首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined post-fire recovery of two components of acorn production (percentage of bearing ramets [stems] and number of acorns per bearing ramet) for four species of oaks in southern ridge sandhill vegetation in south-central peninsular Florida. Annual counts of acorns on two white oaks (Quercus chapmanii and Q. geminata) and two red oaks (Q. laevis and Q. myrtifolia) were conducted annually (except in 1991) on two 2.7-ha grids from 1969 to 1998. A prescribed burn was conducted on one of the grids in May 1993. Newly sprouted ramets of both white oaks produced acorns during the first year following the fire, whereas red oaks required 3 yr (Q. myrtifolia) or 4 yr (Q. laevis) to produce acorns. The difference in the timing of post-fire acorn production between the white and red oak species reflected the difference in the number of years from flower bud initiation to mature acorns in the two groups, with the additional year-long lag in Q. laevis probably attributable to the fact that it is typically a tree rather than a shrub species. The data suggested that percentage of bearing ramets in the smallest size class of the two white oak species was markedly lower in the burned than unburned grid in the first year of post-fire acorn production and higher in the fifth year, but these trends were not evident for the red oaks. Among all four species, differences between mean number of acorns in burned and unburned grids were significant in only two cases (the largest size class of both white oak species in the fifth year). There was no evidence of recruitment from acorns on the burned grid, possibly due to the rapid redevelopment of the shrub layer because of low mortality of the extensive clonal root systems. Rapid post-fire recovery of acorn production in xeric fire-prone habitats is presumably the result of selection to increase the probability of recovery and persistence following sufficiently intense fires that result in high oak mortality. The timing and magnitude of post-fire acorn production in sandhill and other xeric Florida associations has a potential impact on a wide variety of insects, birds, and mammals that feed on acorns, as well as on the species with which they interact.  相似文献   

2.
Reproductive output by the Florida-endemic scrub hickory (Carya floridana Sargent) was studied over a 28-yr period in three south-central Florida vegetation associations: southern ridge sandhill, sand pine scrub, and scrubby flatwoods. The objectives were to describe multi-annual patterns of variation in nut production, identify factors involved in this variation, and investigate differences in patterns among associations. Peaks (higher values bracketed by lower values) in nut production occurred in 7 yr in sandhill and scrub and 8 yr in scrubby flatwoods during the 22-yr period for which we had continuous data. Of the total of 22 peaks in the three associations combined, 17 occurred at intervals of 2 or 3 yr, and peaks occurred in the same years in 18 of the 22 cases. Periodicities of nut production generated by spectral analyses (Fourier transforms) generally agreed with the observed peaks. Numbers of nuts per bearing ramet, proportion of ramets bearing nuts, ramet height, and light availability were positively correlated with nut production. Weather variables, specifically winter rainfall and minimum spring temperatures, accounted for a total of about one-quarter to one-half of the variance in nut production depending on the vegetation association. Following a prescribed fire in a sandhill plot, scrub hickory quickly regained fruit production, but over a 5-yr period following the fire nut production by ramets in the largest size class was reduced compared with the unburned control plot.  相似文献   

3.
Abstract. Rates and directions of change over a 20-yr interval in five long-unburned (> 60 yr) plant communities were studied using multivariate analyses and compositional vectors. The study sites were located in fire and summer-drought adapted, xerophytic vegetation with many endemics on acidic, nutrient-poor, sandy soils in south-central peninsular Florida. Sizes of individual stems from 72 sets of nested permanent quadrats were measured in 1969, 1979, and 1989. Patterns of vegetation change differed by community. Flatwood and bayhead quadrats showed rapid increases in densities and basal areas of Persea borbonia (red bay). In the southern ridge sandhill community, evergreen clonal Quercus species (oaks) and Pinus clausa (sand pine) increased in dominance and grasses declined. Oaks (especially Q. geminata) also increased in importance in scrubby flatwoods. Sand pine scrub was relatively stable in composition, but experienced marked structural changes due to substantial sand pine mortality (18% during 1969–1979, 39% during 1979–1989). Compositional changes in the absence of fire were greatest whereas structural changes were least in southern ridge sandhill and scrubby flatwoods, both communities which normally receive frequent, recurrent fire. Compositional changes were lowest in sand pine scrub, which is normally infrequently burned. Classic successional patterns such as species replacement, decreases in density, and increases in basal area were generally lacking. Tree densities increased in two of four community types (southern ridge sandhill, scrubby flatwoods); while basal area declined in the flatwoods/bayhead and sand pine scrub sites. Directions of compositional vectors included divergent, opposing, and complex patterns, suggesting vegetation change in the absence of fire has a strong stochastic component.  相似文献   

4.
The scrub oak communities of the southeastern USA may have existed at their present locations for thousands of years. These oaks form suckers, and excavations of root systems suggest that clones may occupy very large areas. Resolution of the clonal nature of scrub oaks is important both to manage the tracts of this ecosystem that remain, and in conducting long-term ecological studies, where the study area must substantially exceed the area occupied by any single clone. Microsatellites were used to determine the genetic diversity of a dominant oak species within a 2-ha long-term experimental site on Merritt Island at the Kennedy Space Center. This area contains a long-term study of the effects of elevated CO2 on the ecosystem. Conservation of seven microsatellite loci, previously identified in the sessile oak, Quercus petraea, was tested in two Florida scrub oak species, Q. geminata and Q. myrtifolia. Sequence analysis revealed that all seven microsatellite loci were conserved in Q. geminata and five loci were conserved in Q. myrtifolia. Six microsatellite loci were polymorphic in Q. geminata and these were subsequently used to investigate the clonal structure of the Q. geminata population. Twenty-one unique combinations of microsatellites, or haplotypes, occurred only once, whereas the remaining 26 individuals belonged to a total of seven different haplotypes. Trees with identical haplotypes were in close proximity, supporting the interpretation that they were clones. The results showed that there is significant genetic diversity within the 2-ha experimental site. Microsatellites provided a powerful and noninvasive tool for distinguishing individual genotypes and determining an adequate area for long-term ecosystem studies.  相似文献   

5.
Abstract. The widespread suppression of fire during the 20th century has created extensive areas of fire-prone ecosystems that are in long-unburned condition. Plant species of flatwoods and scrubby flatwoods (= oak scrub) in the southeastern USA possess adaptations that facilitate resprouting, clonal spread, or seeding following fire. While the majority of the woody species of these associations can persist for long periods without fire, fire suppression reduces the populations of ephemeral herbs. Long-unburned (> 35 yr) flatwoods and scrubby flatwoods were burned after five annual vegetation censuses. Both stands were resampled five times over a >8-yr recovery period. One recently burned (<20 yr) flatwoods and two recently burned scrubby flatwoods were censused prior to fire and were recensused over a 5-yr or 11-yr period following fire depending on the stand. In spite of the variety of recovery strategies and time since fire, there were limited changes in the compositions and structures of post-burn stands compared to their preburn states. Detrended Correspondence Analysis showed that recently burned stands returned to preburn states within 1–2 yr. However, the reintroduction of a single fire to long-unburned stands did not restore the populations of herbs typical of recently burned stands. Our results suggest that a single fire may not be effective in restoring flatwoods and scrubby flatwoods that have experienced fire suppression to states more characteristic of recently burned stands.  相似文献   

6.
Rodent acorn selection in a Mediterranean oak landscape   总被引:5,自引:0,他引:5  
Quercus suber, Quercus ilex and Quercus coccifera (Cork, Holm and Kermes oaks, respectively) are common evergreen oak species that coexist in the landscapes of the western part of the Mediterranean basin. Rodents are the main acorn predators and thus one of the main factors for understanding recruitment patterns in oaks. In this paper we analyse to what extent mice prefer acorns from one oak species over another in three oak species studied using acorn removal experiments and video tape recordings. Twenty labelled acorns from each of the three Quercus species (60 acorns) were placed in 40 cm×40 cm quadrats on each plot. Because selection might vary as a result of the vegetation context, we performed the trials in the five main vegetation types within the study area (four replicates in each vegetation type) in order to control for habitat influences on rodent acorn preferences (a total of 20 plots). The removal of 1,200 acorns occurred within 68 days. Mice removed 98.7% of the acorns. Q. ilex acorns were preferred over Q. suber and Q. coccifera in all vegetation types except in pine forest, where no acorn preferences were detected. Acorn removal rates differed with vegetation type, correlating positively with shrub cover. The distance at which acorns were displaced by rodents (mean =4.6 m±5.1 SD) did not differ between acorn species, but varied among vegetation types. Bigger acorns of Q. coccifera were selected only after Q. ilex and Q. suber acorns were depleted, while no size selection was detected for the latter two species. Thus, we conclude that rodents show preference for some oak acorns and that landscape context contributes significantly to rodent activities and decisions.  相似文献   

7.
A strong selection for acorn characteristics is expected to have evolved in the mutualistic relationship between the European jay (Garrulus glandarius) and the oak (Quercus spp.). Bossema's pioneer work suggested that jays do not select acorns randomly, but rather they preferentially select some size and species. Preference for some seeds over others may have implications on plant community dynamics by conferring advantages (or disadvantages) on the selected (avoided) seed characteristics. In this paper we test to what extent jays select acorns by species and/or by size and the relation between these two traits in Mediterranean oak species. The experiments consist of a set of field tests in which acorns from four different coexisting Mediterranean oak species (Quercus ilex, Quercus faginea, Quercus suber, and Quercus coccifera) were placed in artificial feeders accessible to wild jays. The acorns were previously measured to control individual acorn characteristics. Using video-recording techniques, we followed jay activity and the fate of each acorn (sequence of acorn selection and method of transport). Q. ilex acorns were preferred over other acorns, and Q. coccifera acorns were avoided when other acorns were available. Preference for Q. faginea and Q. suber acorns was intermediate, that is, they were preferred over Q. coccifera acorns but not over Q. ilex acorns. Large acorns were also preferred although acorn species selection was stronger than size selection. Jays selected species and size both by visual means and by using acorn area as an indicator of size. Acorns wider than 17–19 mm were carried in the bill because of throat limitation. Our results confirm Bossema's study on temperate oaks and extend it to Mediterranean oak species, revealing implications on mixed oak forest dynamics.  相似文献   

8.
Many masting species switch resources between vegetative growth and reproduction in mast and non-mast years. Although masting of oak species is well known, there have been few investigations of the relationship between vegetative growth and reproduction based on long-term monitoring data, especially in evergreen oaks of subgenus Cyclobalanopsis. We investigated annual variations over 13?years in acorn and leaf production of three evergreen oak species in subgenus Cyclobalanopsis, genus Quercus (Fagaceae)??Q. acuta, Q. salicina and Q. sessilifolia??in western Japan. In these species, the maturation of acorns occurs in the second autumn after flowering, which is known as a biennial-fruiting habit. We found a pattern of acorn production and masting in alternate years that was synchronized in all three species. Masting was not correlated with temperature and precipitation. Annual leaf-fall also showed 2-year cycle in the three oak species; peak years were synchronized between species and peak leaf-fall alternated with acorn production in all three species. Furthermore, there was a significant negative correlation between acorn and leaf production in all three species. Data showing 2-year cycles of acorn and leaf production and the negative correlation between them supports the hypothesis of resource switching between vegetative growth and reproduction. The 2-year cycle might be the basic, intrinsic rhythm of resource allocation in biennial-fruiting Cyclobalanopsis species.  相似文献   

9.
By caching acorns, jays serve as important dispersal agents for oak (Quercus) species. Yet little is known about which acorn characteristics affect selection by jays. In the traditional model of jay/oak symbiosis, large, brown, ripe acorns free of invertebrate parasites (e.g., Curculio acorn weevils) are selected by jays. Recently, it has been suggested that a tri-trophic relationship between oaks, jays, and weevils may have evolved to counter the negative dietary effects of acorn tannins. Under the tri-trophic model, jays would preferentially select acorns containing weevil larvae. We tested the assumptions that (1) acorns containing curculionid larvae exist in sufficient quantities to support jay populations and (2) jays can detect, and preferentially select, acorns containing weevil larvae, and investigated the cues by which jays select acorns. Captive Mexican jays (Aphelocomaultramarina) were presented Emory oak (Quercusemoryi) acorns in aviary feeding trials. Large, dense, viable acorns free of curculionid larvae were preferentially selected. Contrary to results of previous research, color did not affect selection. Acorn viability increased and curculionid larval occupancy decreased in adjacent savannas and isolated stands relative to existing oak woodland, perhaps favoring oak recruitment into adjacent lower-elevation grasslands. Our results compel us to reject the tri-trophic model for this system, and are consistent with the traditional jay/oak symbiosis model. Relatively long-distance dispersal of viable acorns favors Emory oak replacement, and spatial patterns of acorn viability and curculionid parasitism suggest expansion of Emory oak into adjacent low-elevation semi-arid grasslands. Received: 29 February 1996 / Accepted: 26 September 1996  相似文献   

10.
In trees, reproduction constitutes an important resource investment which may compete with growth for resources. However, detailed analyses on how growth and fruit production interact at the shoot level are scarce. Primary canopy growth depends on the development of current-year shoots and their secondary growth might also influence the number and size of fruits supported by them. We hypothesise that an enhanced thickening of current-year shoots is linked positively to acorn production in oaks. We analysed the effect of acorn production on shoot growth of two co-occurring Mediterranean oak species with contrasting leaf habit (Quercus ilex, Quercus faginea). Length and cross-sectional area of current-year shoots, apical bud mass, number of leaves and acorns, xylem and conductive area, number of vessels of acorn-bearing and non-bearing shoots were measured in summer and autumn. Nitrogen and carbohydrates analyses were also performed in stems and leaves of both shoot types. Stem cross-sectional area increased in acorn-bearing shoots when compared with non-bearing shoots for both species and such surplus secondary growth was observed since summer. In bearing shoots, the total transversal area occupied by vessels decreased significantly from basal to apical positions along the stem as did the xylem area and the number of vessels. Leaves of bearing shoots showed lower nitrogen concentration than those of non-bearing shoots. Carbohydrate concentrations did not differ in stems and leaves as a function of the presence of acorns. Such results suggest that carbohydrates may preferentially be allocated towards reproductive shoots, possibly through enhanced secondary growth, satisfying all their carbon demands for growth and reproduction. Our findings indicate that acorn production in the two studied oaks depends on shoot secondary growth.  相似文献   

11.
Several squirrel species excise the embryo of acorns of most white oak species to arrest germination for long‐term storage. However, it is not clear how these acorns counter embryo excision and survive in the arms race of coevolution. In this study, we simulated the embryo excision behavior of squirrels by removing 4 mm of cotyledon from the apical end of white oak acorns differing in embryo depths to investigate the effects of embryo excision on acorn germination and seedling performance of white oak species. The embryo depth in the cotyledons was significantly different among white oak acorns, with Quercus mongolica containing the embryo most deeply in the acorns. We found that artificial embryo excision significantly decreased acorn germination rates of Quercus variabilis, Quercus acutissima, Quercus aliena, Quercus aliena var. acutiserrata, Quercus serrata. var. brevipetiolata but not Q. mongolica. Artificial embryo excision exerted significant negative impacts on seedling performance of all oak species except Quercus aliena. Our study demonstrates the role of embryo depth of acorns in countering embryo excision by squirrels and may explain the fact that squirrels do not perform embryo excision in acorns of Q. mongolica with deeper embryos. This apparent adaptation of acorns sheds light on the coevolutionary dynamics between oaks and their seed predators.  相似文献   

12.
Summary Quercus oleoides Cham. and Schlecht is an unusual tree in several respects: it is an oak found in neotropical lowland forests, its distribution is not continuous but ratherdivided into many patches of various sizes, and it is a dominant in all the forests in which it occurs, attaining densities far higher than most species of tropical trees. This density pattern is related to the vulnerability of Q. oleoides acorns to predation by mammals. Observations of agoutis, deer, peccaries, squirrels, pocket mice and other seed consumers in Santa Rosa National Park, Costa Rica, showed that these mammals act only as predators, not dispersers, of Q. oleoides acorns. Experiments which involved placing acorns in deciduous forest where Q. oleoides does not occur, demonstrated that, due to high predation rates, the number of acorns produced by an isolated tree is far too low for adults to replace themselves.In oak forest, on the other hand, where the combined acorn crops of many oaks satiate the seed predators, acorn survivorship until germination is high enough to maintain the population. Furthermore, acorn survivorship in oak forest areas is inversely proportional to the apparent mammal density in those areas. Thus the pattern of forest dominance and patchy distribution is related to positively density-dependent acorn survivorship: where Q. oleoides is the forest dominant, it will survive, but if its density falls to the level typical of tropical trees, it will go locally extinct.  相似文献   

13.
We analyzed the relationship between population abundance and variability of western scrub-jays Aphelocoma californica based on 48 yr of Audubon Christmas Bird Counts and the resources on which they depend as indexed by the diversity and abundance of mast-producing oaks and pines and, for California, estimates of acorn production based on a statewide survey. In general, populations of A. c. californica along the Pacific coast were related to oaks, with populations being more abundant and more stable in areas with more oak species and greater oak abundance. In contrast, populations of A. c. woodhouseii in the Great Basin were correlated with pines/conifers, again with higher abundance and greater stability with increased number of pine species and greater abundance of pines/conifers. The presumed driver of these patterns is increased resource abundance with greater habitat abundance and increased resource stability with increasing species diversity due to asynchrony in seed production among different species of trees. Asynchrony in acorn production is particularly high among oaks that require different number of years to produce acorns, but we failed to confirm that populations with access to both types were more stable than those with access to only one type after controlling for oak diversity. However, we did find a strong positive correlation between overall mean scrub-jay abundance in California and overall acorn production one year earlier, suggesting that acorns benefit scrub-jay populations primarily by increasing reproductive success the following year. These patterns demonstrate the strong dependence between population dynamics and resource stability as well as how different these relationships can be within closely related taxa.  相似文献   

14.
The responses of rodent populations to acorn masting were examined by reviewing 17 studies from the aspect of acorn nutrients and defensive chemicals. Oak species were grouped into three types based on their acorn nutritional characteristics by cluster analysis: Type 1 acorns (two North American red oaks, subgenus Erythrobalanus) were high in tannins and high in fat and proteins (and consequently rich in metabolizable energy); Type 2 acorns (two Japanese evergreen oaks, Cyclobalanopsis; three Japanese deciduous oaks, Lepidobalanus; one North American white oak, Lepidobalanus) were high in tannins but low in fat and proteins; and Type 3 acorns (one Cyclobalanopsis species; seven Lepidobalanus species) were low in tannins and had intermediate levels of fat and proteins. These three acorn groups were nutritionally, and thereby ecologically, not equivalent. Rodents, in general, responded differently to acorn masting depending on their feeding habits and the nutritional characteristics of acorns. Granivorous rodents showed positive responses to masting of Type 1 and 3 acorns, whereas rodents with feeding habits intermediate between granivory and herbivory showed positive responses to masting of Type 3 acorns. In addition, for herbivorous rodents, the responses to masting of any types of acorns have not been reported. The present findings emphasize that the relationship between rodents and acorn masting should not easily be generalized, because there are large variations in characteristics of both acorns and rodents. The viewpoint presented in this review could offer more convincing interpretations to the contradictory observations, found in the studies reviewed, on the response of rodent populations to acorn masting.  相似文献   

15.
Quercus laevis Walt, (turkey oak) and Q. margaretta Ashe (scrubby post oak) are important scrub oaks in the sandhills forest communities of the Coastal Plain of the southeastern United States. We used allozyme loci and Ripley's L-statistics to examine clonal structure and spatial dispersion in these species. Q. laevis greater than 1.5 m in height were randomly dispersed on a scale of 0–40 m; smaller individuals (< 1.5 m) were slightly clustered on a scale of 0–12 m. Larger individuals separated by ≤1 m had 15% probability of being ramets of the same clone. Q. margaretta showed strong clustering on a scale of 0–20 m. Stems separated by ≤ 1 m had a 71% probability of being ramets of the same clone. Clonal offspring were strongly clustered about the presumed clonal parent: 50% fell within 0.50 m of this individual. Simulation modeling and direct comparison of adult and juvenile genotypes indicated that acorns are dispersed on a scale of tens of meters for both species, suggesting animal vectors such as squirrels or blue jays.  相似文献   

16.
Abstract. 1. We compared high and low density populations of a leaf miner ( Stilbosis quadricustatella (Cham.)) on two host oaks to ascertain mechanisms influencing abundance. High density miner populations occurred on sand live oak, Quercus geminata (Fagaceae), found in homogeneous stands at inland and coastal sites. Quercus nigra , water oak, a patchily distributed inland species, supported a low density leaf miner population.
2. Average foliar nitrogen of Q.geminata was significantly lower than that of Q.nigra , and lad mining period on Q.geminata was correspondingly longer than on Q.nigra .
3. The average leaf area of Q.nigra was significantly greater than that of Q.geminata .
4. Parasitism was significantly greater in Q.geminata miner populations and predation was significantly higher in Q.nigra populations. However, parasitism and predation rates were roughly reciprocal so that overall larval mortality did not differ significantly between hosts.
5. In a laboratory experiment, pupal overwintering survivorship did not differ significantly between moist and dry treatments of the sand and loam soil types that typify Qgeminata and Q.nipra habitats, respectively.
6. Within-leaf miner density on Q.geminata significantly affected larval survivorship, parasitism and predation. Leaf area and within-leaf miner density were positively correlated.
7. We detected no host-patch area or isolation effect on miner densities on coastal Qgeminata and there was no significant gradient of local coastal conditions affecting larval survivorship or natural enemies.
8. Coastal leaf miner densities were significantly higher on oak patch edges than in interiors.  相似文献   

17.
Acorn production varies considerably among oak (Quercus) species, individual trees, years, and locations, which directly affects oak regeneration and populations of wildlife species that depend on acorns for food. Hard mast indices provide a relative ranking and basis for comparison of within- and between-year acorn crop size at a broad scale, but do not provide an estimate of actual acorn yield—the number of acorns that can potentially be produced on a given land area unit based on the species, number, and diameter at breast height (dbh) of oak trees present. We used 10 years of acorn production data from 475 oak trees to develop predictive models of potential average annual hard mast production by five common eastern oak species, based on tree diameter and estimated crown area. We found a weak (R2 = 0.08–0.28) relationship between tree dbh and acorn production per unit crown area for most species. The relationship between tree dbh and acorn production per tree was stronger (R2 = 0.33–0.57). However, this is because larger-dbh trees generally have larger crowns, not because they have a greater capacity to produce more acorns per unit crown area. Acorn production is highly variable among individual trees. We estimated that dbh of at least 60 dominant or codominant oak trees per species should be randomly sampled to obtain an adequate representation of the range of dbhs (≥12.7 cm dbh) in a given forest area, and achieve precise estimates when using these equations to predict potential acorn production. Our predictive models provide a tool for estimating potential acorn production that land managers and forest planners can apply to oak inventory data to tailor estimates of potential average annual acorn production to different forest management scenarios and multiple spatial scales. © 2011 The Wildlife Society.  相似文献   

18.
The Mississippi Alluvial Valley (MAV) is an internationally important migration and wintering region for Nearctic waterfowl. Most of the MAV is a lowland forested floodplain that contains vast stands of red oaks (Quercus spp.). These trees produce acorns and, when forests flood, diverse communities of aquatic invertebrates emerge, providing diverse nutritious foods for wintering ducks. The MAV is within the Lower Mississippi Valley Joint Venture (LMV JV) region of the North American Waterfowl Management Plan, but no combined MAV-wide estimates of acorn and invertebrate biomass exist to determine foraging carrying capacity for conservation planning or actions by the LMV JV or other partners in regions containing southern red oaks. We sampled acorns that fell to the ground or were submersed under shallow water deemed accessible to foraging ducks and aquatic invertebrates in the MAV of Louisiana, Mississippi, Missouri, and Tennessee, USA, during fall-winter 2009–2011. In good and poor masting years, acorn abundance was non-linearly related to the percentage of the forest canopy made up of red oaks and peaked in late autumn or winter when most other waterfowl resources are depleted or decomposed. This finding is novel and represents a deviation from how the LMV JV has traditionally assumed food resources exist for waterfowl in hardwood bottomlands. We used a daily ration model to estimate energy use days (EUDs) from combined acorn and invertebrate biomasses relative to red oak canopy coverage. For good and poor acorn masting years at the mean MAV-wide red oak canopy coverage of 45%, EUD = 2,273.1 days/ha and 161.2 days/ha, respectively. The LMV JV currently uses EUD = 385–502 days/ha for forests with 40–50% red oak canopy coverage. Because acorns and aquatic macro-invertebrates are a food resource that persists through winter and reaches peak abundance later in winter, we contend conservation planners have undervalued the potential of bottomland hardwoods to provide energy for wintering ducks.  相似文献   

19.
We investigated the geographical ecology of acorn woodpeckers (Melanerpes formicivorus) using 30 years of Audubon Christmas Bird Counts and data on the diversity and abundance of oaks. Spatial autocorrelation in acorn woodpecker population densities is not significantly greater than zero both in either the southwestern United States, where populations are often locally isolated, or along the Pacific Coast, where they are more evenly distributed. In both regions, the effective distributional limit of acorn woodpeckers is set not by the limits of oaks but by sites where oak diversity drops to a single species. This result is consistent with acorn production patterns in central coastal California demonstrating that variability in overall acorn production and the probability of acorn crop failure decline with increasing oak species number but drop most markedly when two, compared to one, species of oaks are present together. Along the Pacific Coast, acorn woodpecker densities increase and population variability decreases with increasing abundance and diversity of oaks; however, analyses indicate that overall population size in this region is primarily determined by resource abundance while population stability is determined by resource diversity. Comparable patterns are not obvious in the Southwest, where acorn woodpecker densities are much lower than along the Pacific Coast. This may be due to a combination of greater competition for resources and oak communities that differ both qualitatively and quantitatively in their productivity compared to those along the Pacific Coast.  相似文献   

20.
In this study we assessed the effectiveness of rodents as dispersers of Quercus ilex in a patchy landscape in southeastern Spain. We experimentally followed the fates of 3,200 marked and weighed acorns from dispersal through the time of seedling emergence over three years. Rodents handled about 99% of acorns, and dispersed 67% and cached 7.4% of the dispersed acorns. Most caches were recovered and consumed, and only 1.3% of the original experimental acorns were found alive in caches the following spring. Dispersal distances were short (mean = 356.2 cm, median = 157 cm) and strongly right-skewed. Heavier acorns were dispersed further and were more likely to be cached and survive than lighter acorns. All caches were in litter or soil, and each contained a single acorn. Rodents moved acorns nonrandomly, mostly to oaks and pines. Most surviving acorns were either in oaks, a poor microhabitat for oak recruitment, or shrubs, a suitable microhabitat for oak recruitment. Our results suggest that rodents, by burying a relatively high proportion of acorns singly in shrubs and pines, act as moderately effective dispersers of Q. ilex. Nonetheless, this dispersal comes at a very heavy cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号