首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bryozoans, or moss animals, are small colonial organisms that possess a suspension-feeding apparatus called a lophophore. Traditionally, this "phylum" has been grouped with brachiopods and phoronids because of the feeding structure. Available molecular and morphological data refute this notion of a monophyletic "Lophophorata." Alternative hypotheses place bryozoans either at the base of the Lophotrochozoa or basal to the Lophotrochozoa/Ecdysozoa split. Surprisingly, the only molecular data bearing on this issue are from the 18S nuclear ribosomal gene. Here we report the results of a Hox gene survey using degenerate polymerase chain reaction primers in a gymnolaemate bryozoan, Bugula turrita. Putative orthologs to both the Post2 and the Lox5 genes were found, suggesting that bryozoans are not a basal protostome group but closely allied to other lophotrochozoan taxa. We also found the first definitive evidence of two Deformed/Hox4 class genes in a nonvertebrate animal.  相似文献   

2.
It has recently been shown that the three metazoan superphyla that are recognized on the basis of 18S rDNA phylogenies--ecdysozoans, lophotrochozoans, and deuterostomes--each have characteristic Hox genes. This observation has been taken further, and these "signature" Hox genes have been looked for in taxa of uncertain affinity such as the mesozoa, in order to link them to one of the three superphyla. Here I point out that, in the absence of an out-group, these so-called signature Hox genes are unpolarized characters and, as such, should not be used in this cladistic sense to determine phylogeny. Taking the example of the mesozoans, which have the Lox5 gene in common with the lophotrochozoans, I show that it is possible to polarize this character using paralogous Hox genes as proxy out-groups; however, due to the impossibility of reliable alignment outside the homeobox, only two residues of the Lox5 peptide are susceptible to this method. With this in mind, I find slim evidence for an association between mesozoans and lophotrochozoans. I demonstrate that the lophotrochozoan genes Lox2 and Lox4 would provide many more reliable residues that are truly indicative of lophotrochozoan affinity. Finally, I point out the potential problems in using unpolarized signatures to address the question of the position of the acoel flatworms.  相似文献   

3.
SUMMARY The segmented leeches are members of the phylum Annelida within the Lophotrochozoa. Here, we describe the isolation of a new Hox gene, Lox18 , in the leech Helobdella triserialis. Phylogenetic analysis indicates that Lox18 is a Deformed ( Dfd   ) ortholog. H. triserialis has at least two Dfd orthologs, Lox18 and the previously described Lox6 ( Kourakis et al. 1997 ; Wong and Macagno 1998 ), indicating that these genes duplicated after the last common ancestor of annelids and arthropods. Although the temporal appearance of Lox18 message is similar to that of Lox6 , the spatial pattern is different. Lox18 does not have a sharply defined anterior border of expression in the second neuromere of the subesophageal ganglion of the central nervous system (CNS) as does Lox6 , but is expressed uniformly in a small subset of cells in the longitudinal connectives and lateral roots in every segment of the CNS along the entire anterior-posterior (AP) axis. Even though Lox18 shares greater sequence similarity within the homeodomain and flanking regions to Drosophila Dfd than to the previously isolated Lox6 , its expression pattern suggests that its function has diverged from the ancestral Hox function. Previous sampling has indicated that the last common ancestor of protostomes and deuterostomes had as many as 10 clustered Hox genes representing distinct paralogy groups ( Irvine et al. 1997 ; de Rosa et al. 1999 ); leech Hox genes may have undergone subsequent and independent cluster or genome-wide duplication. These results point to the need for total genome level understanding for key members of the Lophotrochozoa.  相似文献   

4.
We present the isolation of six Hox genes in the chaetognath Spadella cephaloptera. We identified one member of the paralogy group 3, four median genes and a mosaic gene that shares features of both median and posterior classes ( SceMedPost). Several hypotheses may account for the presence of a mosaic Hox gene in this animal. Here we propose that SceMedPost may represent an ancestral gene, which has not diverged totally into a posterior or a median one. This hypothesis has interesting implications for the reconstruction of the evolutionary history of Hox genes and suggests that Chaetognatha lineage divergence could predate the deuterostome/protostome split. Such a phylogenetic position is considered in the light of their embryological and morphological characters.  相似文献   

5.
The phylum Chaetognatha (arrow worms) comprises a group of small marine predators that constitute a critical component of the zooplankton community throughout the world's oceans. Various phylogenetic affiliations have been proposed for the Chaetognatha, for which there are at least nine possible phylogenetic positions. Resolving the phylogenetic position of the chaetognaths is a key in understanding the fundamental developmental features of bilaterians. In comparison with the typical gene content of metazoan mitogenomes, two protein‐coding genes (atp6 and atp8) are absent from all chaetognaths. The two mitogenomes sequenced from Sagitta crassa and Zonosagitta nagae in this study nevertheless contain two and four tRNA genes, respectively, in contrast to those of the other five chaetognaths reported where only one tRNA gene (trnMet) is present, thus invalidating the view that all chaetognath mitogenomes have a single tRNA gene. A conserved major gene order shared by all chaetognaths could be partially identified in many protostome mitogenomes, but not in any ancestral mitogenome gene arrangement of the four deuterostome groups. Phylogenetic analysis of the deduced amino acid sequences of protein‐coding genes from 85 mitogenomes of 19 groups suggests the Chaetognatha to be a sister group to the protostomes, a result consistent with evidences from the developmental pattern and other molecular analyses.  相似文献   

6.
Molecular developmental studies of fly and mouse embryos have shown that the identity of individual body segments is controlled by a suite of homeobox-containing genes called the Hox cluster. To examine the conservation of this patterning mechanism in other segmented phyla, we here describe four Hox gene homologs isolated from glossiphoniid leeches of the genusHelobdella.Based on sequence similarity and phylogenetic analysis, the leech genesLox7, Lox6, Lox20,andLox5are deemed to be orthologs of theDrosophilageneslab, Dfd, Scr,andAntp,respectively. Sequence similarities betweenLox5andAntpoutside the homeodomain and phylogenetic reconstructions suggest that the Antennapedia family of Hox genes (as defined by Bürglin, 1994) had already expanded to include at least two discreteAntpandUbx/abdAprecursors prior to the annelid/arthropod divergence.In situhybridization reveals that the fourLoxgenes described in this study are all expressed at high levels within the segmented portion of the central nervous system (CNS), with variable levels of expression in the segmental mesoderm. Little or no expression was seen in peripheral ectoderm or endoderm, or in the unsegmented head region (prostomium). EachLoxgene has a distinct anterior expression boundary within one of the four rostral segments, and the anterior-posterior (AP) order of these expression boundaries is identical to that reported for the orthologous Hox gene products in fly and mouse. This finding supports the idea that the process of AP axis differentiation is conserved among the higher metazoan phyla with respect to the regional expression of individual Hox genes along that axis. One unusual feature of leech Hox genes is the observation that some genes are only expressed during later development -- beginning at the time of terminal cell differentiation -- whereas others begin expression at a much earlier stage, and their RNA ceases to be detectable shortly after the onset of expression of the ‘late’ Hox genes. The functional significance of this temporal disparity is unknown, but it is noteworthy that only the two ‘early’ Hox genes display high levels of mesodermal expression.  相似文献   

7.
8.
The chaetognaths are an extraordinarily homogeneous phylum of animals at the morphological level, with a bauplan that can be traced back to the Cambrian. Despite the attention of zoologists for over two centuries, there is little agreement on classification within the phylum. We have used a molecular biological approach to investigate the phylogeny of extant chaetognaths. A rapidly evolving expansion segment toward the 5′ end of 28S ribosomal DNA (rDNA) was amplified using the polymerase chain reaction (PCR), cloned, and sequenced from 26 chaetognath samples representing 18 species. An unusual finding was the presence of two distinct classes of 28S rDNA gene in chaetognaths; our analyses suggest these arose by a gene (or gene cluster) duplication in a common ancestor of extant chaetognaths. The two classes of chaetognath 28S rDNA have been subject to different rates of molecular evolution; we present evidence that both are expressed and functional. In phylogenetic reconstructions, the two classes of 28S rDNA yield trees that root each other; these clearly demonstrate that the Aphragmophora and Phragmophora are natural groups. Within the Aphragmophora, we find good support for the groupings denoted Solidosagitta, Parasagitta, and Pseudosagitta. The relationships between several well-supported groups within the Aphragmophora are uncertain; we suggest this reflects rapid, recent radiation during chaetognath evolution. Received: 19 March 1996 / Accepted: 5 August 1996  相似文献   

9.
Although the phylogenetic position of brachiopods has always been subject to debate, many authors place them as a sister group to deuterostomes on the basis of morphological and developmental characters. However, molecular phylogeny consistently places them among protostomes. More precisely, brachiopods are predicted to branch inside the lophotrochozoan assemblage, together with annelids, molluscs, nemerteans, flatworms, and others. That result has been criticized on the basis of (1) prior knowledge of brachiopod morphology and (2) the known limitations of molecular phylogenies. Here I review recent data of molecular origin, particularly those displaying qualitative properties close to those of morphological characters. The complement of Hox genes present in all metazoa tested to date has proved to be a powerful tool for broad phylogenetic reconstruction. The mitochondrial genome also provides qualitative characters, showing discrete events of gene rearrangements. After discussing the data and the way they should be interpreted in the perspective of several hypotheses for metazoan phylogeny, I conclude that they argue strongly in favor of the protostome (and lophotrochozoan) affinity of the brachiopods. There is therefore a need for a reinterpretation of brachiopod morphological and developmental characters. I also identify some research axes on brachiopod morphology.  相似文献   

10.
Gu JL  Chen SX  Dou TH  Xu MJ  Xu JX  Zhang L  Hu W  Wang SY  Zhou Y 《Genomics》2012,99(1):59-65
Hox genes are characterized by a highly conserved peptide domain and contribute to antero-posterior axis patterning during embryogenesis. These genes have been widely studied in a variety of animal species due to their central role in evolutionary developmental biology. Based on the published genome assembly and unpublished re-sequencing project data, we present the first genome-wide characterization and comparative genomic analysis of the Hox gene family within Schistosoma japonicum. Eight Hox genes were identified and validated in our investigation. Phylogenetic analysis revealed that these genes are distributed among seven orthology groups of the Hox gene family. Our study further suggested that differences in the Lox5 gene copy number existed between the two closely related species, S. japonicum and Schistosoma mansoni. Semi-quantitative real-time polymerase chain reaction experiments revealed that Lox5 and Hox4 gene expression was high in the schistosomulum stage, and all four genes investigated showed highest expression within the eggs.  相似文献   

11.
12.
Kim KH  Lee YS  Jeon HK  Park JK  Kim CB  Eom KS 《Biochemical genetics》2007,45(3-4):335-343
Hox genes are important in forming the anterior-posterior body axis pattern in the early developmental stage of animals. The conserved nature of the genomic organization of Hox genes is well known in diverse metazoans. To understand the Hox gene architecture in human-infecting Taenia tapeworms, we conducted a genomic survey of the Hox gene using degenerative polymerase chain reaction primers in Taenia asiatica. Six Hox gene orthologs from 276 clones were identified. Comparative analysis revealed that T. asiatica has six Hox orthologs, including two lab/Hox1, two Hox3, one Dfd/Hox4, and one Lox2/Lox4. The results suggest that Taenia Hox genes may have undergone independent gene duplication in two Hox paralogs. The failure to detect Post1/2 orthologs in T. asiatica may suggest that sequence divergence or the secondary loss of the posterior genes has occurred in the lineage leading to the cestode and trematode.  相似文献   

13.
The clustered Hox genes play a central role in the regulation of development in bilaterian animals. In this study, we analyzed the homeobox-containing genes in a bivalve mollusc, the mussel Mytilus galloprovincialis, an unsegmented spiralian lophotrochozoan. We isolated and characterized four Hox cluster genes using the polymerase chain reaction with specific primers. Molecular alignments and phylogenetic analysis indicate that these mussel genes are homologs of the anterior group (pb ortholog), paralog group 3, and central group (PG4/Dfd and PG5/Scr) genes. The putative homeodomain sequences were designated Mgox1, Mgox2, Mgox3, and Mgox4.  相似文献   

14.
15.
The phylogenetic affinities of the chaetognaths: a molecular analysis   总被引:8,自引:3,他引:5  
The chaetognaths, or arrowworms, constitute a small and enigmatic phylum of marine invertebrates whose phylogenetic affinities have long been uncertain. A popular hypothesis is that the chaetognaths are the sister group of the major deuterostome phyla: chordates, hemichordates, and echinoderms. Here we attempt to determine the affinities of the chaetognaths by using molecular sequence data. We describe the isolation and nucleotide sequence determination of 18S ribosomal DNA from one species of chaetognath and one acanthocephalan. Extensive phylogenetic analyses employing a suite of phylogenetic reconstruction methods (maximum parsimony, maximum likelihood, evolutionary parsimony, and two distance methods) suggest that the hypothesized relationship between chaetognaths and the deuterostomes is incorrect. In contrast, we propose that the lineage leading to the chaetognaths arose prior to the advent of the coelomate metazoa.   相似文献   

16.
The amphioxus Hox cluster: deuterostome posterior flexibility and Hox14   总被引:7,自引:0,他引:7  
SUMMARY The amphioxus ( Branchiostoma floridae ) Hox cluster is a model for the ancestral vertebrate cluster, prior to the hypothesized genome-wide duplications that may have facilitated the evolution of the vertebrate body plan. Here we describe the posterior (5') genes of the amphioxus cluster, and report the isolation of four new homeobox genes. Vertebrates possess 13 types of Hox gene (paralogy groups), but we show that amphioxus possesses more than 13 Hox genes. Amphioxus is now the first animal in which a Hox14 gene has been found. Our mapping and phylogenetic analysis of amphioxus "Posterior Class" Hox genes reveals that these genes are evolving at a faster rate in deuterostomes than in protostomes, a phenomenon we term Posterior Flexibility.  相似文献   

17.
Although the small-subunit ribosomal RNA (SSU rRNA) gene is widely used in the molecular systematics, few large-subunit (LSU) rRNA gene sequences are known from protostome animals, and the value of the LSU gene for invertebrate systematics has not been explored. The goal of this study is to test whether combined LSU and SSU rRNA gene sequences support the division of protostomes into Ecdysozoa (molting forms) and Lophotrochozoa, as was proposed by Aguinaldo et al. (1997) (Nature 387:489) based on SSU rRNA sequences alone. Nearly complete LSU gene sequences were obtained, and combined LSU + SSU sequences were assembled, for 15 distantly related protostome taxa plus five deuterostome outgroups. When the aligned LSU + SSU sequences were analyzed by tree-building methods (minimum evolution analysis of LogDet-transformed distances, maximum likelihood, and maximum parsimony) and by spectral analysis of LogDet distances, both Ecdysozoa and Lophotrochozoa were indeed strongly supported (e.g., bootstrap values >90%), with higher support than from the SSU sequences alone. Furthermore, with the LogDet-based methods, the LSU + SSU sequences resolved some accepted subgroups within Ecdysozoa and Lophotrochozoa (e.g., the polychaete sequence grouped with the echiuran, and the annelid sequences grouped with the mollusc and lophophorates)-subgroups that SSU-based studies do not reveal. Also, the mollusc sequence grouped with the sequences from lophophorates (brachiopod and phoronid). Like SSU sequences, our LSU + SSU sequences contradict older hypotheses that grouped annelids with arthropods as Articulata, that said flatworms and nematodes were basal bilateralians, and considered lophophorates, nemerteans, and chaetognaths to be deuterostomes. The position of chaetognaths within protostomes remains uncertain: our chaetognath sequence associated with that of an onychophoran, but this was unstable and probably artifactual. Finally, the benefits of combining LSU with SSU sequences for phylogenetic analyses are discussed: LSU adds signal, it can be used at lower taxonomic levels, and its core region is easy to align across distant taxa-but its base frequencies tend to be nonstationary across such taxa. We conclude that molecular systematists should use combined LSU + SSU rRNA genes rather than SSU alone.  相似文献   

18.
The ParaHox gene cluster contains three homeobox genes, Gsx, Xlox and Cdx and has been demonstrated to be an evolutionary sister of the Hox gene cluster. Among deuterostomes the three genes are found in the majority of taxa, whereas among protostomes they have so far been isolated only in the phylum Sipuncula.We report the partial sequences of all three ParaHox genes in the polyplacophoran Nuttallochiton mirandus, the first species of the phylum Mollusca where all ParaHox genes have been isolated. This finding has phylogenetic implications for the phylum Mollusca and for its relationships with the other lophotrochozoan taxa.  相似文献   

19.

Background

Hox genes are key elements in patterning animal development. They are renowned for their, often, clustered organisation in the genome, with supposed mechanistic links between the organisation of the genes and their expression. The widespread distribution and comparable functions of Hox genes across the animals has led to them being a major study system for comparing the molecular bases for construction and divergence of animal morphologies. Echinoderms (including sea urchins, sea stars, sea cucumbers, feather stars and brittle stars) possess one of the most unusual body plans in the animal kingdom with pronounced pentameral symmetry in the adults. Consequently, much interest has focused on their development, evolution and the role of the Hox genes in these processes. In this context, the organisation of echinoderm Hox gene clusters is distinctive. Within the classificatory system of Duboule, echinoderms constitute one of the clearest examples of Disorganized (D) clusters (i.e. intact clusters but with a gene order or orientation rearranged relative to the ancestral state).

Results

Here we describe two Hox genes (Hox11/13d and e) that have been overlooked in most previous work and have not been considered in reconstructions of echinoderm Hox complements and cluster organisation. The two genes are related to Posterior Hox genes and are present in all classes of echinoderm. Importantly, they do not reside in the Hox cluster of any species for which genomic linkage data is available.

Conclusion

Incorporating the two neglected Posterior Hox genes into assessments of echinoderm Hox gene complements and organisation shows that these animals in fact have Split (S) Hox clusters rather than simply Disorganized (D) clusters within the Duboule classification scheme. This then has implications for how these genes are likely regulated, with them no longer covered by any potential long-range Hox cluster-wide, or multigenic sub-cluster, regulatory mechanisms.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号