首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The family Pennantiaceae and its relationships to Apiales   总被引:1,自引:1,他引:0  
The early evolution of the flowering plant order Apiales is discussed based on information from morphology and DNA sequences from four genes ( ndhF , rbcL , atpB and matK ). A model-based approach of analysis, Bayesian inference, is used to analyse the data and the results are compared with those from parsimony analysis. In particular, a new family of the order, the monogeneric Pennantiaceae from New Zealand and Australia, aids in the understanding of how the order originated. The ancestor of Apiales was probably a shrub or small tree with alternate, simple leaves, paniculate inflorescences, five-merous flowers with free petals, and drupes.  © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society , 2003, 141 , 1–24.  相似文献   

2.
A phylogenetic study of Asteridae sensu lato was conducted based on chloroplast ndhF gene sequences for 116 ingroup and 13 outgroup species. Prior molecular studies based on rbcL sequences identified terminal groups corresponding to families, but were unable to resolve relationships among them. These results are largely consistent with earlier rbcL studies, but provide much greater resolution and stronger bootstrap support throughout the tree. The parsimony analysis found eight equally parsimonious trees, all of which recognize four major clades with the following relationship: (Cornales (Ericales (Euasterids I, Euasterids II))). Euasterids I includes (Garryales ((Solanales, Boraginaceae) (Gentianales, Lamiales))), although with weak support for relationships among the named clades. Euasterids II includes (Aquifoliales (Asterales (Apiales, Dipsacales))) with strong support for these relationships. Relationships within Ericales are weakly supported and merit further attention.  相似文献   

3.
Apiaceae and Araliaceae (Apiales) represent a particularly troublesome example of the difficulty in understanding evolutionary relationships between tropical-temperate family pairs. Previous studies based on rbcL sequence data provided insights at higher levels, but were unable to resolve fully the family-pair relationship. In this study, sequence data from a more rapidly evolving gene, matK, was employed to provide greater resolution. In Apiales, matK sequences evolve an average of about two times faster than rbcL sequences. Results of phylogenetic analysis of matK sequences were first compared to those obtained previously from rbcL data; the two data sets were then combined and analyzed together. Molecular analyses confirm the polyphyly of apiaceous subfamily Hydrocotyloideae and suggest that some members of this subfamily are more closely related to Araliaceae than to other Apiaceae. The remainder of Apiaceae forms a monophyletic group with well-defined subclades corresponding to subfamilies Apioideae and Saniculoideae. Both the matK and the combined rbcL-matK analyses suggest that most Araliaceae form a monophyletic group, including all araliads sampled except Delarbrea and Mackinlaya. The unusual combination of morphological characters found in these two genera and the distribution of matK and rbcL indels suggest that these taxa may be the remnants of an ancient group of pro-araliads that gave rise to both Apiaceae and Araliaceae. Molecular data indicate that the evolutionary history of the two families is more complex than simple derivation of Apiaceae from within Araliaceae. Rather, the present study suggests that there are two well-defined "families," both of which may have been derived from a lineage (or lineages) or pro-araliads that may still have extant taxa.  相似文献   

4.
The relationship between the angiosperm families Apiaceae and Araliaceae (order Apiales) has been difficult to resolve, due in large part to problems associated with taxa characterized by a mixture of features typical of both families. Among such confounding groups are the araliads Delarbrea, Pseudosciadium, Myodocarpus, Mackinlaya, and Apiopetalum and many members of Apiaceae subfamily Hydrocotyloideae. Traditional systems have often envisioned these taxa as phyletic intermediates or bridges between the two families. To reevaluate the phylogenetic position of the "intermediate" araliad genera, molecular data were collected from nuclear (rDNA ITS) and plastid (matK) sequences from a complete or near-complete sampling of species in each genus. When analyzed with samples representing the other major clades now recognized within Apiales, results confirm and expand the findings of previously published studies. The five araliad "intermediates" are placed within two well-supported clades clearly segregated from the "core" groups of both Apiaceae and Araliaceae. These segregate clades closely parallel traditional definitions of the araliad tribes Myodocarpeae (Delarbrea, Pseudosciadium, and Myodocarpus) and Mackinlayeae (Mackinlaya and Apiopetalum), and relationships among the species within these clades are largely supported by morphological and anatomical data. Based on these results, Myodocarpeae and Mackinlayeae may best be treated as distinct families. This approach would render four monophyletic groups within Apiales, to which a fifth, Pittosporaceae, cannot at present be excluded. Sampling of taxa from Hydrocotyloideae remains preliminary, but results confirm previous studies indicating the polyphyly of this subfamily: hydrocotyloid taxa may be found in no fewer than three major clades in Apiales.  相似文献   

5.
Asterids comprise 1/4-1/3 of all flowering plants and are classified in 10 orders and >100 families. The phylogeny of asterids is here explored with jackknife parsimony analysis of chloroplast DNA from 132 genera representing 103 families and all higher groups of asterids. Six different markers were used, three of the markers represent protein coding genes, rbcL, ndhF, and matK, and three other represent non-coding DNA; a region including trnL exons and the intron and intergenic spacers between trnT (UGU) to trnF (GAA); another region including trnV exons and intron, trnM and intergenic spacers between trnV (UAC) and atpE, and the rps16 intron. The three non-coding markers proved almost equally useful as the three coding genes in phylogenetic reconstruction at the high level of orders and families in asterids, and in relation to the number of aligned positions the non-coding markers were even more effective. Basal interrelationships among Cornales, Ericales, lamiids (new name replacing euasterids I), and campanulids (new name replacing euasterids II) are resolved with strong support. Family interrelationships are fully or almost fully resolved with medium to strong support in Cornales, Garryales, Gentianales, Solanales, Aquifoliales, Apiales, and Dipsacales. Within the three large orders Ericales, Lamiales, and Asterales, family interrelationships remain partly unclear. The analysis has contributed to reclassification of several families, e.g., Tetrameristaceae, Ebenaceae, Styracaceae, Montiniaceae, Orobanchaceae, and Scrophulariaceae (by inclusion of Pellicieraceae, Lissocarpaceae, Halesiaceae, Kaliphoraceae, Cyclocheilaceae, and Myoporaceae+Buddlejaceae, respectively), and to the placement of families that were unplaced in the APG-system, e.g., Sladeniaceae, Pentaphylacaceae, Plocospermataceae, Cardiopteridaceae, and Adoxaceae (in Ericales, Ericales, Lamiales, Aquifoliales, and Dipsacales, respectively), and Paracryphiaceae among campanulids. Several families of euasterids remain unclassified to order.  相似文献   

6.
Relationships within the angiosperm order Apiales have long been difficult to interpret. Traditionally, the order comprised two families, Apiaceae and Araliaceae. Recent studies, however, suggest three additional lineages should also be recognized in the order (Pittosporaceae plus two tribes segregated from Araliaceae, Mackinlayeae and Myodocarpeae), and that one taxon (Apiaceae subfamily Hydrocotyloideae) is polyphyletic. Nuclear data also support the placement of five enigmatic genera ( Aralidium , Griselinia , Melanophylla , Pennantia and Torricellia ) within an expanded Apiales. To date, detailed molecular studies of Apiales have relied largely on data derived from plastid sequences, especially mat K and rbc L. To test and complement the results of these studies, the 26S (large subunit) of nuclear ribosomal DNA was sequenced and analysed phylogenetically. Results from this study confirm that Apiales comprise five major lineages: core Apiaceae, core Araliaceae, Pittosporaceae, the Mackinlaya group and the Myodocarpus group. Moreover, using an expanded sampling of members of subfamily Hydrocotyloideae, the nature and extent of the polyphyly is confirmed, with members of this taxon found among four distinct clades within Apiales. © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society , 2004, 144 , 123–147.  相似文献   

7.
Phylogenetic relationships in the Gentianales with focus on Loganiaceae sensu lato are evaluated using parsimony analyses of nucleotide sequence data from the plastid genes rbcL and ndhF. Inter- and intrafamilial relationships in the Gentianales, which consist of the families Apocynaceae (including Asclepiadaceae), Gelsemiaceae, Gentianaceae, Loganiaceae, and Rubiaceae, are studied and receive increased support from the combination of rbcL and ndhF data, which indicate that the family Rubiaceae forms the sister group to the successively nested Gentianaceae, Apocynaceae, and Loganiaceae, all of which are well supported. The family Gelsemiaceae forms a distinct, supported group sister to Apocynaceae. The Loganiaceae sensu stricto form a strongly supported group consisting of 13 genera: Antonia, Bonyunia, Gardneria, Geniostoma, Labordia, Logania, Mitrasacme, Mitreola, Neuburgia, Norrisia, Spigelia, Strychnos, and Usteria. These genera form two well-supported lineages. Several members of Loganiaceae sensu Leeuwenberg and Leenhouts, i.e., Androya, Peltanthera, Plocosperma, Polypremum, and Sanango are clearly not members of the Gentianales. The earlier exclusion of Buddlejaceae (including Buddleja, Emorya, Gomphostigma, and Nicodemia) as well as the reclassification of the genera Nuxia and Retzia to Stilbaceae of the Lamiales are all well supported.  相似文献   

8.
? Premise of the study: Taxonomic groups have often been recognized on the basis of geographic distinctions rather than accurately representing evolutionary relationships. This has been particularly true for temperate and tropical members from the same family. Polygonaceae exemplifies this problem, wherein the woody tropical genera were segregated from temperate members of the family and placed in the subfamily Polygonoideae as two tribes: Triplarideae and Coccolobeae. Modern phylogenetic studies, especially when inferred from many lines of evidence, can elucidate more probable hypotheses of relationships. This study builds on previous work in the family and aims to test the traditional classification of the tropical woody taxa, which have been understudied and undersampled compared to their temperate relatives. ? Methods: A phylogenetic study was undertaken with expanded sampling of the tropical genera with data from five plastid markers (psbA-trnH, psaI-accD, matK, ndhF, and rbcL), nuclear ribosomal DNA (ITS) and morphology. ? Key results: Results support the placement of nine of 12 genera of the Triplarideae and Coccolobeae within Eriogonoideae, in which these genera form a paraphyletic assemblage giving rise to Eriogoneae. The remaining woody tropical genera excluded from Eriogonoideae occur in the paleotropics. ? Conclusions: Traditional characters used to delimit Coccolobeae and Triplarideae are not useful for defining monophyletic groups. The six-tepal condition is derived from the five-tepal condition, and unisexual flowers have arisen multiple times in different sexual systems. Ruminate endosperm has arisen multiple times in the family, suggesting this character is highly plastic.  相似文献   

9.
Arginine decarboxylase (ADC) is an important enzyme in the production of putrescine and polyamines in plants. It is encoded by a single or low-copy nuclear gene that lacks introns in sequences studied to date. The rate of Adc amino acid sequence evolution is similar to that of ndhF for the angiosperm family studied. Highly conserved regions provide several target sites for PCR priming and sequencing and aid in nucleotide and amino acid sequence alignment across a range of taxonomic levels, while a variable region provides an increased number of potentially informative characters relative to ndhF for the taxa surveyed. The utility of the Adc gene in plant molecular systematic studies is demonstrated by analysis of its partial nucleotide sequences obtained from 13 representatives of Brassicaceae and 3 outgroup taxa, 2 from the mustard oil clade (order Capparales) and 1 from the related order Malvales. Two copies of the Adc gene, Adc1 and Adc2, are found in all members of the Brassicaceae studied to data except the basal genus Aethionema. The resulting Adc gene tree provides robust phylogenetic data regarding relationships within the complex mustard family, as well as independent support for proposed tribal realignments based on other molecular data sets such as those from chloroplast DNA.   相似文献   

10.
The members of tribe Microlicieae in the flowering plant family Melastomataceae are nearly all endemic to the cerrado biome of Brazil. Traditional classifications of the Melastomataceae have attributed between 15 and 17 genera to the Microlicieae, but subsequent revisions have circumscribed the tribe more narrowly. The monophyly and intergeneric relationships of the Microlicieae were evaluated through phylogenetic analyses with molecular and morphological data sets. Incorporation of DNA sequences from the intron of the chloroplast gene rpl16 into a previously generated family-wide data set yielded a clade comprising Chaetostoma, Lavoisiera, Microlicia, Rhynchanthera, Stenodon, and Trembleya ("core Microlicieae"), with Rhynchanthera as the first-diverging lineage. The other four genera of Microlicieae sampled are placed in other clades: Eriocnema with Miconieae; Siphanthera with Aciotis, Nepsera, and Acisanthera of Melastomeae; Castratella as sister to Monochaetum of Melastomeae; and Cambessedesia as part of an unresolved polytomy in a large clade that includes most Melastomataceae. Analyses of the chloroplast genes rbcL and ndhF that included three core genera produced similar results, as did the combined analysis of all three data sets. Combined parsimony analyses of DNA sequences from rpl16 and the nuclear ribosomal intercistronic transcribed spacer (ITS) region of 22 species of core Microlicieae yielded generally low internal support values. Lavoisiera, recently redefined on the basis of several morphological characters, was strongly supported as monophyletic. A morphological phylogenetic analysis of the Microlicieae based on 10 parsimony-informative characters recovered a monophyletic core Microlicieae but provided no further resolution among genera. Penalized likelihood analysis with two calibration time windows produced an age estimate of 3.7 million years for the time of initial divergence of strictly Brazilian core Microlicieae. This date is in general agreement with the estimated age of the most active stage of development of cerrado vegetation and implies an adaptive shift from hydric to seasonally dry habitats during the early evolution of this group.  相似文献   

11.
Generic relationships within Episcieae were assessed using ITS and ndhF sequences. Previous analyses of this tribe have focussed only on ndhF data and have excluded two genera, Rhoogeton and Oerstedina, which are included in this analysis. Data were analyzed using both parsimony and maximum-likelihood methods. Results from partition homogeneity tests imply that the two data sets are significantly incongruent, but when Rhoogeton is removed from the analysis, the data sets are not significantly different. The combined data sets reveal greater strength of relationships within the tribe with the exception of the position of Rhoogeton. Poorly or unresolved relationships based exclusively on ndhF data are more fully resolved with ITS data. These resolved clades include the monophyly of the genera Columnea and Paradrymonia and the sister-group relationship of Nematanthus and Codonanthe. A closer affinity between Neomortonia nummularia and N. rosea than has previously been seen is apparent from these data, although these two species are not monophyletic in any tree. Lastly, Capanea appears to be a member of Gloxinieae, although C. grandiflora remains within Episcieae. Evolution of fruit type, epiphytic habit, and presence of tubers is re-examined with the new data presented here.  相似文献   

12.
Sequences of the chloroplast trnL-F region and 3(') end ndhF gene were used to elucidate phylogenetic relationships and the delimitation of families within Dipsacales s.l. Parsimony analyses of individual and combined data were conducted using maximum parsimony method. The most parsimonious tree based on combined trnL-F and 3(') end ndhF data set recognizes seven major clades of Dipsacales s.l. with the following relationships: Apiales (Adoxaceae ((Diervillaceae, Caprifoliaceae s.str.) (Linnaeaceae (Morinaceae (Dipsacaceae, Valerianaceae))))). Both Sambucus and Viburnum have close relationships with Adoxaceae, supporting their inclusion in this family. Caprifoliaceae s.l. (excluding Sambucus and Viburnum) is polyphyletic, and comprises three clades or families, i.e., Linnaeaceae (Abelia, Dipelta, Kolkwitzia, and Linnaea), Diervillaceae (Weigela and Diervilla) and Caprifoliaceae s.str. (Heptacodium, Leycesteria, Lonicera, Symphoricarpos, and Triosteum). This study focuses on the systematic position of Heptacodium, Triplostegia, and Morinaceae; and suggests that Heptacodium is closely related to the other Caprifoliaceae s.str.; Triplostegia is a sister to Dipsacaceae; Morinaceae, which has an affinity with Dipsacaceae, is possibly a sister group with Dipsacaceae-Valerianaceae clade. Our results are highly congruent with those of and.  相似文献   

13.
The two families of the order Apiales (Apiaceae and Araliaceae) represent a classic example of the difficulty in understanding evolutionary relationships between tropical-temperate family pairs. In Apiales, this problem is further compounded by phylogenetic confusion at almost every taxonomic level, including ordinal, interfamilial, and infrafamilial, due largely to difficulties in understanding trends in morphological evolution. Phylogenetic analyses of rbcL sequences were employed to resolve relationships at the ordinal and familial levels. The results of the ordinal analysis confirm the placement of Apiales in an expanded subclass Asteridae as the sister group to Pittosporaceae, and refute the traditional alliance of Apiales with Cornales and Rosidae. This study has also resolved relationships of a number of enigmatic genera, suggesting, for example, that Melanophylla, Aralidium, Griselinia, and Toricellia are close relatives of Apiales. Clarification of phylogenetic relationships has concomitantly provided insights into trends of morphological evolution, and suggests that the ancestral apialean taxon was probably bicarpellate, simple-leaved, woody, and paleotropical. Phylogenetic analysis at the family level suggests that apiaceous subfamily Hydrocotyloideae, often envisioned as an intermediate group between Apiaceae and Araliaceae, is polyphyletic, with some hydrocotyloids closely allied with Araliaceae rather than Apiaceae. With the exception of some hydrocotyloids, Apiaceae appear to be monophyletic. The relationship between Apiaceae and Araliaceae remains problematic. Although the shortest rbcL trees suggest that Apiaceae are derived from within a paraphyletic Araliaceae, this result is only weakly supported.  相似文献   

14.
The ndhF sequences of 99 taxa, representing all sections in extant Magnoliaceae, were analyzed to address phylogenetic questions in the family. Magnolia macrophylla and M. dealbata, North American species of Magnolia section Rytidospermum, are placed at the base in the subfamily Magnolioideae although its supporting value is low. In the remaining taxa, several distinctive lineages are recognized: (1) Magnolia, the biggest genus in the family, is not monophyletic; (2) Michelia, including section Maingola of Magnolia subgenus Magnolia, is closely related with Elmerrillia and sections Alcimandra and Aromadendron of Magnolia subgenus Magnolia; (3) the associates of Michelia are grouped with Magnolia subgenus Yulania and section Gynopodium of Magnolia subgenus Magnolia; (4) Pachylarnax forms a clade with sections Manglietiastrum and Gynopodium of Magnolia; (5) a well-supported Manglietia clade is recognized; (6) Caribbean species of section Theorhodon of Magnolia subgenus Magnolia, which are section Splendentes sensu Vázquez-Garcia, are closely allied with New World members of Magnolia subgenus Talauma; and (7) section Rytidospermum of Magnolia subgenus Magnolia and subgenus Talauma are polyphyletic. The separated clades in the molecular tree are considerably different from traditional taxonomic dispositions in the family. The molecular data strongly suggest that a taxonomic realignment of infrafamilial delimitations and compositions should be considered.  相似文献   

15.
The chloroplast gene ndhF was used to study phylogenetic relationships of the Polemoniaceae at two levels: among members of the Ericales and among genera of the family. Sequence data for interfamilial analyses consisted of 2266 bp for 14 members of the Ericales, including four species of the Polemoniaceae, plus three outgroup taxa. The Polemoniaceae were found to be related to Diospyros, Fouquieria, the Primulales, Rhododendron, and Impatiens, but relationships among taxa were generally not well supported. The precise position of the Polemoniaceae within the Ericales remains obscure. Data for intrafamilial analyses consisted of 1031 bp for 27 species of the Polemoniaceae, including at least one species from most genera of the family, plus five outgroup taxa. A single most parsimonious tree was identified. The analyses suggested that subfamily Cobaeoideae, excluding Loeselia, is monophyletic and that Huthia is sister to Cantua. Acanthogilia was sister to the remainder of subfamily Cobaeoideae. Subfamily Polemonioideae plus Loeselia formed four subclades that were strongly supported as monophyletic and represent the major lineages of the subfamily.  相似文献   

16.
17.
18.
Phylogenetic relationships of the Santalales and relatives   总被引:3,自引:0,他引:3  
Summary Determining relationships among parasitic angiosperms has often been difficult owing to frequent morphological reductions in floral and vegetative features. We report 18S (small-subunit) rRNA sequences for representative genera of three families within the Santalales (Olacaceae, Santalaceae, and Viscaceae) and six outgroup dicot families (Celastraceae, Cornaceae, Nyssaceae, Buxaceae, Apiaceae, and Araliaceae). Using Wagner parsimony analysis, one most parsimonius tree resulted that shows the Santalales to be a holophyletic taxon most closely related toEuronymus (Celastraceae). The santalalean taxa showed approximately 13% more transitional mutations than the group of seven other dicot species. This suggests a higher fixation rate for mutations in these organisms, possibly owing to a relaxation of selection pressures at the molecular level in parasitic vs nonparasitic plants. Outgroup relationships are generally in accord with current taxonomic classifications, such as the grouping of Nyssaceae and Cornaceae together (Cornales) and the grouping of Araliaceae with Apiaceae (Apiales). These data provide the first nucleotide sequences for any parasitic flowering plant and support the contention that rRNA sequence analysis can result in robust phylogenetic comparisons at the family level and above.  相似文献   

19.
The Malpighiaceae are a family of ~1250 species of predominantly New World tropical flowering plants. Infrafamilial classification has long been based on fruit characters. Phylogenetic analyses of chloroplast DNA nucleotide sequences were analyzed to help resolve the phylogeny of Malpighiaceae. A total of 79 species, representing 58 of the 65 currently recognized genera, were studied. The 3' region of the gene ndhF was sequenced for 77 species and the noncoding intergenic spacer region trnL-F was sequenced for 65 species; both sequences were obtained for the outgroup, Humiria (Humiriaceae). Phylogenetic relationships inferred from these data sets are largely congruent with one another and with results from combined analyses. The family is divided into two major clades, recognized here as the subfamilies Byrsonimoideae (New World only) and Malpighioideae (New World and Old World). Niedenzu's tribes are all polyphyletic, suggesting extensive convergence on similar fruit types; only de Jussieu's tribe Gaudichaudieae and Anderson's tribes Acmanthereae and Galphimieae are monophyletic. Fleshy fruits evolved three times in the family and bristly fruits at least three times. Among the wing-fruited vines, which constitute more than half the diversity in the family, genera with dorsal-winged samaras are fairly well resolved, while the resolution of taxa with lateral-winged samaras is poor. The trees suggest a shift from radially symmetrical pollen arrangement to globally symmetrical pollen at the base of one of the clades within the Malpighioideae. The Old World taxa fall into at least six and as many as nine clades.  相似文献   

20.
We report a partial ndhF sequence (1528 bp) of Magnolia latahensis and a partial rbcL sequence (699 bp) of Persea pseudocarolinensis from the Clarkia fossil beds of Idaho, USA (Miocene; 17-20 million years [my] BP). The ndhF sequence from M. latahensis was identical to those of extant M. grandiflora, M. schiediana, M. guatemalensis, and M. tamaulipana. Parsimony analysis of the ndhF sequence of M. latahensis and previously reported ndhF sequences for Magnoliaceae placed M. latahensis within Magnolia as a member of the Theorhodon clade. This result is reasonable considering that: (1) the morphology of M. latahensis is very similar to that of extant M. grandiflora, and (2) a recent molecular phylogenetic study of Magnoliaceae showed that the maximum sequence divergence of ndhF among extant species is very low (1.05% in subfamily Magnolioideae) compared with other angiosperm families. We reanalyzed the previously reported rbcL sequence of M. latahensis with sequences for all major lineages of extant Magnoliales and Laurales. This sequence is sister to Liriodendron, rather than grouped with a close relative of M. grandiflora as predicted by morphology and the results of the ndhF analysis, possibly due to a few erroneous base calls in the sequences. The rbcL sequence of P. pseudocarolinensis differed from rbcL of extant Persea species by 3-6 nucleotides and from rbcL of extant Sassafras albidum by two nucleotides. Phylogenetic analyses of rbcL sequences for all major lineages of Magnoliales and Laurales placed the fossil P. pseudocarolinensis within Lauraceae and as sister to S. albidum. These results reinforce the suggestion that Clarkia and other similar sites hold untapped potential for molecular analysis of fossils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号