首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
When exotic plant species share pollinators with native species, competition for pollination may lower the reproductive success of natives by reducing the frequency and/or quality of visits they receive. Exotic species often become numerically dominant in plant communities, and the relative abundance of these potential competitors for pollination may be an important determinant of their effects on the pollination and reproductive success of co-occurring native species. Our study experimentally tests whether the presence and abundance of an invasive exotic, Lythrum salicaria L. (Lythraceae), influences reproductive success of a co-flowering native species, Mimulus ringens L. (Phrymaceae). We also examine the mechanisms of competition for pollination and how they may be altered by changes in competitor abundance. We found that the presence of Lythrum salicaria lowered mean seed number in Mimulus ringens fruits. This effect was most pronounced when the invasive competitor was highly abundant, decreasing the number of seeds per fruit by 40% in 2006 and 33% in 2007. Reductions in the number of seeds per fruit were likely due to reduced visit quality resulting from Mimulus pollen loss when bees foraged on neighboring Lythrum plants. This study suggests that visit quality to natives may be influenced by the presence and abundance of invasive flowering plants.  相似文献   

2.
Since its introduction to North America, Lythrum salicaria (L.) (purple loosestrife) has become invasive in marshy and riparian habitats. We compared gas-exchange responses to external CO2 partial pressure and light, as well as related leaf structural and biochemical characteristics, of L. salicaria with those of co-occurring native Asclepias syriaca (common milkweed) and Solidago graminifolia (lance-leaved goldenrod) along a pond bank in the Black Rock Forest, Cornwall, New York, USA to examine if the invasive success of L. salicaria may be influenced by robust leaf gas-exchange characteristics, including relatively high rates of photosynthesis and low rates of respiration, compared with those of less successful co-occurring native plant species. Neither the mean rate of net photosynthesis measured at ambient CO2 and saturating photon flux density (A) nor the mean dark respiration rate (RD) differed significantly between L. salicaria and either of the native species, while both the mean maximum rate of photosynthesis at saturating CO2 concentration and photon flux density (A max) and the mean rate of respiration measured in light (RL) were significantly higher in L. salicaria than A. syriaca, but no different between L. salicaria and S. graminifolia. Likewise, photosynthetic nitrogen-use efficiency was greater in L. salicaria than A. syriaca only, while photosynthetic water-use efficiency was significantly less in both L. salicaria and S. graminifolia than in A. syriaca. Despite limited interspecific differences in leaf photosynthesis, respiration, and resource-use efficiency, particularly between L. salicaria and S. graminifolia, we found that L. salicaria assimilated 208% more carbon per unit of energy invested in leaf biomass than either of the co-occurring native species, suggesting that increased photosynthetic energy-use efficiency may influence its observed invasive success. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
BACKGROUND AND AIMS: Although Lythrum salicaria (purple loosestrife) was introduced to North America from Europe in the early 1800s, it did not become invasive until the 1930s. Whether hybridization with L. alatum (winged loosestrife) could have played a role in its ultimate spread was tested. METHODS: Six diagnostic morphological traits (flower number per axil, leaf placement, calyx pubescence, style type, plant height and leaf shape) were surveyed in 30 populations of Lythrum across eastern North America. Patterns of AFLP variation were also evaluated using five primer pairs in a 'global screen' of the same North American populations of L. salicaria and L. alatum described above, in L. salicaria from 11 European populations located in Germany, England, Ireland, Austria and Finland, and in six L. salicaria cultivars. KEY RESULTS: All of the North American L. salicaria populations had individuals with alternate leaf placement and 1-2 flowers per leaf axil, which have not been described in Eurasian L. salicaria but predominate in North American L. alatum. In addition, two L. salicaria populations were intermediate in height and leaf ratio between the typical L. salicaria and L. alatum populations in their native fields and when grown in a common greenhouse. In screens of variation patterns using 279 AFLPs, only two fragments were found that clearly supported introgression from L. alatum to L. salicaria. CONCLUSIONS: The evidence indicates that L. salicaria may have hybridized with L. alatum, but if so, only a small fraction of L. alatum genes have been retained in the genome of L. salicaria. This is unlikely to have led to a dramatic adaptive shift unless the introgression of a few key genes into L. salicaria stimulated a genomic reorganization. It is more likely that crossing among genotypes of L. salicaria from multiple introductions provided the necessary variability for new adaptations to arise.  相似文献   

4.
The prolific amount of growth and reproduction in invasive plants may be achieved by greater net photosynthesis and/or resource-use efficiency. I tested the hypotheses that leaf-level photosynthetic capacity and resource-use efficiency were greater in two invasive species of Rubus as compared with two noninvasive species that have overlapping distributions in the Pacific Northwest. The invasive species had significantly higher photosynthetic capacity and maintained net photosynthesis (A) over a longer period of the year than the noninvasive species. The construction cost (CC) of leaf tissue per unit leaf mass was comparable among the four species, but the invasive species allocated less nitrogen (N) per unit leaf mass. On a leaf area basis, both leaf CC and N were higher for the invasive species. The specific leaf area (SLA) was also lower in the invasive species, indicating less photosynthetic area per gram leaf tissue. The invasive species achieved high A at lower resource investments than the noninvasive species, including having higher maximum photosynthetic rate (A(max)) per unit dark respiration (R(d)), greater A(max) per unit leaf N (photosynthetic nitrogen-use efficiency), and greater water-use efficiency as measured by instantaneous rates of A per unit transpiration (A/E) and by integrated A/E inferred from stable carbon isotope ratios (δ(13)C). Using discriminant analysis, these photosynthetic characteristics were found to be powerful in distinguishing between the invasive and noninvasive Rubus. A(max) and A/E were identified as the most useful variables for distinguishing between the species, and therefore, may be important factors contributing to the success of these invasive species.  相似文献   

5.
Shoot Responses of Six Lythraceae Species to Flooding   总被引:1,自引:0,他引:1  
Abstract: The large family Lythraceae has several genera and species that show tolerance to flooding; one species, Lythrum salicaria (purple loosestrife), is considered invasive in North American wetlands. It is not clear, however, which characteristic(s) contribute to the invasive nature of L. salicaria, but those that contribute to improved flood tolerance may be responsible. This study examined the response of the shoot system of several members of the Lythraceae, three Lythrum species (L. salicaria, L. hyssopifolia, L. alatum), Decodon verticillatum, Pleurophora anomala and Heimia myrticifolia, to flooding to determine if these species differ in their response in comparison to L. salicaria. All species, except L. hyssopifolia, responded to flooding by increasing total plant height. All species, except H. myrticifolia, formed a phellem of significantly wider diameter at the stem base of flooded plants compared to controls. This phellem consisted of alternating bands of small, isodiametric cells and radially elongated cells separated by large air lacunae forming a very specialized aerenchyma. The small cells had Casparian band-like wall modifications and occasionally displayed modifications that included all cell wall surfaces. The development of extensive aerenchymatous phellem in flooded plants may increase the air space continuum from shoot to root in shoots that have undergone secondary growth. Given that these species displayed similar responses to flooding, the purported invasiveness of L. salicaria cannot be attributed to presence of any of the characteristics studied.  相似文献   

6.
Movement of pollinators between coflowering plant species may influence conspecific pollen deposition and seed set. Interspecific pollinator movements between native and showy invasive plants may be particularly detrimental to the pollination and reproductive success of native species. We explored the effects of invasive Lythrum salicaria on the reproductive success of Mimulus ringens, a wetland plant native to eastern North America. Pollinator flights between these species significantly reduced the amount of conspecific pollen deposited on Mimulus stigmas and the number of seeds in Mimulus fruits, suggesting that pollen loss is an important mechanism of competition for pollination. Although pollen loss is often attributed to pollen wastage on heterospecific floral structures, our novel findings suggest that grooming by bees as they forage on a competitor may also significantly reduce outcross pollen export and seed set in Mimulus ringens.  相似文献   

7.
Invasive plants have been shown to negatively affect the diversity of plant communities. However, little is known about the effect of invasive plants on the diversity at other trophic levels. In this study, we examine the per capita effects of two invasive plants, purple loosestrife (Lythrum salicaria) and reed canary grass (Phalaris arundinacea), on moth diversity in wetland communities at 20 sites in the Pacific Northwest, USA. Prior studies document that increasing abundance of these two plant species decreases the diversity of plant communities. We predicted that this reduction in plant diversity would result in reduced herbivore diversity. Four measurements were used to quantify diversity: species richness (S), community evenness (J), Brillouin's index (H) and Simpson's index (D). We identified 162 plant species and 156 moth species across the 20 wetland sites. The number of moth species was positively correlated with the number of plant species. In addition, invasive plant abundance was negatively correlated with species richness of the moth community (linear relationship), and the effect was similar for both invasive plant species. However, no relationship was found between invasive plant abundance and the three other measures of moth diversity (J, H, D) which included moth abundance in their calculation. We conclude that species richness within, and among, trophic levels is adversely affected by these two invasive wetland plant species.  相似文献   

8.
为探究不同植物类型对人工湿地微生物燃料电池系统(CW-MFC)耦合系统脱氮和产电性能的影响及机制,分别以芦苇(reed)、千屈菜(Lythrum salicaria)和美人蕉(Canna indica)构建3组CW-MFC小试系统,依次标记为CM-R、CM-L及CM-C。结果显示:(1) CW-MFC耦合系统的输出电压和功率密度呈现CM-L>CMC>CM-R;(2) CM-R耦合系统的NH4+-N和TN去除率[(76.8±9.9)%;(54.2±8.2)%]显著高于CM-L[(61.2±8.0)%;(43.1±6.5)%]高于CM-C[(58.9±9.5)%;(42.0±9.8)%], P<0.01;(3)植物生长速率整体表现为CM-R>CM-C>CM-L,并且千屈菜(CM-L)的叶片中MDA含量最高,代表其受损害程度可能较高;(4)地杆菌属(Geobacter)作为典型的产电菌属,在3个耦合系统中均具有较高丰度(4.45%—7.64%),并且其相对丰度大小与输出电压和功率密度大小变化趋势一致,此外, CM-R中...  相似文献   

9.
Invasive plants can simplify plant community structure, alter ecosystem processes and undermine the ecosystem services that we derive from biotic diversity. Two invasive plants, purple loosestrife ( Lythrum salicaria ) and reed canary grass ( Phalaris arundinacea ), are becoming the dominant species in many wetlands across temperate North America. We used a horizontal, observational study to estimate per capita effects (PCEs) of purple loosestrife and reed canary grass on plant diversity in 24 wetland communities in the Pacific Northwest, USA. Four measures of diversity were used: the number of species (S), evenness of relative abundance (J), the Shannon–Wiener index (H') and Simpson's index (D). We show that (1) the PCEs on biotic diversity were similar for both invasive species among the four measures of diversity we examined; (2) the relationship between plant diversity and invasive plant abundance ranges from linear (constant slope) to negative exponential (variable slope), the latter signifying that the PCEs are density-dependent; (3) the PCEs were density-dependent for measures of diversity sensitive to the number of species (S, H', D) but not for the measure that relied solely upon relative abundance (J); and (4) invader abundance was not correlated with other potential influences on biodiversity (hydrology, soils, topography). These results indicate that both species are capable of reducing plant community diversity, and management strategies need to consider the simultaneous control of multiple species if the goal is to maintain diverse plant communities.  相似文献   

10.
Interactions between invasive species can have important consequences for the speed and impact of biological invasions. Containers occupied by the invasive mosquito, Aedes albopictus Skuse, may be sensitive to invasive plants whose leaves fall into this larval habitat. To examine the potential for interactions between invasive leaf species and larval A. albopictus, we conducted a field survey of leaf material found with A. albopictus in containers in Palm Beach County, Florida and measured density dependent responses of A. albopictus larvae to two invasive and one native leaf species in laboratory experiments. We found increased diversity of leaf species, particularly invasive species, in areas further from the urbanized coast, and a significant positive association between the presence of Schinus terebinthifolious (Brazilian pepper) and the abundance of A. albopictus. In laboratory experiments, we determined that larval growth and survivorship were significantly affected by both larval density and leaf species which, in turn, resulted in higher population performance on the most abundant invasive species (Brazilian pepper) relative to the most abundant native species, Quercus virginiana (live oak). These results suggest invasive leaf species can alleviate density dependent reductions in population performance in A. albopictus, and may contribute to its invasion success and potential to spread infectious disease.  相似文献   

11.
  • Large amounts of heavy metals have been released into the environment. Thus, the allelopathic effects of invasive alien species on the germination performance of co-occurring indigenous species may be altered or even heightened with the rapid growth in heavy metal pollution.
  • This study evaluated the impacts of Canada goldenrod (Solidago canadensis L.) leaf extracts at concentrations of 0, 10 or 20 gl 1 on the germination of lettuce under different forms of heavy metal pollution (Cu2+, Pb2+ or a combination of Cu2+ and Pb2+; 35 mgl 1) during incubation in Petri dishes for 10 days.
  • Goldenrod leaf extracts (high concentration) reduced growth of aboveground and belowground parts of lettuce as well as competition for light and soil nutrients. However, low concentrations of goldenrod leaf extracts dramatically improved growth of lettuce roots, competition for light, soil nutrient availability, leaf photosynthetic area and growth competitiveness. The combination of goldenrod leaf extracts and heavy metal pollution was synergistic on most lettuce germination parameters, probably because high concentrations of goldenrod leaf extracts together with heavy metal pollution had a synergistic negative impact on lettuce germination.
  • Consequently, increased levels of heavy metal pollution may favour invasion of invasive alien species while largely suppressing germination of indigenous species.
  相似文献   

12.
In colonizing species, high phenotypic plasticity can contribute to survival and propagation in heterogenous adventive environments, and it has been suggested as a predictor of invasiveness. Observation of natural populations of an invasive species, Lythrum salicaria salicaria, indicated extensive variation in its growth and reproductive traits. Phenotypic plasticity of different life history traits of L. salicaria was investigated using vegetative clones of each of 12 genotypes from one population in Ontario, Canada. We chose soil moisture as the treatment factor because of its importance in wetland species and raised all 12 genotypes in each of four soil moisture treatments. We examined an array of vegetative and reproductive traits, including root and shoot mass, shoot and inflorescence length, total seed set, floral mass, and morphometric variables. All observed vegetative as well as reproductive traits demonstrated significant phenotypic plasticity in response to soil moisture treatment. Even the stigma-anther separation involved significant genotype by environment interactions, suggesting that soil moisture may modify the relative positions of anthers and stigma. Compared to vegetative traits, most reproductive traits demonstrated crossing reaction norms, implying that the average differences in those traits among genotypes vary with the environment maintaining the genetic variation in a population.  相似文献   

13.

Background and Aims

Success of invasive plant species is thought to be linked with their higher leaf carbon fixation strategy, enabling them to capture and utilize resources better than native species, and thus pre-empt and maintain space. However, these traits are not well-defined for invasive woody vines.

Methods

In a glass house setting, experiments were conducted to examine how leaf carbon gain strategies differ between non-indigenous invasive and native woody vines of south-eastern Australia, by investigating their biomass gain, leaf structural, nutrient and physiological traits under changing light and moisture regimes.

Key Results

Leaf construction cost (CC), calorific value and carbon : nitrogen (C : N) ratio were lower in the invasive group, while ash content, N, maximum photosynthesis, light-use efficiency, photosynthetic energy-use efficiency (PEUE) and specific leaf area (SLA) were higher in this group relative to the native group. Trait plasticity, relative growth rate (RGR), photosynthetic nitrogen-use efficiency and water-use efficiency did not differ significantly between the groups. However, across light resource, regression analyses indicated that at a common (same) leaf CC and PEUE, a higher biomass RGR resulted for the invasive group; also at a common SLA, a lower CC but higher N resulted for the invasive group. Overall, trait co-ordination (using pair-wise correlation analyses) was better in the invasive group. Ordination using 16 leaf traits indicated that the major axis of invasive-native dichotomy is primarily driven by SLA and CC (including its components and/or derivative of PEUE) and was significantly linked with RGR.

Conclusions

These results demonstrated that while not all measures of leaf resource traits may differ between the two groups, the higher level of trait correlation and higher revenue returned (RGR) per unit of major resource need (CC) and use (PEUE) in the invasive group is in line with their rapid spread where introduced.  相似文献   

14.
Construction costs (CC) and parameters of leaf structure (specific leaf weight, dry matter content, volume of photosynthesizing cells, and the number of cells per leaf area unit) were determined for 19 species of aquatic higher plants. The CC of 1 g dry matter varied from 0.98 g glucose in Lemna gibba L. to 1.48 g glucose in Nuphar pumila (Timm) DC. and Potamogeton natans L. The CC of leaf area unit varied to a greater extent than the CC of 1 g dry wt (from 10 to 97 g glucose/m2) and depended on the type of mesophyll structure. In leaves of hydrophytes with dorsoventral mesophyll structure, the CC of 1 m2 leaf area was 3–9 times larger than in leaves with homogeneous structure. Variations in CC of 1 m2 leaf area in hydrophytes were affected insignificantly (by 2% only) by variations of CC per 1 g dry wt and were mainly determined (by 82%) by changes in specific leaf weight. Two-factor analysis of variance has shown that the CC of 1 g dry wt in hydrophytes depended on the attachment of plants to the sediment: the CC was 1.2 times larger in rooted hydrophytes than in free floating plants. The second factor (the extent of submergence) potentiated the effect of rooting on CC. Reliable differences were found between the leaf CC for hydrophytes belonging to four groups distinguished by the extent of their contact with water and sediment. In a group series: rooted hydrophytes with floating leaves → submerged rooted hydrophytes → free floating submerged hydrophytes → free floating surface inhabiting hydrophytes, the CC of 1 g dry wt decreased by 1.3 times. Path analysis has shown that this trend was due to the increase in photosynthesizing cell volume and to reduction in number of cells per leaf area unit, which caused the decrease in dry matter content. The decrease in the content of leaf dry matter was accompanied by changes in its chemical composition: the content of carbon and nitrogen decreased. This led to a consistent decrease in leaf CC expressed per 1 g dry wt upon the increase in extent of plant hydrophilicity.  相似文献   

15.
Estimation of leaf nutrient composition of dominant plant species from contrasting habitats (i.e., karst and nonkarst forests) provides an opportunity to understand how plants are adapted to karst habitats from the perspective of leaf traits. Here, we measured leaf traits—specific leaf area (SLA), concentrations of total carbon ([TC]), nitrogen ([TN]), phosphorus ([TP]), calcium ([Ca]), magnesium ([Mg]), manganese ([Mn]), minerals ([Min]), soluble sugars, soluble phenolics, lipids, and organic acids ([OA])—and calculated water‐use efficiency (WUE), construction costs (CC), and N/P ratios, and searched for correlations between these traits of 18 abundant plant species in karst and nonkarst forests in southwestern China. Variation in leaf traits within and across the abundant species was both divergent and convergent. Leaf [TC], [Ca], [Min], [OA], and CC were habitat‐dependent, while the others were not habitat‐ but species‐specific. The correlations among [TN], [TP], SLA, [TC], CC, [Min], WUE, [OA], and CC were habitat‐independent, and inherently associated with plant growth and carbon allocation; those between [CC] and [Lip], between [Ca] and [Mg], and between [Mg] and [WUE] were habitat‐dependent. Habitat significantly affected leaf [Ca] and thus indirectly affected leaf [OA], [Min], and CC. Our results indicate that plants may regulate leaf [Ca] to moderate levels via adjusting leaf [OA] under both high and low soil Ca availability, and offer new insights into the abundance of common plant species in contrasting habitats.  相似文献   

16.
The characteristics of the matrix, that is, the unsuitable habitat connecting host-plant patches may facilitate or limit herbivore movement thus affecting their population dynamics. We evaluated the effect of matrix habitat, distance between patches, and plant damage on movement of two leaf-beetles (Galerucella calmariensis Linnaeus and G. pusilla Duft) introduced to North America as biocontrol agents of the invasive purple loosestrife (Lythrum salicaria Linnaeus). Mark-recapture/resight experiments indicated (1) that leaf-beetles are more likely to colonize purple loosestrife patches surrounded by meadow than forest; (2) that previously attacked purple loosestrife plants are more likely to be colonized by Galerucella spp. than unattacked plants, especially in the forest habitat; and (3) that leaf beetle colonization of purple loosestrife decreased with distance from release point. Low colonization rates of purple loosestrife patches embedded in forests suggest either insufficient detection or active avoidance of such habitats. Biological control programs intend to manage dispersal of specialized insect herbivores for the purpose of sufficient and sustained control of their host plants. Such management needs to be informed by knowledge of interactions of habitat structure, plant damage, and dispersal capabilities of herbivores to facilitate release programs and control at the local and regional level.  相似文献   

17.
The leaf construction cost, i.e., the energy expenditure required for the production of plant biomass (CC, g glucose/g dry biomass), is considered to be a major determinant of species success in various habitats. Nitrogen, carbon, and mineral contents in leaves were used to measure leaf CC. The aboveground biomass was sampled from the most abundant plant species (Poa pratensis L., Lolium perenne L., Festuca valida (Uechtr.) Penzes, Trifolium repens L., Taraxacum officinale Weber ex Wigg, Plantago lanceolata L., and Achillea millefolium L.) during the 1997 growing season in an upland grassland dominated by C3 species. Soil samplings were performed in parallel with leaf samplings in order to determine soil inorganic nitrogen. T. repens leaves had the highest nitrogen concentration; grasses had the highest carbon content, while the highest mineral content was observed in the leaves of the forb species. The highest leaf CC was calculated for the legume T. repens followed by the grass F. valida. The grass L. perenne had the cheapest leaves, since it had the lowest CC. A positive correlation between leaf CC and soil inorganic nitrogen was evident for grasses (P. pratensis, L. perenne, F. valida) and P. lanceolata.  相似文献   

18.
Firn J  Prober SM  Buckley YM 《PloS one》2012,7(4):e35870
In herbaceous ecosystems worldwide, biodiversity has been negatively impacted by changed grazing regimes and nutrient enrichment. Altered disturbance regimes are thought to favour invasive species that have a high phenotypic plasticity, although most studies measure plasticity under controlled conditions in the greenhouse and then assume plasticity is an advantage in the field. Here, we compare trait plasticity between three co-occurring, C(4) perennial grass species, an invader Eragrostis curvula, and natives Eragrostis sororia and Aristida personata to grazing and fertilizer in a three-year field trial. We measured abundances and several leaf traits known to correlate with strategies used by plants to fix carbon and acquire resources, i.e. specific leaf area (SLA), leaf dry matter content (LDMC), leaf nutrient concentrations (N, C:N, P), assimilation rates (Amax) and photosynthetic nitrogen use efficiency (PNUE). In the control treatment (grazed only), trait values for SLA, leaf C:N ratios, Amax and PNUE differed significantly between the three grass species. When trait values were compared across treatments, E. curvula showed higher trait plasticity than the native grasses, and this correlated with an increase in abundance across all but the grazed/fertilized treatment. The native grasses showed little trait plasticity in response to the treatments. Aristida personata decreased significantly in the treatments where E. curvula increased, and E. sororia abundance increased possibly due to increased rainfall and not in response to treatments or invader abundance. Overall, we found that plasticity did not favour an increase in abundance of E. curvula under the grazed/fertilized treatment likely because leaf nutrient contents increased and subsequently its' palatability to consumers. E. curvula also displayed a higher resource use efficiency than the native grasses. These findings suggest resource conditions and disturbance regimes can be manipulated to disadvantage the success of even plastic exotic species.  相似文献   

19.
Evolution during biological invasion may occur over contemporary timescales, but the rate of evolutionary change may be inhibited by a lack of standing genetic variation for ecologically relevant traits and by fitness trade-offs among them. The extent to which these genetic constraints limit the evolution of local adaptation during biological invasion has rarely been examined. To investigate genetic constraints on life-history traits, we measured standing genetic variance and covariance in 20 populations of the invasive plant purple loosestrife (Lythrum salicaria) sampled along a latitudinal climatic gradient in eastern North America and grown under uniform conditions in a glasshouse. Genetic variances within and among populations were significant for all traits; however, strong intercorrelations among measurements of seedling growth rate, time to reproductive maturity and adult size suggested that fitness trade-offs have constrained population divergence. Evidence to support this hypothesis was obtained from the genetic variance-covariance matrix (G) and the matrix of (co)variance among population means (D), which were 79.8% (95% C.I. 77.7-82.9%) similar. These results suggest that population divergence during invasive spread of L. salicaria in eastern North America has been constrained by strong genetic correlations among life-history traits, despite large amounts of standing genetic variation for individual traits.  相似文献   

20.
Studies of seed bank development have rarely been included in evaluations of wetland restoration. We compared the seed bank of a recently restored tidal freshwater marsh in Washington, D.C., Kingman Marsh, with seed banks of another restored site (Kenilworth Marsh) and two reference marshes (Dueling Creek and Patuxent Marsh). The density and richness of emerging seedlings from Kingman Marsh seed bank samples increased from less than 4 seedlings and 2 taxa/90-cm2 sample in 2000 (the year of restoration) to more than 130 seedlings and 10 taxa/90-cm2 sample in 2003. The most important seed bank taxa at Kingman Marsh included Cyperus spp., Juncus spp., Lindernia dubia , Ludwigia palustris , and the non-native Lythrum salicaria . These taxa are not abundant in most mid-Atlantic tidal freshwater marshes but are almost identical to those described for a created tidal freshwater wetland in New Jersey. Seed banks of both the restored sites contained few seeds of several important species found at the reference sites. Flooding had a significant negative effect on emerging seedling density and taxa density, suggesting that slight decreases in soil elevation in restored wetlands will dramatically decrease recruitment from the seed bank. Because seed banks integrate processes affecting growth and reproduction of standing vegetation, we suggest that seed banks are a useful metric of wetland restoration success and urge that seed bank studies be incorporated into monitoring programs for restored wetlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号