首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The increasing levels of ultraviolet-B (UV-B) radiation reaching the earth's surface caused by ozone destruction have prompted many studies of UV-B effects on plants. Most of these studies have focused on physiological and growth responses of plants to increased UV-B, but these measures may not be closely related to future survival of plant populations. We examined the effects of two different levels of increased UV-B on total female fitness, including seed number and quality, in rapid-cycling strains of Brassica nigra and B. rapa (Brassicaceae). We also measured the effects of UV-B on fitness components, particularly those related to pollination success. Two separate experiments, examining two different levels of UV-B, were performed. Sixty plants of each species were grown under control and enhanced levels of UV-B for a total of 480 plants (60 plantsx2 speciesx2 UV-B levelsx2 experiments). Increased UV-B was generally detrimental to growth and flowering in both species; however, total seed production was actually greater at higher UV-B doses in three of four dose/plant species combinations examined. UV-B had little effect on pollination success or offspring quality in either species. Therefore, in spite of the detrimental effects of UV-B on growth and flowering that we found, there is little evidence that fitness of these plant species would suffer with increasing UV-B, and we caution against using solely physiological or growth measurements to infer effects of UV-B on plant population fitness.  相似文献   

2.
Very few studies have examined parent-offspring interactions from a quantitative genetic perspective. We used a cross-fostering design and measured genetic correlations and components of social selection arising from two parental and two offspring behaviors in the burying beetle Nicrophorus vespilloides. Genetic correlations were assessed by examining behavior of relatives independent of common social influences. We found positive genetic correlations between all pairs of behaviors, including between parent and offspring behaviors. Patterns of selection were assessed by standardized performance and selection gradients. Parental provisioning had positive effects on offspring performance and fitness, while remaining near the larvae without feeding them had negative effects. Begging had positive effects on offspring performance and fitness, while increased competition among siblings had negative effects. Coadaptations between parenting and offspring behavior appear to be maintained by genetic correlations and functional trade-offs; parents that feed their offspring more also spend more time in the area where they can forage for themselves. Families with high levels of begging have high levels of sibling competition. Integrating information from genetics and selection thus provides a general explanation for why variation persists in seemingly beneficial traits expressed in parent-offspring interactions and illustrates why it is important to measure functionally related suites of behaviors.  相似文献   

3.
Our knowledge of the effects of increased levels of ultraviolet-B radiation (UV-B) on plant fitness is limited mainly to yield studies in a few crop species. Previous greenhouse and garden studies of Brassica have found greater detrimental effects of UV-B on fitness in gardens than in the greenhouse, suggesting the possibility that additional stresses in the field decrease the ability of Brassica to cope with UV-B. Possible interactions between UV-B and water/nutrient stress in determining plant fitness have rarely, if ever, been studied experimentally. Here we report measurements of female fitness in two species of Brassica in an experiment in which both UV-B and levels of water and nutrients were varied in a 2 x 2 factorial design. Water and nutrient stress reduced female fitness in both species, while UV-B caused fitness reductions in only one of the species. There was evidence for interactions between UV-B and water/nutrient stress for only a few of the traits measured; most traits, including those closely related to fitness, showed no evidence of an interaction.  相似文献   

4.
Intensified ultraviolet-B radiation or UV-B (wavelengths between 280 and 320 nm) can delay flowering and diminish lifetime flower production in a few plants. Here we studied the effects of enhanced UV-B on floral traits crucial to pollination and pollinator reproduction. We observed simultaneous flowering responses of a new crop plant, Limnanthes alba (Limnathaceae), and a wildflower, Phacelia campanularia (Hydrophyllaceae), to five lifetime UV-B dosages ranging between 2.74 and 15.93 kJ·m·d. Floral traits known to link plant pollination with bee host preference, host fidelity and larval development were measured. Intensified UV-B had no overall effect on nectar and pollen production of L. alba and P. campanularia flowers. A quadratic relationship between UV-B and nectar sugar production occurred in P. campanularia and showed that even subambient UV-B dosages can be deleterious for a floral trait. Other floral responses to UV-B were more dramatic and idiosyncratic. As UV-B dosage increased, L. alba plants were less likely to flower, but suffered no delays in flowering or reductions to lifetime flower production for those that did flower. Conversely, an equal proportion of P. campanularia plants flowered under all UV-B treatments, but these same plants experienced delayed onset to bloom and produced fewer flowers at greater UV-B intensities. Therefore, intensified UV-B elicits idiosyncratic responses in flowering phenology and flower production from these two annual plants. Diurnal patterns in nectar and pollen production strongly coincided with fluctuating humidity and only weakly with UV-B dosage. Overall, our results indicated that intensified UV-B can alter some flowering traits that impinge upon plant competition for pollinator services, as well as plant and pollinator reproductive success.  相似文献   

5.
Abstract Direct costs and benefits to females of multiple mating have been shown to have large effects on female fecundity and longevity in several species. However, with the exception of studies examining genetic benefits of polyandry, little attention has been paid to the possible effects on offspring of multiple mating by females. We propose that nongenetic effects of maternal matings on offspring fitness are best viewed in the same context as other maternal phenotype effects on offspring that are well known even in species lacking parental care. Hence, matings can exert effects on offspring in the same way as other maternal environment variables, and are likely to interact with such effects. We have conducted a study using yellow dung flies ( Scathophaga stercoraria ), in which we independently manipulated female mating rate, number of mates and maternal thermal environment and measured subsequent fecundity, hatching success, and offspring life-history traits. To distinguish between direct effects of matings and potential genetic benefits of polyandry we split broods and reared offspring at three different temperature regimes. This allowed us to demonstrate that although we could not detect any simple benefits or costs to matings, there are effects of maternal environment on offspring and these effects interact with female mating regime affecting offspring fitness. Such interactions between female phenotype and the costs and benefits of matings have potentially broad implications for understanding female behavior.  相似文献   

6.
To determine the evolutionary importance of parental environmental effects in natural populations, we must begin to measure the magnitude of these effects in the field. For this reason, we conducted a combined growth chamber-field experiment to measure parental temperature effects in Plantago lanceolata. We grew in the field offspring of controlled crosses of chamber-grown parents subjected to six temperature treatments. Each treatment was characterized by a unique combination of maternal prezygotic (prior to fertilization), paternal prezygotic, and postzygotic (during fertilization and seed set) temperatures. Offspring were followed for three years to measure the effects of treatment on several life-history traits and population growth rate, our estimate of fitness. Parental treatment influenced germination, growth, and reproduction of newborns, but not survival or reproduction of offspring at least one year old. High postzygotic temperature significantly increased germination and leaf area at 17 weeks by approximately 35% and 2%, respectively. Probability of flowering and spike production in the newborn age class showed significant parental genotype x parental treatment interactions. High postzygotic temperature increased offspring fitness by approximately 50%. The strongest contributors to fitness were germination and probability of flowering and spike production of newborns. A comparison of our data with previously collected data for chambergrown offspring shows that the influence of parental environment on offspring phenotype is weaker but still biologically meaningful in the field. The results provide evidence that parental environment influences offspring fitness in natural populations of P. lanceolata and does so by affecting the life-history traits most strongly contributing to fitness. The data suggest that from the perspective of offspring fitness, natural selection favors parents that flower later in the flowering season in the North Carolina Piedmont when it is warmer. Genotypic-specific differences in response of offspring reproductive traits to parental environment suggest that parental environmental effects can influence the rate of evolutionary change in P. lanceolata.  相似文献   

7.
植物表型受自身基因型、所处环境及其亲体所经历环境的共同影响;其中,亲体环境对子代表型的影响被称为亲体效应。亲体效应不仅可通过有性繁殖产生的种子传递给后代(即有性亲体效应),也可以通过克隆生长等无性繁殖产生的分株传递给后代(即克隆亲体效应)。亲体效应对植物种群,特别是对有性繁殖受限、缺乏遗传变异的克隆植物种群的长期进化可能发挥着极其重要的作用,因此,对亲体效应研究进展的梳理非常必要。对克隆亲体效应和有性亲体效应的内涵进行了阐释,并论述了克隆和有性亲体效应对子代表型、适合度、种内/种间竞争能力以及种群/群落结构和功能的潜在影响;阐述了亲体效应的潜在调控机制,包括供给机制、代谢物质调控机制、表观遗传机制等;论述了克隆亲体效应在克隆植物适应进化中的作用。未来可以就克隆亲体效应的遗传稳定性及其对克隆生活史性状变异的贡献程度,以及克隆和有性亲体效应引起的表型多样性对种内/种间关系、种群/群落多样性及生态系统结构、功能和稳定性的影响开展深入研究。  相似文献   

8.
Parental care involves elaborate behavioural interactions between parents and their offspring, with offspring stimulating their parents via begging to provision resources. Thus, begging has direct fitness benefits as it enhances offspring growth and survival. It is nevertheless subject to a complex evolutionary trajectory, because begging may serve as a means for the offspring to manipulate parents in the context of evolutionary conflicts of interest. Furthermore, it has been hypothesized that begging is coadapted and potentially genetically correlated with parental care traits as a result of social selection. Further experiments on the causal processes that shape the evolution of begging are therefore essential. We applied bidirectional artificial selection on begging behaviour, using canaries (Serinus canaria) as a model species. We measured the response to selection, the consequences for offspring development, changes in parental care traits, here the rate of parental provisioning, as well as the effects on reproductive success. After three generations of selection, offspring differed in begging behaviour according to our artificial selection regime: nestlings of the high begging line begged significantly more than nestlings of the low begging line. Intriguingly, begging less benefitted the nestlings, as reflected by on average significantly higher growth rates, and increased reproductive success in terms of a higher number of fledglings in the low selected line. Begging could thus represent an exaggerated trait, possibly because parent–offspring conflict enhanced the selection on begging. We did not find evidence that we co‐selected on parental provisioning, which may be due to the lack of power, but may also suggest that the evolution of begging is probably not constrained by a genetic correlation between parental provisioning and offspring begging.  相似文献   

9.
Aims The relative plant type sensitivity and selected community interactions under increased UV-B radiation where examined. Specifically, we investigated: (i) if there are differences among growth forms in regard to their sensitivity to UV-B radiation, (ii) if increased UV-B radiation influences the plant competitive balance in plant communities and (iii) the response mechanisms of the UV-B radiation-sensitive species that might increase their fitness.Methods To answer our research questions, we used a mechanistic model that, for the first time, integrated the effects of increased UV-B radiation from molecular level processes, whole plant growth and development, and community interactions.Important findings In the model simulations, species types exhibited different levels of sensitivity to increased UV-B radiation. Summer C3 and C4 annuals showed similar growth inhibition rates, while biennials and winter C3 annuals were the most sensitive. Perennials exhibited inhibitions in growth only if increased UV-B radiation results in increases in metabolic rates. In communities, species sensitive to UV-B radiation may have a competitive disadvantage compared to resistant plant species. But, sensitive species may have a wide array of responses that can increase their fitness and reproductive success in the community, such as, increased secondary metabolites production, changes in timing of emergence and reproduction, and changes in seed size. While individual plants may exhibit significant inhibitions in growth and development, in communities, these inhibitions can be mitigated by small morphological and physiological adaptations. Infrequent or occasional increased UV-B radiation events should not have any lasting effect on the structure of the community, unless other environmental factors are perturbing the dynamic equilibrium.  相似文献   

10.
Variability in demographic traits between individuals within populations has profound implications for both evolutionary processes and population dynamics. Parental effects as a source of non-genetic inheritance are important processes to consider to understand the causes of individual variation. In iteroparous species, parental age is known to influence strongly reproductive success and offspring quality, but consequences on an offspring fitness component after independence are much less studied. Based on 37 years longitudinal monitoring of a long-lived seabird, the wandering albatross, we investigate delayed effects of parental age on offspring fitness components. We provide evidence that parental age influences offspring performance beyond the age of independence. By distinguishing maternal and paternal age effects, we demonstrate that paternal age, but not maternal age, impacts negatively post-fledging offspring performance.  相似文献   

11.
Theory suggests that multiple mating by females can evolve as a mechanism for acquiring compatible genes that promote offspring fitness. Genetic compatibility models predict that differences in fitness among offspring arise from interactions between male and female haplotypes. Using a cross-classified breeding design and in vitro fertilization, we raised families of maternal and paternal half-siblings of the frog Crinia georgiana, a species with a polyandrous breeding system and external fertilization. After controlling for variation in maternal provisioning, we found significant effects of interacting parental haplotypes on fertilization success, and nonadditive genetic effects on measures of offspring fitness such as embryo survival, and survival to, size at, and time to metamorphosis. Additive genetic variation due to males and females was negligible, and not statistically significant for any of the fitness traits measured. Combinations of parental haplotypes that resulted in high rates of fertilization produced offspring with higher embryo survival and rapid juvenile development. We suggest that a gamete recognition mechanism for selective fertilization by compatible sperm may promote offspring fitness in this system.  相似文献   

12.
Parents affect offspring fitness by propagule size and quality, selection of oviposition site, quality of incubation, feeding of dependent young, and their defence against predators and parasites. Despite many case studies on each of these topics, this knowledge has not been rigorously integrated into individual parental care traits for any taxon. Consequently, we lack a comprehensive, quantitative assessment of how parental care modifies offspring phenotypes. This meta‐analysis of 283 studies with 1805 correlations between egg size and offspring quality in birds is intended to fill this gap. The large sample size enabled testing of how the magnitude of the relationship between egg size and offspring quality depends on a number of variables. Egg size was positively related to nearly all studied offspring traits across all stages of the offspring life cycle. Not surprisingly, the relationship was strongest at hatching but persisted until the post‐fledging stage. Morphological traits were the most closely related to egg size but significant relationships were also found with hatching success, chick survival, and growth rate. Non‐significant effect sizes were found for egg fertility, chick immunity, behaviour, and life‐history or sexual traits. Effect size did not depend on whether chicks were raised by their natural parents or were cross‐fostered to other territories. Effect size did not depend on species‐specific traits such as developmental mode, clutch size, and relative size of the egg, but was larger if tested in captive compared to wild populations and between rather than within broods. In sum, published studies support the view that egg size affects juvenile survival. There are very few studies that tested the relationship between egg size and the fecundity component of offspring fitness, and no studies on offspring survival as adults or on global fitness. More data are also needed for the relationships between egg size and offspring behavioural and physiological traits. It remains to be established whether the relationship between egg size and offspring performance depends on the quality of the offspring environment. Positive effect sizes found in this study are likely to be driven by a causal effect of egg size on offspring quality. However, more studies that control for potential confounding effects of parental post‐hatching care, genes, and egg composition are needed to establish firmly this causal link.  相似文献   

13.
Conundrums of competitive ability in plants: what to measure?   总被引:8,自引:0,他引:8  
LonnieW. Aarssen  Teri Keogh 《Oikos》2002,96(3):531-542
A survey of recent literature indicates that competitive ability in plants has been measured, in most studies, only in terms of the relative intensity of size suppression experienced by competitors within one growing season. Far fewer studies have recorded relative success in terms of survival and even fewer studies have recorded fecundity under competition. Differences in size suppression are usually assumed to reflect differences in relative abilities to deny resources to competitors. However, most previous studies have failed to control or account for other sources of variation in the size suppression that plants experience under competition, i.e. variation between mixtures in the resource supply/demand ratio (approach to carrying capacity), or variation in the degree of niche overlap between competitors, or variation in the intensity of concurrent facilitative interactions between competitors. For future studies, much greater caution is required in recognizing these inherent limitations of traditional measures of competitive ability and, hence, guarding against unfounded conclusions or predictions about potential for competitive success that are based on these measures. There is also a significant challenge for future studies to adopt empirical approaches for minimizing these limitations. Some initial recommendations are considered here based on an emerging view of competitive ability measured in terms of traits associated with all three conventional components of Darwinian fitness, i.e. not just growth (plant size) but also survival and fecundity allocation (offspring production per unit plant size per unit time). According to this model, differences in competitive ability imply differences in the ability, despite intense competition (i.e. low resource supply/demand ratio), to recruit offspring into the next generation and thereby limit offspring recruitment by other plants. The important traits of competitive ability, therefore, are not only those that allow a plant to deny resources to competitors, suppress their sizes and hence, maximize the plant's own size, but also those traits that allow the plant to withstand suppression from competition enough to persist, both as an individual (through survival) and across generations (through descendants).  相似文献   

14.
Geographical variation in offspring size effects across generations   总被引:2,自引:0,他引:2  
Dustin J. Marshall 《Oikos》2005,108(3):602-608
Offspring size is thought to strongly affect offspring fitness and many studies have shown strong offspring size/fitness relationships in marine and terrestrial organisms. This relationship is strongly mitigated by local environmental conditions and the optimal offspring size that mothers should produce will vary among different environments. It is assumed that offspring size will consistently affect the same traits among populations but this assumption has not been tested. Here I use a common garden experiment to examine the effects of offspring size on subsequent performance for the marine bryozoan Bugula neritina using larvae from two very different populations. The local conditions at one population (Williamstown) favour early reproduction whereas the other population (Pt. Wilson) favours early growth. Despite being placed in the same habitat, the effects of parental larval size were extremely variable and crossed generations. For larvae from Williamstown, parental larval size positively affected initial colony growth and larval size in the next generation. For larvae from the other population, parental larval size positively affected colony fecundity and negatively affected larval size in the next generation. Traditionally, exogenous factors have been viewed as the sole source of variation in offspring size/fitness relationship but these results show that endogenous factors (maternal source population) can also cause variation in this crucial relationship. It appears offspring size effects can be highly variable among populations and organisms can adapt to local conditions without changing the size of their offspring.  相似文献   

15.
In polygynous species, variance in reproductive success is higher in males than females. There is consequently stronger selection for competitive traits in males and early growth can have a greater influence on later fitness in males than in females. As yet, little is known about sex differences in the effect of early growth on subsequent breeding success in species where variance in reproductive success is higher in females than males, and competitive traits are under stronger selection in females. Greater variance in reproductive success has been documented in several singular cooperative breeders. Here, we investigated consequences of early growth for later reproductive success in wild meerkats. We found that, despite the absence of dimorphism, females who exhibited faster growth until nutritional independence were more likely to become dominant, whereas early growth did not affect dominance acquisition in males. Among those individuals who attained dominance, there was no further influence of early growth on dominance tenure or lifetime reproductive success in males or females. These findings suggest that early growth effects on competitive abilities and fitness may reflect the intensity of intrasexual competition even in sexually monomorphic species.  相似文献   

16.
Accumulating evidence suggests that within‐individual plasticity of behavioural and physiological traits is limited, resulting in stable among‐individual differences in these aspects of the phenotype. Furthermore, these traits often covary within individuals, resulting in a continuum of correlated phenotypic variation among individuals within populations and species. This heterogeneity, in turn, affects individual fitness and can have cross‐generational effects. Patterns of trait covariation, among‐individual differences, and subsequent fitness consequences have long been recognized in reptiles. Here, we provide a test of patterns of among‐individual heterogeneity in behaviour and physiology and subsequent effects on reproduction and offspring fitness in the garter snake Thamnophis elegans. We find that measures of activity levels vary among individuals and are consistent within individuals in reproductive female snakes, indicating stable behavioural phenotypes. Blood hormone and glucose concentrations are not as stable within individuals, indicating that these traits do not describe consistent physiological phenotypes. Nonetheless, the major axes of variation in maternal traits describe behavioural and physiological phenotypes that interact to predict offspring body condition and mass at birth. This differential allocation of energy to offspring, in turn, strongly influences subsequent offspring growth and survival. This pattern suggests the potential for strong selection on phenotypes defined by behaviour–physiology interactions.  相似文献   

17.
The evolution of parental care is beneficial if it facilitates offspring performance traits that are ultimately tied to offspring fitness. While this may seem self‐evident, the benefits of parental care have received relatively little theoretical exploration. Here, we develop a theoretical model that elucidates how parental care can affect offspring performance and which aspects of offspring performance (e.g., survival, development) are likely to be influenced by care. We begin by summarizing four general types of parental care benefits. Care can be beneficial if parents (1) increase offspring survival during the stage in which parents and offspring are associated, (2) improve offspring quality in a way that leads to increased offspring survival and/or reproduction in the future when parents are no longer associated with offspring, and/or (3) directly increase offspring reproductive success when parents and offspring remain associated into adulthood. We additionally suggest that parental control over offspring developmental rate might represent a substantial, yet underappreciated, benefit of care. We hypothesize that parents adjust the amount of time offspring spend in life‐history stages in response to expected offspring mortality, which in turn might increase overall offspring survival, and ultimately, fitness of parents and offspring. Using a theoretical evolutionary framework, we show that parental control over offspring developmental rate can represent a significant, or even the sole, benefit of care. Considering this benefit influences our general understanding of the evolution of care, as parental control over offspring developmental rate can increase the range of life‐history conditions (e.g., egg and juvenile mortalities) under which care can evolve.  相似文献   

18.
While a large number of studies have examined the effects of increased ultraviolet-B radiation (UV-B) on growth and physiological function of plants, UV-B effects on pollination success and fitness are poorly understood. To examine this question, we measured growth, timing of flowering, pollination success, production of pollen, ovules, flowers, fruits, and seeds, and quality of offspring produced by Brassica nigra and B. rapa in a garden experiment. A total of 313 plants of the two species were randomly divided into two treatment groups. One group received only natural ambient levels of UV-B, while the other received an artificially enhanced UV-B dose. Fitness of B. nigra declined at the higher UV-B dose while B. rapa fitness did not change. One possible cause of this result was a shift in the relative attractiveness of the two species to pollinators: visitation to B. nigra declined at the high UV-B dose while B. rapa visitation increased. Received: 25 October 1996 / Accepted: 27 March 1997  相似文献   

19.
Increased ultraviolet-B (UV-B) radiation as a consequence of ozone depletion is one of the many potential drivers of ongoing global amphibian declines. Both alone and in combination with other environmental stressors, UV-B is known to have detrimental effects on the early life stages of amphibians, but our understanding of the fitness consequences of these effects remains superficial. We examined the independent and interactive effects of UV-B and predatory chemical cues (PCC) on a suite of traits of Limnodynastes peronii embryos and tadpoles, and assessed tadpole survival time in a predator environment to evaluate the potential fitness consequences. Exposure to a 3 to 6 per cent increase in UV-B, which is comparable to changes in terrestrial UV-B associated with ozone depletion, had no effect on any of the traits measured, except survival time in a predator environment, which was reduced by 22 to 28 per cent. Exposure to PCC caused tadpoles to hatch earlier, have reduced hatching success, have improved locomotor performance and survive for longer in a predator environment, but had no effect on tadpole survival, behaviour or morphology. Simultaneous exposure to UV-B and PCC resulted in no interactive effects. These findings demonstrate that increased UV-B has the potential to reduce tadpole fitness, while exposure to PCCs improves their fitness.  相似文献   

20.
Understanding the relative magnitudes of inbreeding and outbreeding depression in rare plant populations is increasingly important for effective management strategies. There may be positive and negative effects of crossing individuals in fragmented populations. Conservation strategies may include introducing new genetic material into rare plant populations, which may be beneficial or detrimental based on whether hybrid offspring are of increased or decreased quality. Thus, it is important to determine the effects of pollen source on offspring fitness in rare plants. We established pollen crosses (i.e. geitonogamous‐self, autonomous‐self, intrasite‐outcross, intersite‐outcross and open‐pollinated controls) to determine the effects of pollen source on fitness (seeds/fruit and seed mass) and early offspring traits (probability of germination, number of leaves, leaf area and seedling height) in the rare plant Polemonium vanbruntiae. Open‐pollinated, intrasite‐outcross and geitonogamous‐self treatments did not differ in fitness. However, plants receiving autonomous‐self pollen had the lowest fitness and the lowest probability of seed germination. Intersite‐outcross plants contained fewer seeds/fruit, but seeds germinated at higher frequencies and seedlings were more vigorous. We also detected heterosis at the seed germination stage. These data may imply that natural populations of P. vanbruntiae exhibit low genetic variation and little gene flow. Evidence suggests that deleterious alleles were not responsible for reduced germination; rather environmental factors, dichogamy, herkogamy and/or lack of competition among pollen grains may have caused low germinability in selfed offspring. Although self‐pollination may provide some reproductive assurance in P. vanbruntiae, the result is a reduction in germination and size‐related early traits for selfed offspring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号