data were analysed using conventional parsimony, jackknife parsimony, and three-item parsimony analyses. Three-item analysis gave more resolved trees than conventional parsimony analysis. The Beaufortia suballiance includes two major clades, with all Australian representatives of Callistemon (shown to be monophyletic) and most Australian representatives of Melaleuca forming one of these. The sister clade comprises a well-defined group of endemic New Caledonian taxa (classified as Callistemon and Melaleuca ), some Australian species of Melaleuca , a clade including the Western Australia/Northern Territory genera Beaufortia, Lamarchea , and Regelia , and a clade including the south-west Western Australian genera Calothamnus, Eremaea, Conothamnus , and Phymatocarpus . All molecular analyses sup port the monophyly of Conothamnus and of Regelia , genera for which a number of species were included. Three-item analysis of the combined data set supports the monophyly of Beaufortia . The findings have implications for both taxonomy and biogeography.  相似文献   

19.
The members of tribe Microlicieae in the flowering plant family Melastomataceae are nearly all endemic to the cerrado biome of Brazil. Traditional classifications of the Melastomataceae have attributed between 15 and 17 genera to the Microlicieae, but subsequent revisions have circumscribed the tribe more narrowly. The monophyly and intergeneric relationships of the Microlicieae were evaluated through phylogenetic analyses with molecular and morphological data sets. Incorporation of DNA sequences from the intron of the chloroplast gene rpl16 into a previously generated family-wide data set yielded a clade comprising Chaetostoma, Lavoisiera, Microlicia, Rhynchanthera, Stenodon, and Trembleya ("core Microlicieae"), with Rhynchanthera as the first-diverging lineage. The other four genera of Microlicieae sampled are placed in other clades: Eriocnema with Miconieae; Siphanthera with Aciotis, Nepsera, and Acisanthera of Melastomeae; Castratella as sister to Monochaetum of Melastomeae; and Cambessedesia as part of an unresolved polytomy in a large clade that includes most Melastomataceae. Analyses of the chloroplast genes rbcL and ndhF that included three core genera produced similar results, as did the combined analysis of all three data sets. Combined parsimony analyses of DNA sequences from rpl16 and the nuclear ribosomal intercistronic transcribed spacer (ITS) region of 22 species of core Microlicieae yielded generally low internal support values. Lavoisiera, recently redefined on the basis of several morphological characters, was strongly supported as monophyletic. A morphological phylogenetic analysis of the Microlicieae based on 10 parsimony-informative characters recovered a monophyletic core Microlicieae but provided no further resolution among genera. Penalized likelihood analysis with two calibration time windows produced an age estimate of 3.7 million years for the time of initial divergence of strictly Brazilian core Microlicieae. This date is in general agreement with the estimated age of the most active stage of development of cerrado vegetation and implies an adaptive shift from hydric to seasonally dry habitats during the early evolution of this group.  相似文献   

20.
The 'didymocarpoid Gesneriaceae' (traditional subfam. Cyrtandroideae excluding Epithemateae) are the largest group of Old World Gesneriaceae, comprising 85 genera and 1800 species. We attempt to resolve their hitherto poorly understood generic relationships using three molecular markers on 145 species, of which 128 belong to didymocarpoid Gesneriaceae. Our analyses demonstrate that consistent topological relationships can be retrieved from data sets with missing data using subsamples and different combinations of gene sequences. We show that all available classifications in Old World Gesneriaceae are artificial and do not reflect natural relationships. At the base of the didymocarpoids are grades of clades comprising isolated genera and small groups from Asia and Europe. These are followed by a clade comprising the African and Madagascan genera. The remaining clades represent the advanced Asiatic and Malesian genera. They include a major group with mostly twisted capsules. The much larger group of remaining genera comprises exclusively genera with straight capsules and the huge genus Cyrtandra with indehiscent fruits. Several genera such as Briggsia, Henckelia, and Chirita are not monophyletic; Chirita is even distributed throughout five clades. This degree of incongruence between molecular phylogenies, traditional classifications, and generic delimitations indicates the problems with classifications based on, sometimes a single, morphological characters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号