首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The phylogenetic positions of the families Campynemataceae and Corsiaceae within the order Liliales remains unclear. To date, molecular data from the plastid genome of Corsiaceae has been obtained exclusively from Arachnitis, for which alignment and phylogenetic inference has proved difficult. The extent of gene conservation among mycoheterotrophic species within Corsiaceae remains unknown. To clarify the phylogenetic position of Campynemataceae and Corsiaceae within Liliales, functional plastid-coding genes of species representing both families have been analyzed. Examination of two phylogenetic data sets of plastid genes employing parsimony, maximum-likelihood, and Bayesian inference methods strongly supported both families forming a basal clade to the remaining taxa of Liliales. The first data set consists of five functional plastid-encoded genes (matK, rps7, rps2, rps19, and rpl2) sequenced from Corsia dispar (Corsiaceae). The data set included 31 species representing all families within Liliales, as well as selected orders that are related closely to Liliales (10 outgroup species from Asparagales, Dioscoreales, and Pandanales). The second phylogenetic analysis was based on 75 plastid genes. This data set included 18 species from Liliales, representing major clades within the order, and 10 outgroup species from Asparagales, Dioscoreales, and Pandanales. In this latter data set, Campynemataceae was represented by 60 plastid-encoded genes sequenced from herbarium material of Campynema lineare. A large proportion of the plastid genome of C. dispar was also sequenced and compared to the plastid genomes of photosynthetic plants within Liliales and mycoheterotrophic plants within Asparagales to explore plastid genome reduction. The plastid genome of C. dispar is in the advanced stages of reduction, which signifies its high dependency on mycorrhizal fungi and is suggestive of a loss in photosynthetic ability. Functional plastid genes found in C. dispar may be applicable to other species in Corsiaceae, which will provide a basis for in-depth molecular analyses of interspecies relationships within the family, once molecular data from other members become available.  相似文献   

2.
分析了百合目主要类群叶绿体中编码核酮糖1,5二磷酸羧化氧化酶大亚基rbcL基因的42条序列,使用RRTree相对速率检测方法,详细研究rbcL基因在百合目7科间同义替代速率和非同义替代速率的变化.相对速率检测显示:百合目内秋水仙科(Colchicaceae)的同义替代速率和非同义替代速率均最快,金梅草科(Campynemat-aceae)同义替代速率最慢,百合科(Liliaceae)的非同义替代速率最慢,但在百合目各科间,无论同义替代速率还是非同义替代速率差异均不显著.  相似文献   

3.
4.
We present the first phylogenomic analysis of relationships among all ten families of Liliales, based on 75 plastid genes from 35 species in 29 genera, and 97 additional plastomes stratified across angiosperm lineages. We used a supermatrix approach to extend our analysis to 58 of 64 genera of Liliales, and calibrated the resulting phylogeny against 17 fossil dates to produce a new timeline for monocot evolution. Liliales diverged from other monocots 124 Mya and began splitting into separate families 113 Mya. Our data support an Australian origin for Liliales, with close relationships between three pairs of lineages (Corsiaceae/Campynemataceae, Philesiaceae/Ripogonaceae, tribes Alstroemerieae/Luzuriageae) in South America and Australia or New Zealand reflecting teleconnections of these areas via Antarctica. Long‐distance dispersal (LDD) across the Pacific and Tasman Sea led to re‐invasion of New Zealand by two lineages (Luzuriaga, Ripogonum); LDD allowed Campynemanthe to colonize New Caledonia after its submergence until 37 Mya. LDD permitted Colchicaceae to invade East Asia and Africa from Australia, and re‐invade Africa from Australia. Periodic desert greening permitted Gloriosa and Iphigenia to colonize Southeast Asia overland from Africa, and Androcymbium–Colchicum to invade the Mediterranean from South Africa. Melanthiaceae and Liliaceae crossed the Bering land‐bridge several times from the Miocene to the Pleistocene.  相似文献   

5.
The floral anatomy and pollen morphology of Corsia are described in the context of its systematic relationships. Flowers of Corsia are epigynous, lack septal nectaries and possess a large labellum formed from the outer median tepal (sepal). The labellum is highly vascularized and has a prominent outgrowth (callus) that is apparently nectiiferous in some species of section Sessilis , although not in section Unguiculatis . The six fertile stamens are proximally fused to the style, forming a gynostemium. This combination of labellum and gynostemium is otherwise found only in Orchidaceae (Asparagales), but the orchid labellum is formed from the opposite median inner tepal, and is therefore not homologous with that of Corsia . The three genera of Corsiaceae ( Corsia , Arachnitis and Corsiopsis ) are markedly different in some respects; e.g. only Corsia has a gynostemium. However, they share a unique synapomorphy in the presence of a labellum formed from the outer median tepal (sepal). Corsia and Arachnitis are also similar in pollen sexine sculpturing. Among other putative relatives, the range of morphological similarities between Corsia and Campynemataceae (Liliales) tends to support recent preliminary inferences from molecular data that they are closely related, but a relationship with Thismia (Dioscoreales) cannot be discounted. Both Campynemataceae and Thismia share similarities with Corsia , including epigyny, absence of septal nectaries, presence of tepal nectaries, and pollen morphology. © 2002 Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 138 , 315–324.  相似文献   

6.
The complete nucleotide sequence of the chloroplast genome (cpDNA) of Smilax china L. (Smilacaceae) is reported. It is the first complete cp genome sequence in Liliales. Genomic analyses were conducted to examine the rate and pattern of cpDNA genome evolution in Smilax relative to other major lineages of monocots. The cpDNA genomic sequences were combined with those available for Lilium to evaluate the phylogenetic position of Liliales and to investigate the influence of taxon sampling, gene sampling, gene function, natural selection, and substitution rate on phylogenetic inference in monocots. Phylogenetic analyses using sequence data of gene groups partitioned according to gene function, selection force, and total substitution rate demonstrated evident impacts of these factors on phylogenetic inference of monocots and the placement of Liliales, suggesting potential evolutionary convergence or adaptation of some cpDNA genes in monocots. Our study also demonstrated that reduced taxon sampling reduced the bootstrap support for the placement of Liliales in the cpDNA phylogenomic analysis. Analyses of sequences of 77 protein genes with some missing data and sequences of 81 genes (all protein genes plus the rRNA genes) support a sister relationship of Liliales to the commelinids-Asparagales clade, consistent with the APG III system. Analyses of 63 cpDNA protein genes for 32 taxa with few missing data, however, support a sister relationship of Liliales (represented by Smilax and Lilium) to Dioscoreales-Pandanales. Topology tests indicated that these two alignments do not significantly differ given any of these three cpDNA genomic sequence data sets. Furthermore, we found no saturation effect of the data, suggesting that the cpDNA genomic sequence data used in the study are appropriate for monocot phylogenetic study and long-branch attraction is unlikely to be the cause to explain the result of two well-supported, conflict placements of Liliales. Further analyses using sufficient nuclear data remain necessary to evaluate these two phylogenetic hypotheses regarding the position of Liliales and to address the causes of signal conflict among genes and partitions.  相似文献   

7.
A phylogenetic analysis of the monocot order Liliales was performed using sequence data from three mitochondrial (atp1, cob, nad5) and two plastid genes (rbcL, ndhF). The complete data matrix includes 46 terminals representing all 10 families currently included in Liliales. The two major partitions, mitochondrial and plastid data, were congruent, and parsimony analysis resulted in 50 equally parsimonious trees and a well resolved consensus tree confirming monophyly of all families. Mitochondrial genes are known to include RNA edited sites, and in some cases unprocessed genes are replaced by retro‐processed gene copies, that is processed paralogs. To test the effects on phylogeny reconstruction of predicted edited sites and potentially unintentionally sampled processed paralogs, a number of analyses were performed using subsets of the complete data matrix. In general, predicted edited sites were more homoplasious than the other characters and increased incongruence among most data partitions. The predicted edited sites have a non‐random phylogenetic signal in conflict with the signal of the non‐edited sites. The potentially misleading signal was caused partially by the apparent presence of processed paralogs in Galanthus (Amaryllidaceae), part of the outgroup, but also by a deviating evolutionary pattern of predicted edited sites in Liliaceae compared with the remainder of the Liliales. Despite the problems that processed paralogs may cause, we argue that they should not a priori be excluded from phylogenetic analysis.  相似文献   

8.
In 10 years, the monocots have gone from being one of the least studied and most phylogenetically misunderstood groups of the angiosperms to one of the best characterized. Based on analyses of seven genes representing all three genomes, the following clades have high bootstrap support: Acorales (with the single genus Acorus) is sister to the rest of the monocots, followed successively by Alismatales (including Araceae and Tofieldiaceae), Petrosaviales, Dioscoreales/Pandanales, Liliales, Asparagales, and finally a polytomy of Arecales, Commelinales/Zingiberales, Dasypogonaceae, and Poales. Many of these results also have support from at least some morphological data, but some are unique to the trees created from DNA sequence data. Monocots have been shown in molecular clock studies to be at least 140 million years old, and all major clades and most families date to well before the end of the Cretaceous. More data are required to clarify the positions of the remaining unclearly placed orders, Asparagles, Liliales, and Arecales, as well as Dasypogonaceae. More sequences from the nuclear and mitochondrial genomes are also needed to complement those from the plastid genome, which is the most sampled and thus far most pattern-rich.  相似文献   

9.
Calochortus and the family Liliaceae s.s. have often been considered each other's closest relatives, based partly on their shared possession of bulbs, visually showy flowers, winged wind-dispersed seeds, and narrow parallel-veined leaves. We present a well-supported molecular phylogeny for these groups and their close relatives in the core Liliales, based on sequence variation in the chloroplast-encoded rbcL and ndhF genes. This analysis identifies Liliaceae s.s. as monophyletic. including one clade (((Lilium, Fritillaris, Nomocharis), Cardiocrinum), Notholirion) that appears to have diversified in the Himalayas roughly 12 million years ago and another ((Erythronium, Tulipa), (Gagea, Lloydia)) that arose in East Asia at about the same time. Medeola and Clintonia are sister to Liliaceae s.s. and bear rhizomes, inconspicuous flowers, fleshy animal-dispersed fruits, and broad reticulate-veined leaves. Calochortus is sister to Tricyrtis; both Tricyrtis and the neighboring clade of Prosartes-Streptopus-Scoliopus share several of the traits seen in Medeola-Clintonia. The core Liliales thus provide compelling examples of both concerted convergence and phylogenetic niche conservatism. Invasion of open, seasonal habitats was accompanied by the independent evolution of bulbs, showy flowers, wind-dispersed seeds, and narrow parallel-veined leaves in Calochortus and Liliaceae s.s. Conversely, persistence in shady habitats was accompanied by the retention of rhizomes, inconspicuous flowers, animal-dispersed seeds, and broad reticulate-veined leaves in their sister groups. We advance arguments for the context-specific adaptive value of each of these traits, as well as evidence of parallel trends in other groups. Concerted convergence--convergence in several different traits, favored by the same shared set of ecological conditions, in two or more lineages--is an important evolutionary process that can mislead evolutionary analyses based solely on phenotypic variation.  相似文献   

10.
贝叶斯推论作为进化生物学的最新进展,在适用复杂模型、大型数据集、计算速度和结果容易解释等方面明显优于其它算法。本文简要介绍了贝叶斯推论原理及其在分子进化和系统发育研究中的重要性,并使用该方法对百合目主要类群的系统发育关系进行了重建。结果显示,百合目rbcL基因最适合的DNA进化模型为GTR I G,贝叶斯法与距离法和最大简约法构建的系统发育树拓扑结构相似,没有显著差异,但是分辨率和支持率明显比后者高。贝叶斯分析结果显示,百合目内划分的7个科,除Smilacaceae科外,其余各科均为高后验概率(PP=1·0)支持的单系类群;文中作者还对各科间的系统关系进行了探讨。  相似文献   

11.
Abstract: The presented mat K tree primarily agrees well with the previously presented rbc L tree and combined rbc L + atp B + 18SrDNA tree. According to the mat K tree, the monocotyledons are monophyletic with 100 % bootstrap support. Acorus diverges first from all other monocotyledons (90 % bootstrap support) in which two major clades are recognized: one (89 %) consisting of Alismatanae and Tofieldia (Nartheciaceae), and the other (< 50 %) comprising Lilianae, Commelinanae and Nartheciaceae other than Tofieldia. Within the latter major clade, Petrosavia and Japonolirion (Nartheciaceae) (82 %) diverge first from the remaining taxa (< 50 %) in which two clades are formed: one (81 %) consisting of Pandanales, Dioscoreales and Nartheciaceae-Narthecioideae, and the other (< 50 %) comprising Liliales, Asparagales and Commelinanae. In the former clade, Dioscoreales and Narthecioideae are grouped together (88 %). In the latter clade, Asparagales and Commelinanae are grouped together (< 50 %). Differences between the mat K and rbc L tree topologies appear in the positions of Tricyrtis (Calochortaceae) and Dracaenaceae. Differences between the mat K and combined rbc L + atp B + 18SrDNA tree topologies exist in the positions of the Petrosavia-Japonolirion pair (Nartheciaceae) and Pandanales. The stop codon position of the mat K gene appears to be highly variable among the monocotyledons, especially in the Liliales.  相似文献   

12.
The sequence of the chloroplast genome, which is inherited maternally, contains useful information for many scientific fields such as plant systematics, biogeography and biotechnology because its characteristics are highly conserved among species. There is an increase in chloroplast genomes of angiosperms that have been sequenced in recent years. In this study, the nucleotide sequence of the chloroplast genome (cpDNA) of Veratrum patulum Loes. (Melanthiaceae, Liliales) was analyzed completely. The circular double-stranded DNA of 153,699 bp consists of two inverted repeat (IR) regions of 26,360 bp each, a large single copy of 83,372 bp, and a small single copy of 17,607 bp. This plastome contains 81 protein-coding genes, 30 distinct tRNA and four genes of rRNA. In addition, there are six hypothetical coding regions (ycf1, ycf2, ycf3, ycf4, ycf15 and ycf68) and two open reading frames (ORF42 and ORF56), which are also found in the chloroplast genomes of the other species. The gene orders and gene contents of the V. patulum plastid genome are similar to that of Smilax china, Lilium longiflorum and Alstroemeria aurea, members of the Smilacaceae, Liliaceae and Alstroemeriaceae (Liliales), respectively. However, the loss rps16 exon 2 in V. patulum results in the difference in the large single copy regions in comparison with other species. The base substitution rate is quite similar among genes of these species. Additionally, the base substitution rate of inverted repeat region was smaller than that of single copy regions in all observed species of Liliales. The IR regions were expanded to trnH_GUG in V. patulum, a part of rps19 in L. longiflorum and A. aurea, and whole sequence of rps19 in S. china. Furthermore, the IGS lengths of rbcL-accD-psaI region were variable among Liliales species, suggesting that this region might be a hotspot of indel events and the informative site for phylogenetic studies in Liliales. In general, the whole chloroplast genome of V. patulum, a potential medicinal plant, will contribute to research on the genetic applications of this genus.  相似文献   

13.
基于两个叶绿体基因(matK和rbcL)和一个核糖体基因(18S rDNA)的序列分析,对代表了基部被子植物和单子叶植物主要谱系分支的86科126属151种被子植物(单子叶植物58科86属101种)进行了系统演化关系分析。研究结果表明由胡椒目Piperales、樟目Laurales、木兰目Magnoliales和林仙目Canellales构成的真木兰类复合群是单子叶植物的姐妹群。单子叶植物的单系性在3个序列联合分析中得到98%的强烈自展支持。联合分析鉴定出9个单子叶植物主要谱系(广义泽泻目Alismatales、薯蓣目Dioscorcales、露兜树目Pandanales、天门冬目Asparagalcs、百合目Liliales、棕榈目Arecales、禾本目Poales、姜目Zingiberales、鸭跖草目Commelinales)和6个其他被子植物主要谱系(睡莲目Nymphaeales、真双子叶植物、木兰目、樟目、胡椒目、林仙目)。在单子叶植物内,菖蒲目Acorales(菖蒲属Acorus)是单子叶植物最早分化的一个谱系,广义泽泻目(包括天南星科Araceae和岩菖蒲科Toficldiaccae)紧随其后分化出来,二者依次和其余单子叶植物类群构成姐妹群关系。无叶莲科Petrosaviaceac紧随广义的泽泻目之后分化出来,无叶莲科和剩余的单子叶植物类群形成姐妹群关系,并得到了较高的支持率。继无叶莲科之后分化的类群形成两个大的分支:一支是由露兜树目和薯蓣目构成,二者形成姐妹群关系:另一支是由天门冬目、百合目和鸭跖草类复合群组成,三者之间的关系在单个序列分析和联合分析中不稳定,需要进一步扩大取样范围来确定。在鸭跖草类复合群分支内,鸭跖草目和姜目的姐妹群关系在3个序列联合分析和2个序列联合分析的严格一致树中均得到强烈的自展支持,获得的支持率均是100%。但是,对于棕榈目和禾本目在鸭跖草类中的系统位置以及它们和鸭跖草目-姜目之间的关系,有待进一步解决。值得注意的是,无叶莲科与其他单子叶植物类群(除菖蒲目和泽泻目外)的系统关系在本文中获得较高的自展支持率,薯蓣目和天门冬目的单系性在序列联合分析中都得到了较好的自展支持,而这些在以往的研究中通常支持率较低。鉴于菖蒲科和无叶莲科独特的系统演化位置,本文支持将其分别独立成菖蒲目和无叶莲目Petrosavialcs的分类学界定。  相似文献   

14.
The biogeographic history of Sium sensu lato (s.l.) (including Sium sensu stricto [s.s.], Afrocarum, and Berula) was inferred using a nuclear rDNA ITS sequence phylogeny and dispersal-vicariance analysis. One hundred accessions were analyzed, including 86 specimens of Sium s.l., representing all taxa throughout their geographical range. The phylogenetic analyses showed that Afrocarum and the African and St. Helena species of Sium were nested within Berula forming the Berula s.l. clade. The remaining species of Sium constituted a weakly supported Sium s.s. clade. The cultivated S. sisarum is closely related to the western Asian S. sisaroideum. The divergence of Sium s.s. from Berula s.l., estimated under the assumption of a molecular clock and using a substitution rate of 0.61% per million years, took place around 10.4 million years ago. Dispersal-vicariance analysis suggested that the biogeographic pattern of this group resulted from simple vicariance and eventual migration to adjacent areas rather than from long-distance dispersal. The ancestral area of Sium s.l. was probably western Palearctic. The dispersal of Berula to North America occurred ca. 3 million years ago, possibly by island hopping. The migration of S. suave to North America took place ca 0.6 million years ago through Beringia.  相似文献   

15.
Abstract.  The fishfly genus Parachauliodes van der Weele, 1909 comprises six species from Taiwan, Japan, and South Korea, ranging along the east Asian islands. Herein, all the Parachauliodes species are described, including two new species, namely P. asahinai sp.n. and P. niger sp.n . A cladistic analysis based on adult and larval morphological characters was conducted to reconstruct the interspecific phylogeny of the Parachauliodes species. Two main clades within Parachauliodes were obtained from the cladistic analysis, namely ' P. asahinai  + P. continentalis ' and '( P. japonicus  +  P. yanbaru ) + ( P. nebulosus  +  P. niger )'. Based on the present interspecific phylogeny and distribution patterns of Parachauliodes , its ancestor might have invaded the east Asian islands by a land bridge from Taiwan via Ryukyu to the Japanese archipelago about 10−5 million years ago.  相似文献   

16.
Using matK and rbcL sequences (3,269 bp in total) from 113 genera of 45 families, we conducted a combined analysis to contribute to the understanding of major evolutionary relationships in the monocotyledons. Trees resulting from the parsimony analysis are similar to those generated by earlier single or multiple gene analyses, but their strict consensus tree provides much better resolution of relationships among major clades. We find that Acorus (Acorales) is a sister group to the rest of the monocots, which receives 100% bootstrap support. A clade comprising Alismatales is diverged as the next branch, followed successively by Petrosaviaceae, the Dioscoreales–Pandanales clade, Liliales, Asparagales and commelinoids. All of these clades are strongly supported (with more than 90% bootstrap support). The sister-group relationship is also strongly supported between Alismatales and the remaining monocots (except for Acorus) (100%), between Petrosaviaceae and the remaining monocots (except for Acorus and Alismatales) (100%), between the clade comprising Dioscoreales and Pandanales and the clade comprising Liliales, Asparagales and commelinoids (87%), and between Liliales and the Asparagales–commelinoids clade (89%). Only the sister-group relationship between Asparagales and commelinoids is weakly supported (68%). Results also support the inclusion of Petrosaviaceae in its own order Petrosaviales, Nartheciaceae in Dioscoreales and Hanguanaceae in Commelinales.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s10265-003-0133-3  相似文献   

17.
The molecular structure of the exceptional telomeres of six plant species belonging to the order Asparagales and two species of the order Liliales was analyzed using Southern blot and fluorescence in situ hybridization. Three different situations were found, namely: i) In the two Liliales species, Tulipa australis (Liliaceae) and Merendera montana (Colchicaceae), the chromosome ends display hybridization signals with oligonucleotides resembling telomere repeats of both plants (TTTAGGG)n and vertebrates (TTAGGG)n. ii) Asparagales species such as Phormium tenax (Hemerocallidaceae), Muscari comosum (Hyacinthaceae), Narcissus jonquilla (Amaryllidaceae) and Allium sativum (Alliaceae) lack both the plant telomere repeats and the vertebrate telomere repeats. iii) Two other Asparagales species, Aloe vera (Asphodelaceae) and an Iris hybrid (Iridaceae), display positive hybridization with the vertebrate telomere repeats but not with the plant telomere repeats. Southern blot hybridization revealed concurring results. On this basis, the composition of the telomere structure in this plant group is discussed.  相似文献   

18.
Given the uncertainties in the fossil record and the paucity of informative morphological characters, there is still considerable uncertainty as to the phylogenetic affinities and times of origins of essentially all of the phyla of animals. A multilocus analysis of amino-acid sequence data for mitochondrial genes suggests that the major triploblast phyla began diverging approximately 630 million years ago. These results support the hypothesis that the so-called Cambrian radiation of animals actually initiated about 100 million years prior to the Cambrian, as the fossil evidence suggests. In addition, phylogenetic analysis supports the monophyly of animals, an early (~900 million years ago) branching off of the cnidarian lineage, the monophyly of deuterostomes and protostomes, and the inclusion of nematodes in the protostome lineage. The results of this study suggest that, with appropriate levels of taxon sampling and a focus on conserved regions of protein-coding sequence, complete mitochondrial genome analysis may be sufficiently powerful to elucidate the genealogical relationships of many of the animal phyla.  相似文献   

19.
SuperTRI是Ropiquet等(2009)发表的一种新的超树方法,可以通过合并所有系统发育信息来共同组建大的系统发育树.该方法克服了超矩阵法和传统超树法的一些限制,使提出的系统发育假说可信度更高,更具有统计说服力.本文应用SupperTRI方法重建了百合目(Liliales)主要类群的系统发育关系,并与超矩阵法的分析结果进行了比较.结果显示:(1) SuperTRI方法产生了与超矩阵法相似的拓扑结构,但节点支持率相对较低,其中再现性指数对评判分支的可信性更容易理解,在系统树图示方法上也更直观;(2)SuperTRI系统树证实百合科、菝葜科、垂花科和菝葜藤科为一单系分支;黑药花科为一独立分支;秋水仙科、六出花科、刺藤科为一单系分支,但这3个大分支间的关系未明;支持白玉簪科和金梅草科互为姐妹群,是百合目最基部类群.  相似文献   

20.
Zhou X  Xu S  Xu J  Chen B  Zhou K  Yang G 《Systematic biology》2012,61(1):150-164
Although great progress has been made in resolving the relationships of placental mammals, the position of several clades in Laurasiatheria remain controversial. In this study, we performed a phylogenetic analysis of 97 orthologs (46,152 bp) for 15 taxa, representing all laurasiatherian orders. Additionally, phylogenetic trees of laurasiatherian mammals with draft genome sequences were reconstructed based on 1608 exons (2,175,102 bp). Our reconstructions resolve the interordinal relationships within Laurasiatheria and corroborate the clades Scrotifera, Fereuungulata, and Cetartiodactyla. Furthermore, we tested alternative topologies within Laurasiatheria, and among alternatives for the phylogenetic position of Perissodactyla, a sister-group relationship with Cetartiodactyla receives the highest support. Thus, Pegasoferae (Perissodactyla + Carnivora + Pholidota + Chiroptera) does not appear to be a natural group. Divergence time estimates from these genes were compared with published estimates for splits within Laurasiatheria. Our estimates were similar to those of several studies and suggest that the divergences among these orders occurred within just a few million years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号