首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J W Riesmeier  B Hirner    W B Frommer 《The Plant cell》1993,5(11):1591-1598
The major transport form of assimilates in most plants is sucrose. Translocation from the mesophyll into the phloem for long-distance transport is assumed to be carrier mediated in many species. A sucrose transporter cDNA was isolated from potato by complementation of a yeast strain that is unable to grow on sucrose because of the absence of an endogenous sucrose uptake system and the lack of a secreted invertase. The deduced amino acid sequence of the potato sucrose transporter gene StSUT1 is highly hydrophobic and is 68% identical to the spinach sucrose transporter SoSUT1 (pS21). In yeast, the sensitivity of sucrose transport to protonophores and to an increase in pH is consistent with an active proton cotransport mechanism. Substrate specificity and inhibition by protein modifiers are similar to results obtained for sucrose transport into protoplasts and plasma membrane vesicles and for the spinach transporter, with the exception of a reduction in maltose affinity. RNA gel blot analysis shows that the StSUT1 gene is highly expressed in mature leaves, whereas stem and sink tissues, such as developing leaves, show only low expression. RNA in situ hybridization studies show that the transporter gene is expressed specifically in the phloem. Both the properties and the expression pattern are consistent with a function of the sucrose transporter protein in phloem loading.  相似文献   

2.
The evidence of light, electronic, and confocal microscopy collected within the 30-year period is reviewed to revise the concept of assimilate loading in phloem. It is the starting point located in mesophyll cells, which determines the route of assimilate export from mesophyll to phloem, rather than its final segment located in the terminal phloem. Plastids, photosynthesis, and the primary pool of photosynthates are localized in the vacuome of mesophyll cells. All chemicals applied to leaf surface are loaded to phloem via apoplast, even in the symplastic plants. It follows that photoassimilates are not loaded via apoplast because they cannot leave mesophyll and not due to the lack of pumps and transporters in the terminal phloem cells. Of two membranes separating vacuome and apoplast, the tonoplast confers the barrier function. The impossibility to overcome this barrier raises the hydrostatic pressure in the vacuome to the level that induces plasmodesma development between the cells. With the loss of tonoplast barrier function for assimilates, the latter leave for apoplast, this process is incompatible with building the vacuolar loading route. Two alternative mechanisms of phloem loading diverge initially because of different barrier functions of tonoplast. The radical change in these functions makes up the crucial advantage of the young group of apoplastic dicot plants (about 20 000 species), whose evolution is associated with expansion of meadow-steppe vegetation 5–7 million years ago. Such change would evolve due to the climate differentiation in the late myocene period, when heat and moisture were lacking at vast territories. A large group of temperate herbs evolved and expanded because of these changes in the assimilate compartmentalization.  相似文献   

3.
Evidence for two pathways of phloem loading   总被引:2,自引:0,他引:2  
The minor veins of small leaf discs, punched out of mature leaves and incubated in 14C-sucrose solution, appear labeled in macro- and microautoradiographs. Discs with a labeled vein pattern and with labeled sieve tubes in microautoradiographs were found in Beta vulgaris, Vicia faba, Gomphrena globosa and Antirrhinum majus . However, in several other plant species, minor veins appeared unlabeled in macroautoradiographs when the discs were incubated in 14C-sucrose. Mesophyll cells ( Acer pseudoplatanus, Juglans regia, Fagia, sylvatica, Syringa vulgaris, Laburnum anagyroides ), bundle-sheath cells of major veins ( Salix viminalis, Robinia pseudoacacia, Commelina communis ) or epidermal layers ( Ginkgo biloba, Chlorophytum comosum ) appeared labeled. Lack of radioactivity in sieve tubes of this latter group was confirmed by microauto-radiography. Using 14C-glucose instead of 14C-sucrose, leaf discs of Beta vulgaris showed no labeled vein pattern and in microautoradiographs the sieve tubes appeared unlabeled. In view of the by-pass phloem loading, this study provides evidence for two pathways of phloem loading.  相似文献   

4.
《Plant science》1986,43(3):179-183
Phloem loading, measured in vivo using carbon-11, is shown to be immediately reduced when SO2 is applied to a leaf of a C3 plant, but no immediate effect is seen on a C4 plant. This C3-C4 difference is similar to that seen with anoxia, and it is proposed that it is associated with the different anatomical structures in the vicinity of the vascular tissue, the Kranz anatomy of the C4 plants providing a barrier so that SO2 does not have an immediate effect on phloem loading.  相似文献   

5.
F. Malek  D. A. Baker 《Planta》1977,135(3):297-299
Loading of 14C-labelled sugars from the hollow petiole of Ricinus communis L. was stimulated by potassium and by low pH in that both the 14C-activity and the sugar concentration of phloem sap collected from a nearby incision increased. A pH drop was observed in the solution perfusing a hollow petiole. This pH drop was greater in the presence of potassium and less in the presence of sugars, while the uncoupler CCCP induced a pH rise in the perfusing solution. Sugars were detected in the perfusing solution when it was buffered at pH>9. A model is proposed for a proton co-transport of sugars from the free space driven by a linked proton efflux/potassium influx pump.  相似文献   

6.
Abscisic acid inhibits phloem loading of sucrose   总被引:2,自引:0,他引:2  
The effect of abscisic acid (ABA) on the uptake of sucrose by discs from castor bean ( Ricinus communis L. cv. Zanzibarensis) cotyledons was investigated. Incubation on ABA solutions for one hour or longer significantly inhibited sucrose uptake. The effect was measurable at ABA concentrations as low as 0.1 μ M . The inhibition was due to a lowering of the apparent Vmax of the sucrose-carrier system, the Km being unaffected. Uptake of sucrose was coupled to proton uptake but ABA had no detectable effect on the latter process. It is suggested that ABA exerts an effect on the phloem loading of sucrose by enhancing the efflux of sucrose. In leaf discs from three other plant species ( Beta vulgaris L., Petunia hybrida L. and Phaseolus vulgaris L.) ABA exerted a similar effect. The results are discussed with respect to source-sink relationships.  相似文献   

7.
Ecophysiology of phloem loading in source leaves   总被引:4,自引:2,他引:4  
The nature of phloem loading of photosynthesis products – either symplastic or apoplastic – has been a matter of debate over the last two decades. This controversy was reconciled by proposing a multiprogrammed loading mechanism. Different modes of phloem loading were distinguished on the basis of the variety of plasmodesmatal connectivity between the minor vein elements. Physiological evidence for at least two phloem loading mechanisms as well as recent support for coincidence between plasmodesmatal connectivity and the loading mechanism is shortly reviewed. The present paper attempts to correlate the plasmodesmatal connectivity between sieve element/companion cell complex and the adjacent cells (the minor vein configuration) – and implicitly the associate phloem loading mechanisms – with different types of climate. The minor vein configuration is a family characteristic. This enables one to relate vein configuration with ecosystem using the family distribution over the globe. The uneven distribution of vein types between terrestrial ecosystems indicates that apoplastic phloem loading predominates in cold and dry climate zones. Projection of the minor vein configuration on the Takhtajan system of flowering plants suggests evolution from apoplastic to symplastic phloem loading. Accordingly, the distribution of minor vein configurations suggests that drought and temperature stress have led to the transformation of the ancient symplastic mode into the more advanced apoplastic mode of loading.  相似文献   

8.
Liesche J  Martens HJ  Schulz A 《Protoplasma》2011,248(1):181-190
Despite more than 130 years of research, phloem loading is far from being understood in gymnosperms. In part this is due to the special architecture of their leaves. They differ from angiosperm leaves among others by having a transfusion tissue between bundle sheath and the axial vascular elements. This article reviews the somewhat inaccessible and/or neglected literature and identifies the key points for pre-phloem transport and loading of photoassimilates. The pre-phloem pathway of assimilates is structurally characterized by a high number of plasmodesmata between all cell types starting in the mesophyll and continuing via bundle sheath, transfusion parenchyma, Strasburger cells up to the sieve elements. Occurrence of median cavities and branching indicates that primary plasmodesmata get secondarily modified and multiplied during expansion growth. Only functional tests can elucidate whether this symplasmic pathway is indeed continuous for assimilates, and if phloem loading in gymnosperms is comparable with the symplasmic loading mode in many angiosperm trees. In contrast to angiosperms, the bundle sheath has properties of an endodermis and is equipped with Casparian strips or other wall modifications that form a domain border for any apoplasmic transport. It constitutes a key point of control for nutrient transport, where the opposing flow of mineral nutrients and photoassimilates has to be accommodated in each single cell, bringing to mind the principle of a revolving door. The review lists a number of experiments needed to elucidate the mode of phloem loading in gymnosperms.  相似文献   

9.
The mechanism of phloem loading in rice (Oryza sativa)   总被引:1,自引:0,他引:1  
Carbohydrates, mainly sucrose, that are synthesized in source organs are transported to sink organs to support growth and development. Phloem loading of sucrose is a crucial step that drives long-distance transport by elevating hydrostatic pressure in the phloem. Three phloem loading strategies have been identified, two active mechanisms, apoplastic loading via sucrose transporters and symplastic polymer trapping, and one passive mechanism. The first two active loading mechanisms require metabolic energy, carbohydrate is loaded into the phloem against a concentration gradient. The passive process, diffusion, involves equilibration of sucrose and other metabolites between cells through plasmodesmata. Many higher plant species including Arabidopsis utilize the active loading mechanisms to increase carbohydrate in the phloem to higher concentrations than that in mesophyll cells. In contrast, recent data revealed that a large number of plants, especially woody species, load sucrose passively by maintaining a high concentration in mesophyll cells. However, it still remains to be determined how the worldwide important cereal crop, rice, loads sucrose into the phloem in source organs. Based on the literature and our results, we propose a potential strategy of phloem loading in rice. Elucidation of the phloem loading mechanism should improve our understanding of rice development and facilitate its manipulation towards the increase of crop productivity.  相似文献   

10.
11.
An essential step for the distribution of carbon throughout the whole plant is the loading of sugars into the phloem in source organs. In many plants,accumulation of sugars in the sieve element-companion cell(SE-CC)complex is mediated and regulated by active processes.However,for poplar and many other tree species,a passive symplasmic mechanism of phloem loading has been proposed,characterized by symplasmic continuity along the pre-phloem pathway and the absence of active sugar accumulation in the SE-CC complex. A high overall leaf sugar concentration is thought to enable diffusion of sucrose into the phloem. In this review,we critically evaluate current evidence regarding the mechanism of passive symplasmic phloem loading,with a focus on the potential influence of active sugar transport and plasmodesmal regulation. The limited experimental data,combined with theoretical considerations,suggest that a concomitant operation of passive symplasmic and active phloem loading in the same minor vein is unlikely.However,active sugar transport could well play an important role in how passively loading plants might modulate the rate of sugar export from leaves. Insights into the operation of this mechanism has direct implications for our understanding of how these plants utilize assimilated carbon.  相似文献   

12.
Robert Turgeon  Esther Gowan 《Planta》1992,187(3):388-394
Sugar-synthesis and -transport patterns were analyzed in Coleus blumei Benth. leaves to determine where galactinol, raffinose, and stachyose are made and whether phloem loading includes an apoplastic (extracellular) step or occurs entirely within the symplast (plasmodesmata-connected cytoplasm). To clarify the sequence of steps leading to stachyose synthesis, a pulse (15 s) of 14CO2 was given to attached leaves followed by a 5-s to 20-min chase: sucrose was rapidly labeled while galactinol, raffinose and stachyose were labeled more slowly and, within the first few minutes, to approximately the same degree. Leaf tissue was exposed to either 14CO2 or [14C]glucose to identify the sites of synthesis of the different sugars. A 2-min exposure of peeled leaf tissue to [14C]glucose resulted in preferential labeling of the minor veins, as opposed to the mesophyll; galactinol, raffinose and stachyose were more heavily labeled than sucrose in these preparations. In contrast, when leaf tissue was exposed to 14CO2 for 2 min for preferential labeling of the mesophyll, sucrose was more heavily labeled than galactinol, raffinose or stachyose. We conclude that sucrose is synthesized in mesophyll cells while galactinol, raffinose and stachyose are made in the minorvein phloem. Competition experiments were performed to test the possibility that phloem loading involves monosaccharide uptake from the apoplast. Two saturable monosaccharide carriers were identified, one for glucose, galactose and 3-O-methyl glucose, and the other for fructose. Washing the apoplast of peeled leaf pieces with buffer or saturating levels of 3-O-methyl glucose, after providing a pulse of 14CO2, did not inhibit vein loading or change the composition of labeled sugars, and less than 0.5% of the assimilated label was recovered in the incubation medium. These and previous results (Turgeon and Gowan, 1991, Plant Physiol. 94, 1244–1249) indicate that the phloem loading pathway in Coleus is probably symplastic.Abbreviations 3-OMG 3-O-methyl glucose - PCMBS p-chloromercuribenzenesulfonic acid - SE-CCC sieve-element-companion-cell complex This research was supported by National Science Foundation Grant DCB-9104159, U.S. Department of Agriculture Competetive Grant 90000854, and Hatch funds.  相似文献   

13.
14.
15.
Phloem loading of carbohydrate within a mature exporting leaf of a barley seedling is shown to respond quickly to a change in the temperature of the root and the shoot meristem. This is interpreted as a close coupling between source supply and sink demand for carbohydrate, through the hydrostatic pressure gradient linking source and sink generated by the solute concentration within the sieve tubes. This interpretation was tested by using anoxia to alter solute concentration within the sieve tubes of one region of a leaf while observing phloem loading in an adjacent region. Responses to anoxia could not be explained by the above model, suggesting that either this model is incorrect or other signalling pathways are involved. There is evidence in the literature for coarse control of phloem loading but no evidence was found of fine control by solute content of the loaded sieve elements.  相似文献   

16.
Kerr and Godfrey-Smith argue that two mathematically equivalent, alternative formal representations drawn from population genetics, the contextualist and collectivist formalisms, may be equally good for quantifying the dynamics of some natural systems, despite important differences between the formalisms. I draw on constraints on causal representation from Woodward (Making things happen, Oxford University Press, New York, 2003) and Eberhardt and Scheines (Philos Sci 74(5):981–995, 2006) to argue that one or the other formalism will be superior for arbitrary natural systems in which individuals form different types of groups.  相似文献   

17.
E. de Faÿ  C. Sanier  C. Hebant 《Protoplasma》1989,149(2-3):155-162
Summary Cell to cell connections, including plasmodesmata and perforations, were examined in the non-conducting secondary phloem ofHevea brasiliensis. Samples were taken from trunks of numerous trees, from several clones, and prepared for thin sectioning and transmission or scanning electron microscopy and as optical sections for fluorescence microscopy. Numerous plasmodesmata were found clustered in primary pit-fields between the ray and axial parenchyma cells. Between the laticifers and adjacent parenchyma sheath cells, structures corresponding to functional plasmodesmata were not observed. But some unusual structural features were occasionally seen in these walls. These observations are discussed in relation to the possible function of the cell types, and to the loss of latex on the tapping ofHevea. It is suggested that the loading of the laticifer might first require a symplastic pathway for the transport of metabolites, at the end of which the assimilates must enter the apoplast. A transmembrane active transport system then transfers the metabolites in the laticifer. The presumable role of parenchyma cells in the loading of laticifers is emphasized.  相似文献   

18.
Robert Turgeon  J. A. Webb 《Planta》1976,129(3):265-269
Summary Young leaves of Cucurbita pepo L. were examined by whole-leaf autoradiography and serial paradermal sections were examined by light microscopy to determine whether commencement of sugar export depends upon the minor vein phloem achieving structural maturity. Maturation of these veins develops progressively from the largest toward the smallest elements with the minor veins in the distal region of the leaf maturing before those in the proximal region. Commencement of sugar export is coincident with maturation of the abaxial phloem of the minor veins delimiting the areoles. The abaxial phloem elements of the larger minor veins, which are probably capable of vein loading too but border only relatively few areoles, mature before export starts. The adaxial phloem surrounding the areoles and the xylem elements, mature in advance of the abaxial phloem and well before the beginning of sugar export. It is therefore considered unlikely that structural development alone directly governs the initiation of export. The results suggest that some other rate controlling step is involved.  相似文献   

19.
Plant species were selected on the basis of abundant or no symplasmic continuity between sieveelement-companion-cell (SE-CC) complexes and adjacent cells in the minor veins. Symplasmic continuity and discontinuity are denoted, respectively, as symplasmic and apoplasmic minor-vein configurations. Discs of predarkened leaves from which the lower epidermis had been removed, were exposed to 14CO2. After 2 h of subsequent incubation, phloem loading in control discs and discs treated with p-chloromercuribenzenesulfonic acid (PCMBS) was recorded by autoradiography. Phloem loading was strongly suppressed by PCMBS in minor veins with symplasmically isolated SE-CC complexes (Centaurea, Impatiens, Ligularia, Pelargonium, Pisum, Symphytum). No significant inhibition of phloem loading by PCMBS was observed in minor veins containing sieve elements with abundant symplasmic connections (Epilobium, Fuchsia, Hydrangea, Oenothera, Origanum, Stachys). Phloem loading in minor veins with both types of SE-CC complex (Acanthus) had apoplasmic features. The results provide strong evidence for coincidence between the mode of phloem loading and the minor-vein configuration. The widespread occurrence of a symplasmic mode of phloem loading is postulated.Abbreviations PCMBS p-chloromercuribenzenesulfonic acid - SE-CC complex sieve-element-companion-cell complex  相似文献   

20.
Metabolite transport processes and primary metabolism are highly interconnected. This study examined the importance of source-to-sink nitrogen partitioning, and associated nitrogen metabolism for carbon capture, transport and usage. Specifically, Arabidopsis aap8(AMINO ACID PERMEASE 8) mutant lines were analyzed to resolve the consequences of reduced amino acid phloem loading for source leaf carbon metabolism,sucrose phloem transport and sink development during vegetative and reproductive growth phase. Results showed that decreased amino acid transport had a negative effect on sink development of aap8 lines throughout the life cycle, leading to an overall decrease in plant biomass. During vegetative stage, photosynthesis and carbohydrate levels were decreased in aap8 leaves, while expression of carbon metabolism and transport genes, as well as sucrose phloem transport were not affected despite reduced sink strength.However, when aap8 plants transitioned to reproductive phase, carbon fixation and assimilation as well as sucrose partitioning to siliques were strongly decreased. Overall,this work demonstrates that phloem loading of nitrogen has varying implications for carbon fixation, assimilation and source-to-sink allocation depending on plant growth stage. It further suggests alterations in source-sink relationships, and regulation of carbon metabolism and transport by sink strength in a development-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号