首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To evaluate the monophyly of Coelogyne (Epidendroideae; Orchidaceae) and reveal sectional relationships and relations to allied genera in subtribe Coelogyninae, we collected PCR (polymerase chain reaction) amplified restriction fragment length polymorphisms (RFLPs) from 11 plastid regions for 42 taxa (28 Coelogyne species and 14 representatives of other genera) and three outgroups from Bletiinae and Thuniinae. We also sequenced a large portion of the plastid trnK intron (mostly matK) and the nuclear ribosomal DNA internal transcribed spacers ITS1 and ITS2 (including the 5.8S gene). Separate phylogenetic analyses on each data set using maximum parsimony produced mainly congruent (except for the position of Panisea) but weakly supported clades. Parsimony analysis of the combined data clearly identified three main clades in Coelogyninae. Whereas Coelogyninae are monophyletic, Coelogyne is polyphyletic, with species falling into at least two well-supported clades. The utility of morphological characters used in previous classifications was explored by reconstructing character state evolution on one of the four molecular trees. Lip base and petal shape were homoplasious, whereas ovary indumentum and flower number were congruent with well-supported groups. The implications of our results for the classification of Coelogyne are discussed, and a reorganization of the genus by including Neogyna and Pholidota and removing several species is proposed.  相似文献   

2.
Macaranga and Mallotus (Euphorbiaceae s.s.) are two closely related, large paleo(sub)tropical genera. To investigate the phylogenetic relationships between and within them and to determine the position of related genera belonging to the subtribe Rottlerinae, we sequenced one plastid (trnL-F) and three nuclear (ITS, ncpGS, phyC) markers for species representative of these genera. The analyses demonstrated the monophyly of Macaranga and the paraphyly of Mallotus and revealed three highly supported main clades. The genera Cordemoya and Deuteromallotus and the Mallotus sections Hancea and Oliganthae form a basal Cordemoya s.l. clade. The two other clades, the Macaranga clade and the Mallotus s.s. clade (the latter with Coccoceras, Neotrewia, Octospermum, and Trewia), are sister groups. In the Macaranga clade, two basal lineages (comprising mostly sect. Pseudorottlera) and a crown group with three geographically homogenous main clades were identified. The phylogeny of the Mallotus s.s. clade is less clear because of internal conflict in all four data sets. Many of the sections and informal infrageneric groups of Macaranga and Mallotus do not appear to be monophyletic. In both the Macaranga and Mallotus s.s. clades, the African and/or Madagascan taxa are nested in Asian clades, suggesting migrations or dispersals from Asia to Africa and Madagascar.  相似文献   

3.
A cladistic analysis of subtribe, Pleurothallidinae (Orchidaceae) is based on 45 anatomical/ morphological characters. The ingroup members comprise 24 genera; the large genus Pleurothallis consists of two subgenera and ten species complexes. Three taxa representing subtribes Laeliinae and Arpophyllinae are designated as outgroup. Eight most parsimonious trees were discovered using computer assisted software (length = 230; CI = 0.27). The hypothesis that subtribe Pleurothallidinae has undergone a unilinear reduction in the number of pollinia is not supported by this study. Although the eight-pollinia state as represented by Octomeria apparently is plesiomorphic, the two-pollinia and four-pollinia states arose early in the phylogeny of the subtribe. Both two-and four-pollinia states subsequently reappeared as parallelisms. The six-pollinia state exhibited in Brachionidium is autapomorphic. This cladistic analysis suggests that Pleurothallis is not a natural genus and, perhaps may be divided into several discrete genera.  相似文献   

4.
A cladistic analysis of subtribe, Pleurothallidinae (Orchidaceae) is based on 45 anatomical/ morphological characters. The ingroup members comprise 24 genera; the large genus Pkurothallis consists of two subgenera and ten species complexes. Three taxa representing subtribes Laeliinae and ArpophyUinae are designated as outgroup. Eight most parsimonious trees were discovered using computer assisted software (length = 230; CI = 0.27). The hypothesis that subtribe Pleurothallidinae has undergone a unilinear reduction in the number of pollinia is not supported by this study. Although the eight-pollinia state as represented by Octomeria apparently is plesiomorphic, the two-pollinia and four-pollinia states arose early in the phytogeny of the subtribe. Both two-and four-pollinia states subsequently reappeared as parallelisms. The six-pollinia state exhibited in Brachionidium is autapomorphic. This cladistic analysis suggests that Pkurothallis is not a natural genus and, perhaps may be divided into several discrete genera.  相似文献   

5.
Chamaecrista belongs to subtribe Cassiinae (Caesalpinioideae), and it comprises over 330 species, divided into six sections. The section Xerocalyx has been subjected to a profound taxonomic shuffling over the years. Therefore, we conducted a phylogenetic analysis using a cpDNA trnE-trnT intergenic spacer and nrDNA ITS/5.8S sequences from Cassiinae taxa, in an attempt to elucidate the relationships within this section from Chamaecrista. The tree topology was congruent between the two data sets studied in which the monophyly of the genus Chamaecrista was strongly supported. Our analyses reinforce that new sectional boundaries must be defined in the Chamaecrista genus, especially the inclusion of sections Caliciopsis and Xerocalyx in sect. Chamaecrista, considered here paraphyletic. The section Xerocalyx was strongly supported as monophyletic; however, the current data did not show C. ramosa (microphyllous) and C. desvauxii (macrophyllous) and their respective varieties in distinct clades, suggesting that speciation events are still ongoing in these specimens.  相似文献   

6.
The tribe Arctotideae (African Daisies), of the flowering plant family Compositae (Asteraceae), is a diverse and interesting group with a primarily southern African distribution (ca. 13 genera, 215 species) and many species in the Cape Floristic Region. It is divided into two subtribes: Arctotidinae (ca. 5 genera, 85 species) and Gorteriinae (ca. 8 genera, 130 species). The monophyly of the genera within the subtribe Gorteriinae and their relationship to one another was investigated using 71 samples/212 sequences including 64/141 of which are newly reported from three phylogenetic markers, two from chloroplast DNA (trnL-F and ndhF) and one from the nuclear genome (ITS). The outgroup was composed of seven members from the sister subtribe. Results show the subtribe Gorteriinae to be divided into three monophyletic groups, the Gazania-Hirpicium-Gorteria group, the Didelta group, and the Berkheya-Cullumia group. Within these three groups are 13 sub-groups, one of which has sub-clades. The genus Berkheya Ehrh. is paraphyletic, falling into five different sub-groups. The two monotypic genera, Cuspidia and Heterorhachis are not nested within any of the Berkheya clades. Hirpicium and Cullumia each have most of their taxa in a monophyletic group, but they also have one or two taxa associated with other clades. Four of the five sub-groups of Berkheya have morphologically recognizable shared characters, such as habit and spines that have been recognized by past studies. However, the grouping of one species with Didelta is difficult to explain. Support for the major clades and most of the sub-groups is strong but the relationships among some of the terminal taxa are variable.  相似文献   

7.
We conducted phylogenetic analyses using two DNA sequence data sets derived from matK, the maturase-coding gene located in an intron of the plastid gene trnK, and the internal transcribed spacer region of 18S–26S nuclear ribosomal DNA to examine relationships in subtribe Aeridinae (Orchidaceae). Specifically, we investigated (1) phylogenetic relationships among genera in the subtribe, (2) the congruence between previous classifications of the subtribe and the phylogenetic relationships inferred from the molecular data, and (3) evolutionary trends of taxonomically important characters of the subtribe, such as pollinia, a spurred lip, and a column foot. In all, 75 species representing 62 genera in subtribe Aeridinae were examined. Our analyses provided the following insights: (1) monophyly of subtribe Aeridinae was tentatively supported in which 14 subclades reflecting phylogenetic relationships can be recognized, (2) results are inconsistent with previous classifications of the subtribe, and (3) repeated evolution of previously emphasized characters such as pollinia number and apertures, length of spur, and column foot was confirmed. It was found that the inconsistencies are mainly caused by homoplasy of these characters. At the genus level, Phalaenopsis, Cleisostoma, and Sarcochilus are shown to be non-monophyletic.  相似文献   

8.
The monophyly of and phylogenetic relationships within the orchid tribe Maxillarieae Pfitzer were evaluated using parsimony analyses of combined nuclear ribosomal and plastid DNA sequence data of ITS 1 and 2, matK, and the trnL intron and the trnL-F intergene spacer. Each of the separate analyses produced highly congruent but weakly supported patterns (by the bootstrap), so these were combined in a single analysis. Analysis of 90 ingroup taxa (representing ~35% of currently recognized genera) and four outgroup taxa produced resolved and highly supported cladograms. Based on the cladograms, we recognize six subtribes: Eriopsidinae, Oncidiinae (including Pachyphyllinae, Ornithocephalinae, and Telipogoninae), Stanhopeinae, Coeliopsidinae, Maxillariinae (including Lycastinae and Bifrenariinae), and Zygopetalinae (including Cryptarrheninae, Dichaeinae, Huntleyinae, and Warreinae). Stanhopeinae were sampled most intensively; their generic relationships were highly resolved in the analysis and largely agree with currently accepted generic concepts based on morphology. Coeliopsidinae (Coeliopsis, Lycomormium, Peristeria) are sister to Stanhopeinae. Correlations are drawn among phylogeny, pollination mechanisms, and life history traits.  相似文献   

9.
Phylogenetic relationships within the orchid subtribe Oncidiinae sensu Chase were inferred using maximum likelihood analyses of single and multilocus DNA sequence data sets. Analyses included both nuclear ribosomal internal transcribed spacer DNA and plastid regions (matK exon, trnH‐psbA intergenic spacer and two portions of ycf1 exon) for 736 individuals representing approximately 590 species plus seven outgroup taxa. Based on the well resolved and highly supported results, we recognize 61 genera in Oncidiinae. Mimicry of oil‐secreting Malpighiaceae and other floral syndromes evolved in parallel across the subtribe, and many clades exhibit extensive variation in pollination‐related traits. Because previous classifications heavily emphasized these floral features, many genera recognized were not monophyletic. Our classification based on monophyly will facilitate focused monographs and clarifies the evolution of morphological and biochemical traits of interest within this highly diverse subtribe. © 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 168 , 117–146.  相似文献   

10.
The satyrine butterfly subtribe Mycalesina has undergone one of the more spectacular evolutionary radiations of butterflies in the Old World tropics. Perhaps the most phenotypically pronounced diversification of the group has occurred in the Malagasy region, where 68 currently recognized species are divided among five genera. Here, we report the results of phylogenetic analyses of sequence data from the cytochrome c oxidase II and cytochrome b mitochondrial genes, for a total of 54 mycalesine taxa, mostly from Madagascar. These molecular data complement an existing data set based on male morphological characters. The molecular results support the suggestion from morphology that three of the five Malagasy genera are paraphyletic and support the monophyly of at least three major morphological clades. Novel hypotheses of terminal taxon pairs are generated by the molecular data. Dense taxon sampling appears to be crucial for elucidating phylogenetic relationships within this large radiation. A potentially complex scenario for the origin of Malagasy mycalesines is proposed.  相似文献   

11.
The phylogeny of the gall-midge subtribe Baldratiina (Diptera: Cecidomyiidae) was reconstructed from molecular (partial sequence of the mitochondrial 12S rDNA), morphological and ecological data sets, using 16 representative species of most of the genera. The morphological and ecological data were combined in a single character matrix and analyzed separately from the molecular data, resulting in an eco-morphological cladogram and a molecular cladogram. Attributes of galls and host associations were superimposed on the molecular cladogram in order to detect possible trends in the evolution of these traits. The cladograms resulting from the two independent analyses were statistically incongruent, although both provide evidence for the monophyly of the genera Baldratia and Careopalpis and the paraphyly of the genera Stefaniola and Izeniola. The results suggest a minor impact of the morphological characters traditionally used in the classification of the Baldratiina, whereas ecological data had a major impact on the phylogenetic inference. Mapping of gall and host attributes on the molecular cladogram suggests that multi-chambered stem galls constitute the ancestral state in the subtribe, with several subsequent shifts to leaf galls. It is concluded that in contrast to other studied groups of gall insects, related baldratiine species induce different types of galls, attesting to speciation driven by gall-type shifts at least as often as host shifts.  相似文献   

12.
Abstract: Sequences of the internal transcribed spacers (ITS1 and ITS2) of nuclear ribosomal DNA were analysed for 44 Artemisia species (46 populations) representing all the five classical subgenera and the geographical range of the genus, 11 species from 10 genera closely related to Artemisia, and six outgroup species from five other genera of the Anthemideae. The results definitely support the monophyly of the genus Artemisia in its broadest sense (including some taxa segregated as independent genera, like Oligosporus and Seriphidium ). Eight main clades are established in this molecular phylogeny within Artemisia; they agree in part with the classical subdivision of the genus, but they also suggest that some infrageneric groups must be redefined, especially the subgenus Artemisia. The subgenera Tridentatae and Seriphidium are independent from each other. Some of the satellite genera are clearly placed within Artemisia ( Artemisiastrum, Filifolium, Mausolea, Picrothamnus, Sphaeromeria, Turaniphytum ), whereas some others fall outside the large clade formed by this genus (Brachanthemum, Elachanthemum, Hippolytia, Kaschgaria). Our results, correlated to other data such as pollen morphology, allow us to conclude that the subtribe Artemisiinae as currently defined is a very heterogeneous group. Affinities of the largest genus of the subtribe and tribe, Artemisia, and of other genera of the subtribe to some genera from other subtribes of the Anthemideae strongly suggest that subtribe Artemisiinae needs a deep revision and redefinition. Phylogenetic utility of region trnL-F of the plastid DNA in the genus Artemisia and allies was also evaluated: sequences of the trnL-F region in Artemisia do not provide phylogenetic information.  相似文献   

13.
To better understand the evolutionary history of the genus Centaurium and its relationship to other genera of the subtribe Chironiinae (Gentianaceae: Chironieae), molecular analyses were performed using 80 nuclear ribosomal ITS and 76 chloroplast trnLF (both the trnL UAA intron and the trnL-F spacer) sequences. In addition, morphological, palynological, and phytochemical characters were included to a combined data matrix to detect possible non-molecular synapomorphies. Phylogenetic reconstructions support the monophyly of the Chironiinae and an age estimate of ca. 22 million years for the subtribe. Conversely, both molecular data sets reveal a polyphyletic Centaurium, with four well-supported main clades hereafter treated as separate genera. The primarily Mediterranean Centaurium s.s. is closely related to southern African endemics Chironia and Orphium, and to the Chilean species Centaurium cachanlahuen. The resurrected Mexican and Central American genus Gyrandra is closely related to Sabatia (from eastern North America). Lastly, the monospecific genus Exaculum (Mediterranean) forms a monophyletic group together with the two new genera: Schenkia (Mediterranean and Australian species) and Zeltnera (all other indigenous American centauries). Several biogeographical patterns can be inferred for this group, supporting a Mediterranean origin followed by dispersals to (1) North America, Central America, and South America, (2) southern Africa (including the Cape region), and (3) Australia and Pacific Islands.  相似文献   

14.
Phylogenetic relationships among nine genera and 28 species of the southern African tribe Podalyrieae were estimated from sequences of the internal transcribed spacer (ITS) of nuclear ribosomal DNA as well as morphological and chemical data. Morphological and ITS sequence data produced cladograms with similar topologies, both supporting the monophyly of Podalyrieae (excluding Hypocalyptus ). The combined data sets indicate that subtribe Xiphothecinae are monophyletic, but embedded within Podalyriinae. The high degree of congruence between previous taxonomic hypotheses and those based on DNA data provides further evidence for the utility of ITS sequences in studying phylogeny.  © 2002 The Linnean Society of London , Botanical Journal of the Linnean Society , 2002, 139 , 159–170.  相似文献   

15.
Abstract: The ability of the internal transcribed spacers (ITS regions) of ribosomal DNA to resolve phylogenetic relationships within the euascomycetous order Arthoniales, focusing on the family Roccellaceae was investigated. The effect of alignment on phylogenetic hypotheses was evaluated. A data matrix from the ITS regions was constructed from 33 specimens representing 14 genera, including the outgroup Arthothelium spectabile. Six different alignments were analysed cladistically using parsimony jackknifing. Most groups in the six trees were congruent and well supported under the different alignment settings. In a conservative analysis, where only unambiguously alignable regions were included, the resolution was low. These results indicate that the ITS regions contain phylogenetic structure, and all information, including the variable regions, should be utilised. A data matrix from the SSU rDNA sequences was constructed for the same taxa. The SSU rDNA tree was less resolved than the ITS trees. There were only minor conflicts between the two sources of data and an incongruence test confirmed that the ITS and SSU rDNA data matrices were not significantly incongruent. The six differently aligned data matrices generated from the ITS regions were each combined with the SSU rDNA data. Simultaneous analysis of the combined data sets is the best approach as it uses all available evidence. As with the ITS trees, most groups in the combined trees were congruent and well supported. The SSU rDNA provided resolution within one clade, otherwise the ITS sequences provided most of the signal in the combined analysis, both at the basal nodes and at the tips of the tree. Molecular data clearly indicates that the fruticose/crustose habits have evolved multiple times even in comparatively small groups as in the family Roccellaceae and that the characters such as fruticose-crustose may be overemphasized in morphological analyses.  相似文献   

16.
Abstract— A cladistic analysis of the South American grasshopper genera Scotussa and Leiotettix was performed in order to test the monophyly of these genera. Eurotettix, Chlorus and the Dichroplus bergi species group were included as terminal taxa. The genus Atrachelacris was used to root the tree. Twenty-nine characters from external morphology, male genitalia and female ovipositor were used in the analysis. In order to test for association between the structural change that occurred in the ovipositor valves of Scotussa and the functional change of the oviposition habits, the data matrix was partitioned and two analyses were performed. Characters from the female ovipositor were excluded from the data set used in the first analysis and another analysis was performed where all the characters were included in the analysis. Information on oviposition habits was then mapped on the cladogram, to determine the transformation for performance. Both analyses yielded only one most parsimonious tree and produced congruent results, confirming the monophyly of Leiotettix and Scotussa and corroborating their close relationship. Characters from the female ovipositor valves were informative not only at the species level but also at higher levels in the cladogram. The results also support the hypothesis of association between the structural change that occurred in the ovipositor valves of Scotussa with the functional change in the oviposition habits. However, this association did not seem to be correlated with the adaptive radiation in the genus.  相似文献   

17.
The ITS1, ITS2, and 5.8S gene sequences of nuclear ribosomal DNA from 40 taxa of the family Heteroderidae (including the genera Afenestrata, Cactodera, Heterodera, Globodera, Punctodera, Meloidodera, Cryphodera, and Thecavermiculatus) were sequenced and analyzed. The ITS regions displayed high levels of sequence divergence within Heteroderinae and compared to outgroup taxa. Unlike recent findings in root knot nematodes, ITS sequence polymorphism does not appear to complicate phylogenetic analysis of cyst nematodes. Phylogenetic analyses with maximum-parsimony, minimum-evolution, and maximum-likelihood methods were performed with a range of computer alignments, including elision and culled alignments. All multiple alignments and phylogenetic methods yielded similar basic structure for phylogenetic relationships of Heteroderidae. The cyst-forming nematodes are represented by six main clades corresponding to morphological characters and host specialization, with certain clades assuming different positions depending on alignment procedure and/or method of phylogenetic inference. Hypotheses of monophyly of Punctoderinae and Heteroderinae are, respectively, strongly and moderately supported by the ITS data across most alignments. Close relationships were revealed between the Avenae and the Sacchari groups and between the Humuli group and the species H. salixophila within Heteroderinae. The Goettingiana group occupies a basal position within this subfamily. The validity of the genera Afenestrata and Bidera was tested and is discussed based on molecular data. We conclude that ITS sequence data are appropriate for studies of relationships within the different species groups and less so for recovery of more ancient speciations within Heteroderidae.  相似文献   

18.
The tribe Inuleae (Asteraceae) has 10 species endemic to the Macaronesian islands, including the three endemic genera Allagopappus, Schizogyne, and Vierea. Phylogenetic analyses of DNA sequence data from the internal transcribed spacers (ITS) of the nuclear ribosomal DNA of 47 taxa were performed using all Macaronesian endemics and representative species from 21 of the 36 genera of the Inuleae. The resulting ITS phylogeny reveals that Allagopappus is sister to a large clade that contains all genera with a predominantly Mediterranean distribution. This finding suggests that Allagopappus may represent an ancient lineage that found refuge in the Canary Islands following the major climatic and/or geologic changes in the Mediterranean basin after the Tertiary. The Macaronesian endemic genus Schizogyne is sister to Limbarda from the Mediterranean. The third Macaronesian endemic genus, Vierea, is sister to Perralderia, which is restricted to Morocco and Algeria. Pulicaria canariensis is sister to P. mauritanica, a species endemic to Morocco and Algeria. In contrast, P. diffusa from the Cape Verde Islands is sister to a broadly distributed species, P. crispa, that occurs from North Africa to the Arabian peninsula. Based on the ITS data, the genera Blumea, Inula, and Pulicaria are not monophyletic. The ITS trees suggested that Blumea mollis belongs to the tribe Plucheeae, a finding that is congruent with recent morphological evidence. A possible southern African origin for the core of the Laurasian taxa of the Inuleae is also suggested.  相似文献   

19.
The rove beetle subtribe Xanthopygina (Coleoptera: Staphylinidae: Staphylininae: Staphylinini) is a species‐rich group of 27 neotropical genera that contains some of the largest and most brightly coloured of all staphylinid beetles. The monophyly of the subtribe has never been tested before, using a large dataset of taxa and genes. Bayesian and maximum likelihood analyses are used on individual genes (COI, 28S rDNA, wingless, arginine kinase, CAD and topoisomerase I) and the partitioned concatenated dataset to test for monophyly and examine the relationships among Xanthopygina genera. Xanthopygina (excluding Philothalpus) are shown to be a monophyletic group with strong support values. The genus Philothalpus is removed from Xanthopygina and placed in the tribe Staphylinini as incertae sedis. Four distinct clades of Xanthopygina genera are recognized. The origin of Xanthopygina is hypothesized to be in the Late Cretaceous or later and the origin of myrmecophilous adaptations is discussed.  相似文献   

20.
We have analyzed a sequence dataset of a portion of mitochondrial 12S rRNA gene of the ribosomal small subunit for 27 species of the family Lycosidae (wolf spiders) from Central Europe, belonging to six genera (Alopecosa, Arctosa, Pardosa, Pirata, Trochosa, and Xerolycosa) and four subfamilies (Evippinae, Lycosinae, Pardosinae and Venoniinae). Phylogenetic analyses were performed in two steps and corroborate the monophyly of all the genera analyzed with strong bootstrap support. In the first step focusing on the most ancestral splits the genus Pirata consistently emerged as the most ancestral branch, followed by the two genera Arctosa and Xerolycosa, with conflicting branching order, however. The second step of analysis placed Xerolycosa more ancestral than Arctosa. Arctosa appeared as sister group to the genera Alopecosa, Trochosa, and Pardosa. The palearctic genus Xerolycosa was not yet included in previous studies derived from morphological characters, but its placement based on mtDNA sequences is in good agreement to that according to current diagnostic morphological features. Further, the single representative of the genus Arctosa examined in our study was placed at a more ancestral position than in a previous investigation based on phenotypic characters. The superimposition of the currently used diagnostic phenotypic characters on the DNA-based phylogeny shows that both character sets are widely congruent; only 3 out of 16 phenotypic characters were resolved as homoplasious, suggesting their parallel evolution and/or reversal. Among the three different styles of predation found in the Lycosids, tube builders appear to be the most ancestral from which burrow dwellers descended and from which two groups of vagrant hunters evolved in parallel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号