首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The flavonoids of Asplenium foreziense, A. fontanum subsp. fontanum and subsp. pseudofontanum, A. obovatum subsp. obovatum var. obovatum and var. protobillotii, A. obovatum subsp. lanceolatum, and A. incisum were isolated and identified for chemotaxonomic survey. A major constituent of all taxa was kaempferol 3-O-gentiobioside. As minor compounds, kaempferol 3,7-O-glycoside and/or kaempferol 3-O-glycoside were found in A. fontanum, A. obovatum and A. foreziense, and kaempferol 3-O-gentiobioside-4'-O-glucoside, kaempferol 3-O-glucoside and quercetin 3-O-diglucoside in A. incisum. It was suggested that A. foreziense, A. fontanum including subsp. pseudofontanum and A. obovatum including subsp. lanceolatum are not only morphologically but also chemotaxonomically related. The East Asian A. incisum was chemically and geographically different from these taxa.  相似文献   

2.
Gametophytes of Asplenium foreziense and related taxa have been studied by culture of spores on mineral agar and soil. Those of A. obovatum ssp. obovatum var. protobillotii and var. deltoideum , ssp. numidicum , and of A. macedonicum are described for the first time. Gametophyte development follows the Adiantum type in the A. obovatum group, and the Aspidium type in A. fontanum . Both types of development have been found in A. foreziense , depending on the sporophytic sample. The taxa with hairy gametophytes show significant differences in hair density. As in most of the homosporous ferns, antheridia are formed first and in a high proportion of gametophytes in the A. obovatum group and in A. fontanum , except for one sample; most of these male gametophytes become bisexual. In A. foreziense and A. macedonicum archegonia are formed first or at the same time as antheridia, but the proportion of female gametophytes is higher than in the other taxa; some of the gametophytes become bisexual, most of them differentiated from the female ones. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 139 , 87–98.  相似文献   

3.
Population diversity and evolutionary relationships in the Hordeum murinum L. polyploid complex were explored in contrasted bioclimatic conditions from Algeria. A multidisciplinary approach based on morphological, cytogenetic, and molecular data was conducted on a large population sampling. Distribution of diploids (subsp. glaucum) and tetraploids (subsp. leporinum) revealed a strong correlation with a North-South aridity gradient. Most cytotypes exhibit regular meiosis with variable irregularities in some tetraploid populations. Morphological analyses indicate no differentiation among taxa but high variability correlated with bioclimatic parameters. Two and three different nuclear sequences (gene coding for an unspliced genomic protein kinase domain) were isolated in tetraploid and hexaploid cytotypes, respectively, among which one was identical with that found in the diploid subsp. glaucum. The tetraploids (subsp. leporinum and subsp. murinum) do not exhibit additivity for 5S and 45S rDNA loci comparative with the number observed in the related diploid (subsp. glaucum). The subgenomes in the tetraploid taxa could not be differentiated using genomic in situ hybridization (GISH). Results support an allotetraploid origin for subsp. leporinum and subsp. murinum that derives from the diploid subsp. glaucum and another unidentified diploid parent. The hexaploid (subsp. leporinum) has an allohexaploid origin involving the two genomes present in the allotetraploids and another unidentified third diploid progenitor.  相似文献   

4.
In this treatment, the genera Coincya (synonym: Hutera ) and Rhynchosinapis are regarded as one genus under the name Coincya which has nomenclatural priority. This study is based on data from morphology, population studies, cytology, ecology and reproductive biology reinforced by breeding experiments. Coincya is a west European genus comprising 14 taxa (including six species, five subspecies and three varieties).Eight new combinations are proposed and two species are excluded; R.nivalis is referable to the genus Brassica and R. Leplocarpa is probably referable to Erucastrum.
The chromosome number is either 2 n = 24 or 2 n = 48, which confirmed previous counts; C. Transtagana has not been counted. Breeding experiments were carried out with C. Longirostra, C.rupestris, C.monensis subsp. monensis , diploid and tetraploid races of subsp. recurvata var. recurvata , var. johnslonii , var. setigera , var. granatensis , subsp. hispida and subsp. puberula.
All taxa tested are outbreeding with a genetic self-incompatibility mechanism and are cross-compatible, suggesting that there has been no cytological differentiation between the diploid species in this study. The tetraploids formed semi-sterile triploids when crossed with diploids and although the chromosomes only formed bivalents and trivalents at meiosis it was postulated that the tetraploid was an autotetraploid of polytopic origin.
The evolution and differentiation of the genus and species are discussed.  相似文献   

5.
The Asplenium normale D. Don complex comprises several taxa that are either diploid or tetraploid. The tetraploids are assumed to have originated from diploid ancestors by relatively recent autopolyploidization or allopolyploidization. Some of the diploids are readily recognized morphologically but most of the taxa have until now been placed into a single species. However, phylogenetic studies have challenged this treatment and emphasized the notion that the taxonomic treatment of this complex needs to be revised. An integrative taxonomic approach was employed to delimit species in the complex using cytological, morphological, and DNA sequence data. Initially, we employed a diploid first approach to establish a robust taxonomic framework. Special efforts were made to collect and identify the diploid progenitors of each polyploid lineage identified in the plastid DNA based phylogenetic hypothesis. A total of six distinct diploid species were identified. The distinctive nature of the six diploids is strongly supported by sequence differences in plastid DNA and nuclear loci, as well as by the results of morphometric analysis. Diagnostic morphological characters were identified to distinguish the six diploid species, resulting in their revised taxonomy, which includes two novel species, namely, Asplenium normaloides and A. guangdongense. Further studies to strengthen the taxonomic classification of all of the tetraploid taxa are warranted.  相似文献   

6.
? Premise of the study: Leucaena comprises 17 diploid species, five tetraploid species, and a complex series of hybrids whose evolutionary histories have been influenced by human seed translocation, cultivation, and subsequent spontaneous hybridization. Here we investigated patterns of evolutionary divergence among diploid Leucaena through comprehensively sampled multilocus phylogenetic and population genetic approaches to address species delimitation, interspecific relationships, hybridization, and the predominant mode of speciation among diploids. ? Methods: Parsimony- and maximum-likelihood-based phylogenetic approaches were applied to 59 accessions sequenced for six SCAR-based nuclear loci, nrDNA ITS, and four cpDNA regions. Population genetic comparisons included 1215 AFLP loci representing 42 populations and 424 individuals. ? Results: Phylogenetic results provided a well-resolved hypothesis of divergent species relationships, recovering previously recognized clades of diploids as well as newly resolved relationships. Phylogenetic and population genetic assessments identified two cryptic species that are consistent with geography and morphology. ? Conclusions: Findings from this study highlight the importance and utility of multilocus data in the recovery of complex evolutionary histories. The results are consistent with allopatric divergence representing the predominant mode of speciation among diploid Leucaena. These findings contrast with the potential hybrid origin of several tetraploid species and highlight the importance of human translocation of seed to the origin of these tetraploids. The recognition of one previously unrecognized species (L. cruziana) and the elevation of another taxon (L. collinsii subsp. zacapana) to specific status (L. zacapana) is consistent with a growing number of newly diagnosed species from neotropical seasonally dry forests, suggesting these communities harbor greater species diversity than previously recognized.  相似文献   

7.
云南松居群遗传学研究的等位酶分析方法   总被引:2,自引:0,他引:2  
针对15个云南松Pinusyunnanensis居群,开展了14种酶系统的水平切片淀粉凝胶电泳实验,在谱带遗传分析的基础上确定了33个等位酶位点及其等位基因。其中有32个等位酶位点是多态的(有2个以上的等位基因),只有一个单态位点Dia-4。有3个等位基因的位点有Lap-1、Lap-2、Aa-3、Skd-1、Skd-2、Adh-1、Adh-3、Gdh、Pgd-1、Pgm-1、Pgm-3、Pgi-1、Pgi-3、Mdh-1、Me、G6pd、Dia-1、Tpi-1、Tpi-2、Tpi-3和Tpi-4,有4个等位基因的位点有Skd-3、Adh-2、Pgd-2、Mdh-2、Mdh-3、Mdh-4和Dia-2,有5个等位基因的位点有Aat-1和Dia-3。云南松居群的等位基因平均数A=21,在松属中居于中上水平。本研究揭示了云南松居群酶位点及其等位基因带谱的变异式样,为松属植物的遗传多样性研究提供了一批酶位点及其等位基因的参考图谱  相似文献   

8.
采用两相法分离种子质膜,研究超干处理对种子质膜ATP酶活力及膜流动性的影响.结果表明,白菜(Brassica pekinensis(Lour.)Rupr.)、榆树(Ulmus pumila L.)种子经超干处理后,在人工老化和自然老化条件下,与在-20℃条件下贮藏的种子比较,超干贮藏种子质膜ATP酶活力和微粘度无显著变化,过于贮藏种子的效应虽有所下降,但仍比高含水量室温贮藏的对照种子为好.此结果与超干种子具较高活力水平完全一致,说明超干贮藏种子保持了质膜的生理功能,因此提高了种子的耐藏性.高效液相色谱分析结果显示超干种子中还原糖/非还原糖的比值低于高含水量种子,积累的蔗糖、水苏糖含量与超干种子的耐干力有关.玉米(Zea mays L.)种子中不含水苏糖,这可能是玉米种子较其他种子耐干力下降的原因之一.  相似文献   

9.
10.
The utility of three plastid DNA regions to identify fern species was explored with focus on the European representatives of the Asplenium trichomanes aggregate. The sampling included representatives of the three diploid and the four tetraploid taxa recognized in the European flora plus Macaronesia. Besides European samples, the compiled data set comprised specimens of a putative Hawaiian endemic and one species occurring in Southeast Asia. By combining the sequences of three non-coding plastid regions, 13 haplotypes were recovered of which four were found in more than one taxon. Evidences for four distinct diploid lineages were found that correspond to Asplenium anceps, A. inexpectans, A. trichomanes s.s., and A. tripteropus. The four tetraploids occurring in Europe shared haplotypes with A. inexpectans. Thus, DNA barcoding can successfully identify the diploids, but fail to separate the tetraploids from their diploid ancestors. As a consequence, barcoding analyses of ferns need to take into account the differences of ploidy level measured by evidence independent from the DNA barcode. Evidence for uneven accumulation of intra-species DNA variation was recovered by comparing all species. Furthermore, the study provided evidence that the current taxonomy of these ferns requires to be revised. The two European diploids form well-separated clades and need to be recognized as A. inexpectans and A. trichomanes s.s. To keep name consistency for all European tetraploids, a new name Asplenium jessenii is introduced to replace A. trichomanes subsp. hastatum.  相似文献   

11.
Quiros CF  McHale N 《Genetics》1985,111(1):131-145
  相似文献   

12.
The predominantly African grass genus Eleusine comprises nine species, including diploids and tetraploids based on n = 8, 9, and 10. Among the polyploids are the important crop finger millet, Eleusine coracana subsp. coracana, and its putative wild ancestor, E. coracana subsp. africana. Eleusine coracana is believed to be an allotetraploid derived by hybridization between E. indica and an unknown diploid. To evaluate this hypothesis, 16 isozyme loci coding nine enzymes were compared among seven of the nine Eleusine species (E. intermedia and E. semisterilis were unavailable). Genetic variability differed substantially among diploid species, ranging from P = 0.563, A = 1.6, H = 0.208 in E. indica to P = 0.188, A = 1.2, H = 0.042 in E. jaegeri. The diploids tended to be genetically distinct, with values of Rogers' Similarity ranging from S = 0.294 (E. jaegeri/floccifolia) to S = 0.794 (E. indica/tristachya). Both subspecies of the tetraploid E. coracana exhibited fixed heterozygosity at several loci, verifying their hypothesized allotetraploid status. Both tetraploids also possessed E. indica marker alleles at all loci, corroborating ancestry by this taxon. Genotypes of the non-indica ancestor, inferred separately for each tetraploid, differed substantially from all candidate diploids and also from each other. These data indicate that 1) none of the candidate diploids investigated is likely to have been the non-indica ancestor of E. coracana, and 2) the non-indica ancestor of the wild tetraploid may differ from that of the crop. The latter conclusion is inconsistent with the complete chromosomal homology exhibited between the two tetraploid subspecies, indicating the need for additional evidence bearing on their relationships.  相似文献   

13.
Summary The genetic diversity of the U.S. Cucumis sativus L. germplasm collection [757 plant introductions (PI) representing 45 countries] was assessed using 40 enzymes which represented 74 biochemical loci. Polymorphisms were observed at 18 loci (G2dh-1, Gpi-1, Gpi-2, Gr-1, Gr-2, Idh, Mdh-1, Mdh-2, Mdh-3, Mpi-2, Pepla-2, Peppap-2, Per-4, Pgd-1, Pgd-2, Pgm-1, Pgm-3, and Skdh). Two PIs (285606 and 215589) contained alleles [G2dh-1(1) and Per-4(2), respectively] which did not occur in any other PI. Other alleles which occurred in low frequencies (in < 1% of the PIs) included Gpi-1(3), Gpi-2(3), Gr-1(3), Gr-2(1), Idh(1), Mdh-1(2), Mdh-2(1), Peppap-2(1), and Pgd-1(1). Individual loci containing more than one allele in greater than 20% of the PIs included Mpi-2, Pepla-2, Pgd-2, and Pgm-1. Multivariate analyses aided in the reduction of data (principle components), depicted relationships among PIs (cluster), and identified the most discriminating enzyme loci (Pgm-1, Pepla-2, Gr-1, Pgd-2, Mpi-2, and Skdh) (classification and regression tree).Research partially supported by Asgrow, DeRuiter, Nickerson-Zwaan, Nunhems, and Sun Seed Companies; and the Graduate School, University of Wisconsin, Madison  相似文献   

14.
In this paper, the microsatellite (SSR) loci analysis was used to study apple genotypes with different levels of ploidy. A total of 47 samples were studied (9 diploids, 21 triploids, and 17 tetraploids) for seven microsatellite loci (GD147, Hi02C07, CH02c11, CH04c07, CH03d07, CH02c09, and GD12). It was possible to refine the pedigrees for some forms. It was established that the tetraploidss 20-9-30 and 20-9-27, selected in a hybrid family from the crossing of Wealthy 4x and Antonovka Obyknovennaya, were probably obtained from the self-pollination of the maternal form, since in the most loci they did not inherit alleles from the paternal form. As a result of the alleles distribution analysis, the spontaneous triploid cultivars Nizkorosloe and Sinap Orlovsky were revealed to be formed from the merge of an unreduced ovum and haploid pollen, since in the heterozygous loci both alleles are inherited from the maternal form and only one from the paternal form. According to the obtained data, studied tetraploids may be divided into two groups, which also reflect the features of tetraploids origin. The first group includes tetraploids inherited alleles from one initial diploid form (including spontaneous and induced tetraploids, as well as forms from self-pollination of the tetraploid maternal form). These teraploids, like diploids, amplify 1–2 alleles per locus (on average, for all 7 loci, one genotype amplifies 13 alleles). The second group includes tetraploids carrying alleles from several initial diploid forms. Tetraploids of this group are highly heterozygous and amplify 3–4 alleles at most loci (the maximum number of alleles at all loci, 24 alleles, was identified in the form 30-47-88). Tetraploids of the second group have a greater potential for the genetic diversity of its offspring. Analysis of polymorphism of microsatellite loci can be used (1) as an alternative or additional method for identifying the triploid hybrids from heteroploid crosses of orthoploid forms, which is based on the analysis of the loci most polymorphic in parental forms, and (2) for the analysis of true hybridity (verification of pedigrees), including tetraploid forms. Moreover, we identified the most polymorphic loci suitable for the above purposes. The aspects of qualitative and quantitative interpretation of the fragment analysis of microsatellite loci results are considered. The possibilities and limitations of the SSR analysis for detection of apple ploidy level are discussed.  相似文献   

15.
The genetic variability of five natural populations ofNajas marina L., i.e. one diploid of subsp.marina (Europe), two of subsp.intermedia (Europe) and both a diploid (C. Africa) and a tetraploid (Middle East) of subsp.armata, has been estimated by means of electrophoretic studies. These populations differ in their morphology and karyotype. Emphasis is placed on the characteristics and status of a tetraploid cytotype from Merkaz Sappir (Israel). Almost all the variation observed is expressed in seed alcohol dehydrogenase (ADH). The differences are in a unique allele of theAdh-2 locus and in the formation of novel heteromeric isozymes.Adh genes in seeds can be used as a marker for the autotetraploid character. The other enzyme systems tested failed in this respect. The genetic variability based on 23 loci is rather low. Nevertheless, the autotetraploid population has a higher or equal ratio of polymorphic loci than the related diploids. Cluster analysis illustrated not only thatNajas marina subsp.marina has diverged much from subsp.intermedia and subsp.armata, but also showed the difference between the latter two taxa, as well as the intermediate position of the autotetraploid population.  相似文献   

16.
Widén B  Widén M 《Hereditas》2000,132(3):229-241
The chromosome number of the polyploid species Glechoma hederacea was found to be 2n = 36 in a sample of 93 ramets derived from 27 sites in N and C Europe. Variation in 10 enzymes was surveyed in material from S Sweden and S Czech Republic. The genetic control of variation was investigated using segregating progeny from crosses and self-fertilized heterozygous plants. The genetic analysis comprised 30 of 32 putative alleles detected in the geographical survey. Five loci (Aat-2, Tpi-1, Tpi-2, Pgd-2 and Mnr) behaved as isoloci with one copy of a locus being monomorphic for a common allele, the other di-allelic for a common allele and a variant allele. In four isoloci (Pgd-1, Pgi-2, Mdh-2 and Adh), both copies of the duplicated locus were polymorphic, with one allele common to both copies and with another allele unique for each copy except for Pgd-1 where both copies were tri-allelic. Three loci, Pgm-3, Skd-1 and Skd-2 were regarded as being non-duplicated. Segregation ratios for all enzyme loci were in close agreement with expectations based on disomic inheritance. Our data suggest that the tetraploid G. hederaca is a diploidized autotetraploid.  相似文献   

17.
A taxonomic study by Naczi, Reznicek, and Ford (American Journal of Botany, 85, 434-447, 1998) has determined that three species (Carex willdenowii, C. basiantha, and C. superata) can be recognized within the C. willdenowii complex. To determine the amount of genetic divergence within and between these species, allozyme analyses were conducted on 14 populations distributed from Pennsylvania to eastern Texas. Seventeen loci were surveyed, 13 of which were polymorphic, with all populations being polymorphic at one or more loci. Interspecific genetic identities ranged from 0.560 (C. willdenowii and C. basiantha) to 0.807 (C. basiantha and C. superata). Alleles for the isozymes Aat-1, Dia-1, Idh-2, Mdh-2, Per-1, Pgm-1, and Pgm-2 served to distinguish C. willdenowii from C. basiantha and C. superata. Carex basiantha and C. superata were recognized by alleles of Mdh-2, Pgm-1, and Tpi-2. The genetic identities of populations within species were high and exceeded 0.957. A caespitose growth habit and perigynia in close proximity to the staminate flowers suggest adaptations for selfing and therefore low levels of heterozygosity. Paradoxically, the values for expected heterozygosities (Hexp) were always lower than those obtained by direct count (Hobs): F values were highly negative, indicating heterozygous excess. Disassortative mating and selection are discussed as possible mechanisms for maintaining heterozygous excess within populations.  相似文献   

18.
BACKGROUND AND AIMS: Polyploidization plays an important role in the evolution of many plant genera, including Koeleria. The knowledge of ploidy, chromosome number and genome size may enable correct taxonomic treatment when other features are insufficient as in Koeleria. Therefore, these characteristics and their variability were determined for populations of six central European Koeleria taxa. METHODS: Chromosome number analysis was performed by squashing root meristems, and ploidy and 2C nuclear DNA content were estimated by flow cytometry. KEY RESULTS: Three diploids (K. glauca, K. macrantha var. macrantha and var. pseudoglauca), one tetraploid (K. macrantha var. majoriflora), one decaploid (K. pyramidata) and one dodecaploid (K. tristis) were found. The 2C nuclear DNA content of the diploids ranged from 4.85 to 5.20 pg. The 2C DNA contents of tetraploid, decaploid and dodecaploid taxa were 9.31 pg, 22.89 pg and 29.23 pg, respectively. The DNA content of polyploids within the K. macrantha aggregate (i.e. within K. macrantha and K. pyramidata) was smaller than the expected multiple of the diploid genome (K. macrantha var. macrantha). Geography-correlated variation of DNA content was found for some taxa. Czech populations of K. macrantha var. majoriflora had a 5.06% smaller genome than the Slovak ones. An isolated eastern Slovakian population of K. tristis revealed 8.04% less DNA than populations from central Slovakia. In central and north-west Bohemia, diploid and tetraploid cytotypes of K. macrantha were sympatric; east from this region diploid populations, and towards the west tetraploid populations were dominant. CONCLUSIONS: Remarkable intra-specific inter-population differences in nuclear DNA content were found between Bohemian and Pannonian populations of Koeleria macrantha var. majoriflora and between geographically isolated central and eastern Slovakian populations of K. tristis. These differences occur over a relatively small geographical scale.  相似文献   

19.
Evidence from gross morphology, karyology and flavonoid chemistry suggests that Tolmiea menziesii is one of the clearest examples of autopolyploidy in natural populations. To provide additional data regarding the origin of the tetraploid cytotype of Tolmiea, both the 5S and 18S-25S ribosomal RNA genes were studied at the restriction enzyme level. Using restriction enzymes that cut once per repeat, the lengths of the 5S and 18S-25S ribosomal genes were estimated in diploids and tetraploid plants. There appear to be no consistent differences between diploids and tetraploids for the repeat length of the 18S-25S ribosomal genes. Furthermore, there is no significant repeat length heterogeneity within tetraploid plants for these genes. In addition, no differences in repeat length of the 5S genes were observed among the diploid and tetraploid plants analysed. The homogeneity observed among diploid and tetraploid plants for repeat length of the 5S and 18S-25S ribosomal genes is consistent with the hypothesis that the tetraploid cytotype is of autopolyploid origin.  相似文献   

20.
Isozyme variation among 114 accessions of the Glycine tomentella Hayata was analysed by single linkage cluster analysis and the unweighted pair group centroid method (UPGMC). The diploid accessions fell into six distinct, well defined groups, which conformed with differences in chromosome number (2n − 38 or 2n − 40) or in geographic origin. The majority of the tetraploid accessions belonged to a large, geographically widespread group, predominantly aneuploid (2n − 78) group. The remaining four tetraploid groups were distinct on the basis of morphology or geographic distribution. The validity of tetraploid isozyme groupings for reflecting subspecific differentiation was supported by the published reports of hybrid fertility. All of the nineteen crosses between isozyme groups have yielded sterile hybrids, whereas five crosses within groups have yielded fertile hybrids. The relationship between diploids and tetraploids was examined either as the similarity between individual accessions, or that between isozyme groups. These analyses indicated that each tetraploid group is closely related to only one or two of the diploid groups or subgroups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号