首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Cypripedium kentuckiense is a recently described rare orchid found in Arkansas (predominantly) and in eight other states. Much debate has focused on whether this taxon should be recognized as a distinct species or considered to be an extreme manifestation of the variability present in the widespread taxon Cypripedium parviflorum var. pubescens. In this study, 12 isozyme loci were analyzed for 14 populations of C. parviflorum var. pubescens and eight populations of C. kentuckiense. These data were used to examine the genetic similarity of these taxa, assess whether isozyme data support the continued recognition of C. kentuckiense as a distinct species, and assess whether a newly discovered disjunct Virginia population of C. kentuckiense is genetically isolated from other C. kentuckiense populations. The isozyme data revealed that the two taxa are very closely related with a high interspecific genetic identity. However, C. kentuckiense populations contain a subset of the variation present in C. parviflorum var. pubescens, and they have expected levels of heterozygosity that are one-quarter that of C. parviflorum var. pubescens populations. Cypripedium kentuckiense also possesses one widespread unique allele and a unique multilocus genotype. These data suggest that C. kentuckiense should be recognized as a distinct species, possibly of recent origin from C. parviflorum. Lastly, the isozyme data support the hypothesis that gene flow between the Virginia population and other populations of C. kentuckiense has been restricted.  相似文献   

2.
The distribution of genetic variation within and among plant populations is influenced by both contemporary and historical factors. I used isozyme analysis of band phenotypes to examine genetic structure in the rare prairie forb Silene regia. Relationships between current-day population size, isolation, and phenotypic variation were assessed for 18 populations in two regions with differing postglacial history. Western populations from unglaciated southern Missouri and Arkansas were more genetically diverse based on the Shannon-Weaver index (H) and a polymorphic index than were more eastern populations. These differences may be due to loss of variation with repeated founding of new populations in previously glaciated sites in Indiana and Ohio. Within the western region, population size was not significantly correlated with genetic variation. In the east, size was correlated with Shannon-Weaver diversity. There was no relationship between variation and isolation in either region, but eastern populations were slightly more differentiated. Greater among-population differentiation and the demonstrated connection between population size and variation in the eastern sites may reflect lower levels of interpopulation gene flow in the fragmented remnant prairies of Indiana and Ohio.  相似文献   

3.
American wild-rice (Zizania palustris var. palustris) has served as a staple for indigenous North Americans for thousands of years, but has had significant habitat losses in recent centuries. We investigated genetic variability among 17 wild-rice populations in northern Wisconsin using 13 isozyme markers. We then compared these genetic patterns to differences in habitat and population characteristics and phenotypic variation in plant growth and reproduction across sites. Wild-rice's mean genetic diversity (0.15) is moderate compared to wind-pollinated outcrossers but lower than the mean (0.20) reported for the Poaceae. Estimated inbreeding coefficients within populations (f) average 0.12 but vary greatly among the populations (from -0.44-0.52), suggesting heterogeneous population histories. Larger populations in larger lakes express higher levels of genetic variability and smaller inbreeding coefficients than smaller or more isolated populations. The number of panicles per plant is also higher in populations with greater genetic variability. Estimated genetic differentiation among the 17 populations (F(ST)) was high (0.30), suggesting limited gene flow among drainages. Wild-rice population size and degree of isolation have opposing effects on its genetic variability, and plant performance is positively associated with genetic variability.  相似文献   

4.
Drosophila antonietae is an endemic South American cactophilic species found in relictual xerophytic vegetation, mostly associated with Cereus hildmaniannus cactus. Low differentiation among populations of this species has been detected using several markers. In this work, we performed an allozyme genetic variability analysis of 11 natural populations of D. antonietae and included a discussion about the possible influences of several evolutionary processes that might be acting to maintain the pattern observed. The genetic variability of 14 isoenzyme loci was analysed and showed a high genetic diversity (average observed heterozygosity = 0.319) and a moderate genetic differentiation among populations ( F statistics = 0.0723). A correlation between genetic and geographical and ecological distances was detected among pairs of populations and the regional equilibrium analysis was thus applied. This analysis resulted in Nm (number of migrants) of approximately 3.21, indicating that moderate levels of both gene flow and genetic drift occur in this species, with gene flow overlapping genetic drift. However, considering ecological features of drosophilids, we propose a hypothesis to explain the moderate differentiation encountered as a result of three different processes, or a combination of them: (1) gene flow; (2) a short period of differentiation, i.e. maintenance of ancestral polymorphism; and (3) action of natural selection. Moreover, if gene flow is present, the high genetic diversity compared with other cactophilic and non-cactophilic species could be due to differential selection in different populations followed by gene exchange among them. These factors are discussed in the light of D. antonietae 's historical and evolutionary association with the host cactus.  相似文献   

5.
Habitat conversion and fire suppression during the last 50 yr have greatly reduced and altered Florida scrub vegetation, resulting in threats to the persistence of its unique flora. As part of a larger conservation project, we investigated patterns of isozyme variation in three rare perennial scrub plants with overlapping ranges endemic to Florida rosemary scrub on the Lake Wales Ridge. All three species have low levels of genetic variation, comparable to or lower than those generally reported for rare plants with restricted geographic ranges. Liatris ohlingerae has more than twice the expected heterozygosity of the other two species, with little population differentiation. In contrast, Hypericum cumulicola has highly differentiated populations with little apparent interpopulation gene flow and heterozygote deficiencies indicative of inbreeding. Eryngium cuneifolium, the species with the narrowest range and fewest populations, has intermediate values for genetic parameters. Although the three species have narrow and overlapping geographic ranges and similar habitat specificity, we discuss how optimal conservation of each species differs.  相似文献   

6.
Spatial genetic structure (SGS) of plants mainly depends on the effective population size and gene dispersal. Maternally inherited loci are expected to have higher genetic differentiation between populations and more intensive SGS within populations than biparentally inherited loci because of smaller effective population sizes and fewer opportunities of gene dispersal in the maternally inherited loci. We investigated biparentally inherited nuclear genotypes and maternally inherited chloroplast haplotypes of microsatellites in 17 tree populations of three wild cherry species under different conditions of tree distribution and seed dispersal. As expected, interpopulation genetic differentiation was 6–9 times higher in chloroplast haplotypes than in nuclear genotypes. This difference indicated that pollen flow 4–7 times exceeded seed flow between populations. However, no difference between nuclear and chloroplast loci was detected in within‐population SGS intensity due to their substantial variation among the populations. The SGS intensity tended to increase as trees became more aggregated, suggesting that tree aggregation biased pollen and seed dispersal distances toward shorter. The loss of effective seed dispersers, Asian black bears, did not affect the SGS intensity probably because of mitigation of the bear loss by other vertebrate dispersers and too few tree generations after the bear loss to alter SGS. The findings suggest that SGS is more variable in smaller spatial scales due to various ecological factors in local populations.  相似文献   

7.
Populations of Abies in southern Mexico and Guatemala (A. flinckii, A. guatemalensis, A. hickeli, and A. religiosa) have a patchy distribution. This pattern is particularly clear in A. guatemalensis. Genetic diversity within populations, measured by average heterozygosity at 16 isozyme loci, is lower than the range reported for most conifers (mean H(o) ranging from 0.069 in A. guatemalensis to 0.113 in A. flinckii), while differentiation among populations is higher than that observed in most conifer species studied (θ = F(st) ranging from 0.073 in A. hickeli to 0.271 in A. flinckii). Estimated levels of gene flow are low (ranging from 0.672 in A. flinckii to 3.17 in A. hickeli). Populations in most cases had an excess of homozygosity over that expected under Hardy-Weinberg equilibrium, suggesting some inbreeding (F(is) ranging from 0.074 in A. flinckii to 0.235 in A. guatemalensis). A significant relationship between gene flow and geographic distance was observed in A. religiosa, but not in the other three taxa studied. The patterns of genetic variation appear to have been influenced by the distributions and histories of these species. Paleoclimatic evidence suggests that the ranges of these species retreated upwards during the Pleistocene glaciation and became fragmented during the warming period that followed. The populations could have passed through genetic bottlenecks that reduced genetic variation and led to interpopulation differentiation.  相似文献   

8.
Aim To test hypotheses that: (1) late Pleistocene low sea‐level shorelines (rather than current shorelines) define patterns of genetic variation among mammals on oceanic Philippine islands; (2) species‐specific ecological attributes, especially forest fidelity and vagility, determine the extent to which common genetic patterns are exhibited among a set of species; (3) populations show reduced within‐population variation on small, isolated oceanic islands; (4) populations tend to be most highly differentiated on small, isolated islands; and (5) to assess the extent to which patterns of genetic differentiation among multiple species are determined by interactions of ecological traits and geological/geographic conditions. Location The Philippine Islands, a large group of oceanic islands in Southeast (SE) Asia with unusually high levels of endemism among mammals. Methods Starch‐gel electrophoresis of protein allozymes of six species of small fruit bats (Chiroptera, Pteropodidae) and one rodent (Rodentia, Muridae). Results Genetic distances between populations within all species are not correlated with distances between present‐day shorelines, but are positively correlated with distances between shorelines during the last Pleistocene period of low sea level; relatively little intraspecific variation was found within these ‘Pleistocene islands’. Island area and isolation of oceanic populations have only slight effects on standing genetic variation within populations, but populations on some isolated islands have heightened levels of genetic differentiation, and reduced levels of gene flow, relative to other islands. Species associated with disturbed habitat (all of which fly readily across open habitats) show more genetic variation within populations than species associated with primary rain forest (all of which avoid flying out from beneath forest canopy). Species associated with disturbed habitats, which tend to be widely distributed in SE Asia, also show higher rates of gene flow and less differentiation between populations than species associated with rain forest, which tend to be Philippine endemic species. One rain forest bat has levels of gene flow and heterozygosity similar to the forest‐living rodent in our study. Main conclusions The maximum limits of Philippine islands that were reached during Pleistocene periods of low sea level define areas of relative genetic homogeneity, whereas even narrow sea channels between adjacent but permanently isolated oceanic islands are associated with most genetic variation within the species. Moreover, the distance between ‘Pleistocene islands’ is correlated with the extent of genetic distances within species. The structure of genetic variation is strongly influenced by the ecology of the species, predominantly as a result of their varying levels of vagility and ability to tolerate open (non‐forested) habitat. Readily available information on ecology (habitat association and vagility) and geological circumstances (presence or absence of Pleistocene land‐bridges between islands, and distance between oceanic islands during periods of low sea level) are combined to produce a simple predictive model of likely patterns of genetic differentiation (and hence speciation) among these mammals, and probably among other organisms, in oceanic archipelagos.  相似文献   

9.
Sustainable forest restoration and management practices require a thorough understanding of the influence that habitat fragmentation has on the processes shaping genetic variation and its distribution in tree populations. We quantified genetic variation at isozyme markers and chloroplast DNA (cpDNA), analysed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in severely fragmented populations of Sorbus aucuparia (Rosaceae) in a single catchment (Moffat) in southern Scotland. Remnants maintain surprisingly high levels of gene diversity (HE) for isozymes (HE = 0.195) and cpDNA markers (HE = 0.490). Estimates are very similar to those from non-fragmented populations in continental Europe, even though the latter were sampled over a much larger spatial scale. Overall, no genetic bottleneck or departures from random mating were detected in the Moffat fragments. However, genetic differentiation among remnants was detected for both types of marker (isozymes Theta n = 0.043, cpDNA Theta c = 0.131; G-test, P-value < 0.001). In this self-incompatible, insect-pollinated, bird-dispersed tree species, the estimated ratio of pollen flow to seed flow between fragments is close to 1 (r = 1.36). Reduced pollen-mediated gene flow is a likely consequence of habitat fragmentation, but effective seed dispersal by birds is probably helping to maintain high levels of genetic diversity within remnants and reduce genetic differentiation between them.  相似文献   

10.
The present study investigated the genetic diversity, population structure, F ST outliers, and extent and pattern of linkage disequilibrium in five populations of Keteleeria davidiana var. formosana, which is listed as a critically endangered species by the Council of Agriculture, Taiwan. Twelve amplified fragment length polymorphism primer pairs generated a total of 465 markers, of which 83.74% on average were polymorphic across populations, with a mean Nei’s genetic diversity of 0.233 and a low level of genetic differentiation (approximately 6%) based on the total dataset. Linkage disequilibrium and HICKORY analyses suggested recent population bottlenecks and inbreeding in K. davidiana var. formosana. Both STRUCTURE and BAPS observed extensive admixture of individual genotypes among populations based on the total dataset in various clustering scenarios, which probably resulted from incomplete lineage sorting of ancestral variation rather than a high rate of recent gene flow. Our results based on outlier analysis revealed generally high levels of genetic differentiation and suggest that divergent selection arising from environmental variation has been driven by differences in temperature, precipitation, and humidity. Identification of ecologically associated outliers among environmentally disparate populations further support divergent selection and potential local adaptation.  相似文献   

11.
Morphological and isozyme variation was observed among plants regenerated from callus cultures of Cereus peruvianus. Different morphological types of shoots (68%) were observed in 4-year-old regenerated plants, while no distinct morphological variants were observed in plants grown from germinated seeds. Isozyme patterns of 633 plants regenerated from calli and of 261 plants grown from germinated seeds showed no variation in isocitrate dehydrogenase isozyme, and the differential sorbitol dehydrogenase, alcohol dehydrogenase, malate dehydrogenase, acid phosphatase, and peroxidase isozyme patterns observed in regenerated plants were attributed to nonallelic variation. Allelic variation was detected at three isoesterase loci. The proportion of polymorphic loci for both populations was 13.6% and the deviation from Hardy–Weinberg equilibrium for the Est-1 and Est-7 loci observed in somaclones was attributed to the manner in which the regenerant population was established. The high values for genetic identity among regenerant and seed-grown plant populations are in accordance with the low levels of interpopulation genetic divergence. In somaclones of C. peruvianus, morphological divergence was achieved within a short time but was not associated with any isozyme changes and also was not accompanied by biochemical genetic divergence.  相似文献   

12.
Levels of gene flow among populations vary both inter- and intraspecifically, and understanding the ecological bases of variation in levels of gene flow represents an important link between the ecological and evolutionary dynamics of populations. The effects of habitat spatial structure on gene flow have received considerable attention; however, most studies have been conducted at a single spatial scale and without background data on how individual movement is affected by landscape features. We examined the influence of habitat connectivity on inferred levels of gene flow in a high-altitude, meadow-dwelling butterfly, Parnassius smintheus. For this species, we had background data on the effects of landscape structure on both individual movement and on small-scale population genetic differentiation. We compared genetic differentiation and patterns of isolation by distance, based on variation at seven microsatellite loci, among three regions representing two levels of connectivity of high-altitude, nonforested habitats. We found that reduced connectivity of habitats, resulting from more forest cover at high altitudes, was associated with greater genetic differentiation among populations (higher estimated FST), a breakdown of isolation by distance, and overall lower levels of inferred gene flow. These observed differences were consistent with expectations based on our knowledge of the movement behaviour of this species and on previous population genetic analyses conducted at the smaller spatial scale. Our results indicate that the role of gene flow may vary among groups of populations depending on the interplay between individual movement and the structure of the surrounding landscape.  相似文献   

13.
The Wood Stork (Mycteria americana) is a colonial wading bird of the tropical and lower subtropical zones. We assessed genetic structure within and among five stork colonies from the Brazilian Pantanal and compared our data with those from North American populations. Samples of 234 individuals were studied using protein electrophoresis to evaluate genetic variability and interpopulation differentiation. Of 22 loci examined, 7 were polymorphic (mean heterozygosity = 0.068). The low Fst value (0.005) indicated little intraspecific variation among breeding colonies. Estimated number of migrants per generation based on private alleles (Nm = 11.3) and on Fst (48.8) suggests high gene flow. Nei's genetic distance values among Pantanal colonies ranged from 0.0001 to 0.0034, demonstrating low genetic divergence among populations. Our data can be explained by supposing high gene flow levels among Pantanal colonies, and between North and South American populations, intermediated by a probable interbreeding population in Central America.  相似文献   

14.
This study analyses the allozymic variation of 20 presumptive loci in eight populations of Rana saharica from Morocco. Populations were collected from the very different climatic zones of this country: the Rif area, the Atlas mountains and the desert. Moroccan water-frog populations are genetically well differentiated from the geographically closed Algerian populations. Thus, to check if such a differentiation process is taking place within Moroccan water frogs, we attempted to analyse the genetic structure and patterns of gene flow of Moroccan populations, by means of estimates of Hardy-Weinberg equilibrium, F-statistics and indirect measures of gene flow. Fst(0.250) and Fis(0.254) values were similar, which means that both intra and interpopulation differentiation contribute equally to the amount of genetic divergence revealed. Fis values indicated some degree of structure within ponds, which is possibly related to the homing behaviour of some amphibians. On the other hand, Fst and genetic distances between populations were not very high. Despite the low levels of gene flow estimated, together with the homing behaviour revealed and the spatially discontinuous distribution, it was found that genetic differentiation among populations was not as high as expected. The likelihood of genetic homogeneity being the consequence of continuous population extinction and recolonization events is discussed.  相似文献   

15.
The breeding system is expected to strongly influence the genetic structure of plant populations. In the present study, isozyme variation is documented in Danish populations of three species of Epipactis , varying in breeding system from allogamy to obligate autogamy. The allogamous and widespread E. helkborine subsp. helkborine shows high levels of polymorphism. Most of the genetic variation is found within local populations. A hierarchical analysis indicates significant among-population differentiation, but no regional differentiation in E. helkborine is apparent. This may be due to higher levels of gene flow in the past, before forest was fragmented. The ecotype from coastal dunes, E. helleborine subsp. neerlandka , does not differ from E. helkborine subsp. helkborine in any of the examined loci, but it has a significant population inbreeding coefficient that can probably be explained by higher levels of geitonogamy and the possibility of spontaneous autogamy. The entomophilous E. purpurata and the obligately autogamous E. phylhmthes are monomorphic at all loci examined. Several factors, including a founder effect at the time of colonization, high levels of geitonogamy, as well as habitat specialization combined with erratic flowering may have contributed to the lack of variation in E. purpurata. The lack of variation in the autogamous E. phyllanthes is probably due to inbreeding. It is proposed diat autogamy in Epipactis may in some cases have evolved through paedomorphosis of allogamous flowers and that the occurrence of local breeding groups may have facilitated the speciation process.  相似文献   

16.
Tree species with wide distributions often exhibit different levels of genetic structuring correlated to their environment. However, understanding how environmental heterogeneity influences genetic variation is difficult because the effects of gene flow, drift and selection are confounded. We investigated the genetic variation and its ecological correlates in a wind-pollinated Mediterranean tree species, Fraxinus angustifolia Vahl, within a recognised glacial refugium in Croatia. We sampled 11 populations from environmentally divergent habitats within the Continental and Mediterranean biogeographical regions. We combined genetic data analyses based on nuclear microsatellite loci, multivariate statistics on environmental data and ecological niche modelling (ENM). We identified a geographic structure with a high genetic diversity and low differentiation in the Continental region, which contrasted with the significantly lower genetic diversity and higher population divergence in the Mediterranean region. The positive and significant correlation between environmental and genetic distances after controlling for geographic distance suggests an important influence of ecological divergence of the sites in shaping genetic variation. The ENM provided support for niche differentiation between the populations from the Continental and Mediterranean regions, suggesting that contemporary populations may represent two divergent ecotypes. Ecotype differentiation was also supported by multivariate environmental and genetic distance analyses. Our results suggest that despite extensive gene flow in continental areas, long-term stability of heterogeneous environments have likely promoted genetic divergence of ashes in this region and can explain the present-day genetic variation patterns of these ancient populations.  相似文献   

17.
We investigated cpDNA sequence and nuclear microsatellite variation among populations of the wild daffodil Narcissus triandrus to examine the role of historical vs. contemporary forces in shaping population structure, morphological differentiation and sexual-system evolution. This wide-ranging heterostylous species of the Iberian Peninsula is largely composed of two allopatric varieties (vars. cernuus and triandrus), and populations with either stylar trimorphism or dimorphism. Dimorphic populations only occur in var. triandrus, are mainly restricted to the northwestern portion of the species range, and uniformly lack the mid-styled morph (M-morph). Chloroplast DNA (cpDNA) sequence variation revealed strong geographical structuring and evidence for a fragmentation event associated with differentiation of the two varieties. In var. triandrus, population fragmentation, restricted gene flow and isolation-by-distance were also inferred. Significant differences in genetic diversity and population structure between the two varieties likely reflect historical and contemporary differences in demography and gene flow among populations. Discordance between cpDNA markers and both microsatellite and morphological variation indicate that hybridization has occurred between the two varieties at contact zones. There were no differences in genetic diversity or population structure between dimorphic and trimorphic populations, and chloroplast haplotypes were not associated with either sexual system, indicating transitions in morph structure within each maternal lineage. M-morph frequencies were positively correlated with differentiation at microsatellite loci, indicating that the evolutionary processes influencing these neutral markers also influence alleles controlling the style morphs.  相似文献   

18.
To examine if the cultivation process has reduced the genetic variation of modern cultivars of the traditional Chinese medicinal plant, Coptis chinensis, the levels and distribution of genetic variation was investigated using ISSR markers. A total of 214 C. chinensis individuals from seven wild and three cultivated populations were included in the study. Seven ISSR primers were used and a total of 91 DNA fragments were scored. The levels of genetic diversity in cultivated populations were similar as those in wild populations (mean PPL = 65.2% versus PPL = 52.4%, mean H = 0.159 versus H = 0.153 and mean I = 0.255 versus I = 0.237), suggesting that cultivation did not seriously influence genetic variation of present-day cultivated populations. Neighbour-joining cluster analysis showed that wild populations and cultivated populations were not separated into two groups. The coefficient of genetic differentiation between a cultivar and its wild progenitor was 0.066 (G(st)), which was in good accordance with the result by amova analysis (10.9% of total genetic variation resided on the two groups), indicating that cultivated populations were not genetically differentiated from wild progenitors. For the seven wild populations, a significant genetic differentiation among populations was found using amova analysis (45.9% of total genetic variation resided among populations). A number of causes, including genetic drift and inbreeding in the small and isolated wild populations, the relative limited gene flow between wild populations (N(m) = 0.590), and high gene flow between cultivars and their wild progenitors (N(m) = 7.116), might have led to the observed genetic profiles of C. chinensis.  相似文献   

19.
七筋菇自然居群的遗传结构分析   总被引:4,自引:0,他引:4  
采用ISSR分子标记,对七筋菇(Clintonia udensis)17个居群的遗传多样性与遗传结构进行了研究。结果表明:七筋菇不同居群的多态位点百分率PPB为11.90%~59.52%,总的多态位点百分率PPB为98.8%,具有高的遗传多样性。Shannon多样性指数(0.6903)和基因分化系数(GST=0.6944)均揭示出七筋菇居群间存在明显的遗传差异,AMOVA分析结果也显示遗传变异主要发生在居群之间(81.47%),而居群内部的遗传变异仅为18.53%。七筋菇居群间的遗传距离从0.1871~0.6632,平均为0.3838,大于同一物种居群间的平均遗传距离值(0.05),同样表明七筋菇居群间的遗传多样性存在较大差异。七筋菇居群间的基因流Nm=0.2200,远远低于一般广布种植物的基因流(Nm=1.881)。Mantel检测显示居群间的遗传距离与地理距离之间没有显著相关性(r=0.029,P=0.3196)。七筋菇分布范围广以及其进化历史是其具有高遗传多样性的原因;居群间存在较高遗传变异可能是由于七筋菇本身的生物学特性、有限的基因流以及遗传漂变等原因造成的。  相似文献   

20.
Genetic diversity was measured by allozyme electrophoresis in eight natural populations of the threatened Canarian endemic Viola palmensis Webb & Berth. (Violaceae). Nineteen alleles corresponding to 11 gene loci were detected. High levels of genetic diversity were found, ranging from 36.3 to 45.4 % for the percentage of polymorphic loci (P), from 1.45 to 1.60 for the average number of alleles per locus (A) and from 0.128 to 0.200 for the expected heterozygosity (H(e)). Between 85.5 and 96.6 % of genetic variability was apportioned within populations. As a whole, populations were not at Hardy-Weinberg equilibrium, with a deficit of heterozygous individuals attributable to the existence of genetic structuring in the populations analysed. The levels of interpopulation genetic differentiation were low (mean F(ST) = 0.100), while genetic identity pair-wise comparisons were high (mean I = 0.973) suggesting considerable levels of gene flow among populations. No relationship was detected between genetic differentiation and geographical distances between populations. An outcrossing insect-mediated breeding system might contribute to pollen dispersion of this species. For conservation genetics we suggest in situ preservation areas are defined that are free of disturbance and that include populations with the highest genetic diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号