首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A defective ratio between DNA damage and repair may result in the occurrence of a malignant phenotype. Previous studies have found that many genetic alterations in DNA repair genes occur frequently in lung cancer. However, the epigenetic mechanisms underlying this tumorigenesis are not clear. Herein, we have used a chemical-induced rat lung carcinogenesis model to study the evolution of methylation alterations of DNA repair genes BRCA1, ERCC1, XRCC1, and MLH1. Methylation-specific PCR and immunohistochemistry were used to analyze gene methylation status and protein expression during the progression of lung carcinogenesis. Promoter hypermethylation of BRCA1 was only detected in three samples of infiltrating carcinoma. CpG island hypermethylation of ERCC1, XRCC1, and MLH1 was found to increase gradually throughout lung carcinogenesis progression. Both the prevalence of at least one methylated gene and the average number of methylated genes were heightened in squamous metaplasia and dysplasia compared with normal tissue and hyperplasia, and was further increased in carcinoma in situ (CIS) and infiltrating carcinoma. Immunohistochemical analysis showed that BRCA1 and MLH1 protein expression decreased progressively during the stages of lung carcinogenesis, whereas ERCC1 and XRCC1 expression were only found in later stages. Although methylation levels were elevated for ERCC1 and XRCC1 during carcinogenesis, an inverse correlation with protein expression was found only for BRCA1 and MLH1. These results suggest that a continuous accumulation of DNA repair gene hypermethylation and the consequent protein alterations might be a vital molecular mechanism during the process of multistep chemical-induced rat lung carcinogenesis.  相似文献   

2.
Lung cancer is a worldwide health problem and a leading cause of cancer-related deaths. Silencing of potential tumor suppressor genes (TSGs) by aberrant promoter methylation is an early event in the initiation and development of cancer. Thus, methylated cancer type-specific TSGs in DNA can serve as useful biomarkers for early cancer detection. We have now developed a “Multiplex Methylation Specific PCR” (MMSP) assay for analysis of the methylation status of multiple potential TSGs by a single PCR reaction. This method will be useful for early diagnosis and treatment outcome studies of non-small cell lung cancer (NSCLC). Genome-wide CpG methylation and expression microarrays were performed on lung cancer tissues and matched distant non-cancerous tissues from three NSCLC patients from China. Thirty-eight potential TSGs were selected and analyzed by methylation PCR on bisulfite treated DNA. On the basis of sensitivity and specificity, six marker genes, HOXA9, TBX5, PITX2, CALCA, RASSF1A, and DLEC1, were selected to establish the MMSP assay. This assay was then used to analyze lung cancer tissues and matched distant non-cancerous tissues from 70 patients with NSCLC, as well as 24 patients with benign pulmonary lesion as controls. The sensitivity of the assay was 99% (69/70). HOXA9 and TBX5 were the 2 most sensitive marker genes: 87% (61/70) and 84% (59/70), respectively. RASSF1A and DLEC1 showed the highest specificity at 99% (69/70). Using the criterion of identifying at least any two methylated marker genes, 61/70 cancer samples were positive, corresponding to a sensitivity of 87% and a specificity of 94%. Early stage I or II NSCLC could even be detected with a 100% specificity and 86% sensitivity. In conclusion, MMSP has the potential to be developed into a population-based screening tool and can be useful for early diagnosis of NSCLC. It might also be suitable for monitoring treatment outcome and recurrence.  相似文献   

3.
Silencing of tumor suppressor genes (TSGs) by DNA promoter hypermethylation is an early event in carcinogenesis and a potential target for personalized cancer treatment. In head and neck cancer, little is known about the role of promoter hypermethylation in survival. Using methylation specific multiplex ligation-dependent probe amplification (MS-MLPA) we investigated the role of promoter hypermethylation of 24 well-described genes (some of which are classic TSGs), which are frequently methylated in different cancer types, in 166 HPV-negative early oral squamous cell carcinomas (OSCC), and 51 HPV-negative early oropharyngeal squamous cell carcinomas (OPSCC) in relation to clinicopathological features and survival. Early OSCC showed frequent promoter hypermethylation in RARB (31% of cases), CHFR (20%), CDH13 (13%), DAPK1 (12%), and APC (10%). More hypermethylation (≥ 2 genes) independently correlated with improved disease specific survival (hazard ratio 0.17, P = 0.014) in early OSCC and could therefore be used as prognostic biomarker. Early OPSCCs showed more hypermethylation of CDH13 (58%), TP73 (14%), and total hypermethylated genes. Hypermethylation of two or more genes has a significantly different effect on survival in OPSCC compared with OSCC, with a trend toward worse instead of better survival. This could have a biological explanation, which deserves further investigation and could possibly lead to more stratified treatment in the future.  相似文献   

4.
Early detection of lung cancer is challenging due to a lack of adequate biomarkers. To discover novel tumor suppressor genes (TSGs) silenced by aberrant promoter methylation, we analyzed the gene expression profiles of two lung adenocarcinoma cell lines using pharmacologic-unmasking and subsequent microarray-analysis. Among 617 genes upregulated, we selected 30 genes and investigated the methylation status of their promoters by bisulfite sequencing analysis. Aberrant methylation was detected in four genes (CRABP2, NOEY2, T, MAP2K3) in at least one lung adenocarcinoma cell lines. Furthermore, the T promoter was methylated in 60% of primary lung adenocarcinomas versus 13% of non-malignant lung tissues. Conversely, RT-PCR analysis revealed T expression was low in lung tumors, while high in normal tissues. In addition, no non-synonymous mutations related to gene silencing were found. While further analysis is warranted, our results suggest that T has the potential to be a novel candidate TSG in lung cancer.  相似文献   

5.
We recently identified that DNA methylation of the G0S2 gene was significantly more frequent in squamous lung cancer than in non-squamous lung cancer. However, the significance of G0S2 methylation levels on cancer cells is not yet known. We investigated the effect of G0S2 methylation levels on cell growth, mRNA expression, and chromatin structure using squamous lung cancer cell lines and normal human bronchial epithelial cells. DNA methylation and mRNA expression of G0S2 were inversely correlated, and in one of the squamous lung cancer cell lines, LC-1 sq, G0S2 was completely methylated and suppressed. Overexpression of G0S2 in LC-1 sq did not show growth arrest or apoptosis. The G0S2 gene has been reported to be a target gene of all-trans retinoic acid and peroxisome proliferator-activated receptor agonists. We treated LC-1 sq with 5-Aza-2′-deoxycytidine, Trichostatin A, all-trans retinoic acid, Wy 14643, or Pioglitazone either alone or in combination. Only 5-Aza-2′-deoxycytidine restored mRNA expression of G0S2. Chromatin immunoprecipitation revealed that histone H3 lysine 9 was methylated regardless of DNA methylation or mRNA expression. In summary, mRNA expression of G0S2 was regulated mainly by DNA methylation in squamous lung cancer cell lines. When the G0S2 gene was methylated, nuclear receptor agonists could not restore mRNA expression of G0S2 and did not show any additive effect on mRNA expression of G0S2 even after the treatment with 5-Aza-2′-deoxycytidine.  相似文献   

6.

Background

Tumor suppressor gene (TSG) inactivation plays a crucial role in carcinogenesis. FUS1, NPRL2/G21 and RASSF1A are TSGs from LUCA region at 3p21.3, a critical chromosomal region in lung cancer development. The aim of the study was to analyze and compare the expression levels of these 3 TSGs in NSCLC, as well as in macroscopically unchanged lung tissue surrounding the primary lesion, and to look for the possible epigenetic mechanism of TSG inactivation via gene promoter methylation.

Methods

Expression levels of 3 TSGs and 2 DNA methyltransferases, DNMT1 and DNMT3B, were assessed using real-time PCR method (qPCR) in 59 primary non-small cell lung tumors and the matched macroscopically unchanged lung tissue samples. Promoter methylation status of TSGs was analyzed using methylation-specific PCRs (MSP method) and Methylation Index (MI) value was calculated for each gene.

Results

The expression of all three TSGs were significantly different between NSCLC subtypes: RASSF1A and FUS1 expression levels were significantly lower in squamous cell carcinoma (SCC), and NPRL2/G21 in adenocarcinoma (AC). RASSF1A showed significantly lower expression in tumors vs macroscopically unchanged lung tissues. Methylation frequency was 38–76 %, depending on the gene. The highest MI value was found for RASSF1A (52 %) and the lowest for NPRL2/G21 (5 %). The simultaneous decreased expression and methylation of at least one RASSF1A allele was observed in 71 % tumor samples. Inverse correlation between gene expression and promoter methylation was found for FUS1 (rs = −0.41) in SCC subtype. Expression levels of DNMTs were significantly increased in 75–92 % NSCLCs and were significantly higher in tumors than in normal lung tissue. However, no correlation between mRNA expression levels of DNMTs and DNA methylation status of the studied TSGs was found.

Conclusions

The results indicate the potential role of the studied TSGs in the differentiation of NSCLC histopathological subtypes. The significant differences in RASSF1A expression levels between NSCLC and macroscopically unchanged lung tissue highlight its possible diagnostic role in lung cancer in situ recognition. High percentage of lung tumor samples with simultaneous RASSF1A decreased expression and gene promoter methylation indicates its epigenetic silencing. However, DNMT overexpression doesn’t seem to be a critical determinate of its promoter hypermethylation.  相似文献   

7.
Human Dachshund homologue 1 (DACH1) is a major component of the Retinal Determination Gene Network. Loss of DACH1 expression was found in breast, prostate, lung, endometrial, colorectal and hepatocellular carcinoma. To explore the expression, regulation and function of DACH1 in human esophageal cancer, 11 esophageal cancer cell lines, 10 cases of normal esophageal mucosa, 51 cases of different grades of dysplasia and 104 cases of primary esophageal squamous cancer were employed. Methylation specific PCR, immunohistochemistry, western blot, flow cytometry, small interfering RNAs, colony formation techniques and xenograft mice model were used. We found that DACH1 expression was regulated by promoter region hypermethylation in esophageal cancer cell lines. 18.8% (6 of 32) of grade 1, 42.1% (8 of 19) of grade 2 and grade 3 dysplasia (ED2,3), and 61.5% (64 of 104) of esophageal cancer were methylated, but no methylation was found in 10 cases of normal esophageal mucosa. The methylation was increased in progression tendency during esophageal carcinogenesis (P<0.01). DACH1 methylation was associated with poor differentiation (P<0.05) and late tumor stage (P<0.05). Restoration of DACH1 expression inhibited cell growth and activated TGF-β signaling in KYSE150 and KYSE510 cells. DACH1 suppressed human esophageal cancer cell tumor growth in xenograft mice. In conclusion, DACH1 is frequently methylated in human esophageal cancer and methylation of DACH1 is involved in the early stage of esophageal carcinogenesis. DACH1 expression is regulated by promoter region hypermethylation. DACH1 suppresses esophageal cancer growth by activating TGF-β signaling.  相似文献   

8.
9.

Background

Identification of tumor suppressor genes (TSGs) silenced by CpG methylation uncovers the molecular mechanism of tumorigenesis and potential tumor biomarkers. Loss of heterozygosity at 11q25 is common in multiple tumors including nasopharyngeal carcinoma (NPC). OPCML, located at 11q25, is one of the downregulated genes we identified through digital expression subtraction.

Methodology/Principal Findings

Semi-quantitative RT-PCR showed frequent OPCML silencing in NPC and other common tumors, with no homozygous deletion detected by multiplex differential DNA-PCR. Instead, promoter methylation of OPCML was frequently detected in multiple carcinoma cell lines (nasopharyngeal, esophageal, lung, gastric, colon, liver, breast, cervix, prostate), lymphoma cell lines (non-Hodgkin and Hodgkin lymphoma, nasal NK/T-cell lymphoma) and primary tumors, but not in any non-tumor cell line and seldom weakly methylated in normal epithelial tissues. Pharmacological and genetic demethylation restored OPCML expression, indicating a direct epigenetic silencing. We further found that OPCML is stress-responsive, but this response is epigenetically impaired when its promoter becomes methylated. Ecotopic expression of OPCML led to significant inhibition of both anchorage-dependent and -independent growth of carcinoma cells with endogenous silencing.

Conclusions/Significance

Thus, through functional epigenetics, we identified OPCML as a broad tumor suppressor, which is frequently inactivated by methylation in multiple malignancies.  相似文献   

10.
Hypermethylation is an important mechanism for the dynamic regulation of gene expression, necessary for metastasizing tumour cells. Our aim is to identify methylation tumour markers that have a predictive value for the presence of regional lymph node metastases in patients with oral and oropharyngeal squamous cell carcinoma (OOSCC). Significantly differentially expressed genes were retrieved from four reported microarray expression profiles comparing pN0 and pN+ head-neck tumours, and one expression array identifying functionally hypermethylated genes. Additional metastasis-associated genes were included from the literature. Thus genes were selected that influence the development of nodal metastases and might be regulated by methylation. Methylation-specific PCR (MSP) primers were designed and tested on 8 head-neck squamous cell carcinoma cell lines and technically validated on 10 formalin-fixed paraffin-embedded (FFPE) OOSCC cases. Predictive value was assessed in a clinical series of 70 FFPE OOSCC with pathologically determined nodal status. Five out of 28 methylation markers (OCLN, CDKN2A, MGMT, MLH1 and DAPK1) were frequently differentially methylated in OOSCC. Of these, MGMT methylation was associated with pN0 status (P = 0.02) and with lower immunoexpression (P = 0.02). DAPK1 methylation was associated with pN+ status (P = 0.008) but did not associate with protein expression. In conclusion, out of 28 candidate genes, two (7%) showed a predictive value for the pN status. Both genes, DAPK1 and MGMT, have predictive value for nodal metastasis in a clinical group of OOSCC. Therefore DNA methylation markers are capable of contributing to diagnosis and treatment selection in OOSCC. To efficiently identify additional new methylation markers, genome-wide methods are needed.  相似文献   

11.
12.
《Epigenetics》2013,8(8):1138-1148
Lung cancer is a worldwide health problem and a leading cause of cancer-related deaths. Silencing of potential tumor suppressor genes (TSGs) by aberrant promoter methylation is an early event in the initiation and development of cancer. Thus, methylated cancer type-specific TSGs in DNA can serve as useful biomarkers for early cancer detection. We have now developed a “Multiplex Methylation Specific PCR” (MMSP) assay for analysis of the methylation status of multiple potential TSGs by a single PCR reaction. This method will be useful for early diagnosis and treatment outcome studies of non-small cell lung cancer (NSCLC). Genome-wide CpG methylation and expression microarrays were performed on lung cancer tissues and matched distant non-cancerous tissues from three NSCLC patients from China. Thirty-eight potential TSGs were selected and analyzed by methylation PCR on bisulfite treated DNA. On the basis of sensitivity and specificity, six marker genes, HOXA9, TBX5, PITX2, CALCA, RASSF1A, and DLEC1, were selected to establish the MMSP assay. This assay was then used to analyze lung cancer tissues and matched distant non-cancerous tissues from 70 patients with NSCLC, as well as 24 patients with benign pulmonary lesion as controls. The sensitivity of the assay was 99% (69/70). HOXA9 and TBX5 were the 2 most sensitive marker genes: 87% (61/70) and 84% (59/70), respectively. RASSF1A and DLEC1 showed the highest specificity at 99% (69/70). Using the criterion of identifying at least any two methylated marker genes, 61/70 cancer samples were positive, corresponding to a sensitivity of 87% and a specificity of 94%. Early stage I or II NSCLC could even be detected with a 100% specificity and 86% sensitivity. In conclusion, MMSP has the potential to be developed into a population-based screening tool and can be useful for early diagnosis of NSCLC. It might also be suitable for monitoring treatment outcome and recurrence.  相似文献   

13.
MicroRNAs play an important role in the regulation of expression of many genes and are involved in carcinogenesis. The regulation of miRNA gene expression can involve the methylation of promoter CpG islands. In this work, the methylation of six miRNA genes (mir-107, mir-125b-1, mir-130b, mir-137, mir-375, and mir-1258) in non-small-cell lung cancer (NSCLC) was studied for the first time by methylation-specific PCR using a representative set of specimens (39 cases). Four new genes (mir-125b-1, mir-137, mir-375, and mir-1258) methylated in primary NSCLC tumors were identified with frequencies of 56, 31, 56, and 36%, respectively. The frequencies of miRNA promoter methylation in DNA of tumors and histologically normal tissues differed significantly (P ≤ 0.05 by Fisher’s test). In lung tissues of 20 donors without a history of cancer, these genes were only methylated in a few cases. It was also shown that the previously unstudied promoter CpG islands of mir-107 and mir-130b were not methylated in NSCLC. The frequencies of mir-125b-1 and mir-137 methylation were shown for the first time to correlate with NSCLC progression (clinical stage and metastasis).  相似文献   

14.
Hedgehog (Hh) signaling is frequently activated in human cancer, including esophageal cancer. Most esophageal cancers are diagnosed in the advanced stages, therefore, identifying the very alterations that drive esophageal carcinogenesis may help designing novel strategies to diagnose and treat the disease. Analysis of Hh signaling in precancerous lesions is a critical first step in determining the significance of this pathway for carcinogenesis. Here we report our data on Hh target gene expression in 174 human esophageal specimens [28 esophageal adenocarcinomas (EAC), 19 Barrett’s esophagus, 103 cases of esophageal squamous cell carcinoma (ESCC), and 24 of squamous dysplastic lesions], and in two rat models of esophageal cancer. We found that 96% of human EAC express Hh target genes. We showed that PTCH1 expression is the most reliable biomarker. In contrast to EAC, only 38% of ESCC express Hh target genes. We found activation of Hh signaling in precancerous lesions of ESCCs and EACs in different degrees (21% and 58% respectively). Expression of Hh target genes is frequently detected in severe squamous dysplasia/ carcinoma in situ (p=0.04) and Barrett’s esophagus (p=0.01). Unlike EAC, sonic hedgehog (Shh) expression was rare in ESCCs. Consistent with the human specimen data, we found a high percentage of Hh signaling activation in precancerous lesions in rat models. These data indicate that Hh signaling activation is an early molecular event in the development of esophageal cancer, particularly EAC.  相似文献   

15.
《Epigenetics》2013,8(9):1220-1227
Silencing of tumor suppressor genes (TSGs) by DNA promoter hypermethylation is an early event in carcinogenesis and a potential target for personalized cancer treatment. In head and neck cancer, little is known about the role of promoter hypermethylation in survival. Using methylation specific multiplex ligation-dependent probe amplification (MS-MLPA) we investigated the role of promoter hypermethylation of 24 well-described genes (some of which are classic TSGs), which are frequently methylated in different cancer types, in 166 HPV-negative early oral squamous cell carcinomas (OSCC), and 51 HPV-negative early oropharyngeal squamous cell carcinomas (OPSCC) in relation to clinicopathological features and survival. Early OSCC showed frequent promoter hypermethylation in RARB (31% of cases), CHFR (20%), CDH13 (13%), DAPK1 (12%), and APC (10%). More hypermethylation (≥ 2 genes) independently correlated with improved disease specific survival (hazard ratio 0.17, P = 0.014) in early OSCC and could therefore be used as prognostic biomarker. Early OPSCCs showed more hypermethylation of CDH13 (58%), TP73 (14%), and total hypermethylated genes. Hypermethylation of two or more genes has a significantly different effect on survival in OPSCC compared with OSCC, with a trend toward worse instead of better survival. This could have a biological explanation, which deserves further investigation and could possibly lead to more stratified treatment in the future.  相似文献   

16.
为分析支气管上皮癌变进程中的差异表达蛋白质,筛选肺鳞癌早期诊断标志物,以人支气管上皮癌变各阶段组织为研究对象,先采用激光捕获显微切割技术(LCM) 纯化人正常支气管上皮组织、鳞状化生、不典型增生、原位癌、浸润性肺鳞癌组织,再用同位素标记相对和绝对定量 (iTRAQ) 技术结合二维液相色谱串联质谱(2D LC-MS/MS)鉴定支气管上皮癌变进程中各阶段的差异表达蛋白质。结果共鉴定了1036个蛋白质,筛选出102个与人支气管上皮癌变相关的差异蛋白质,在这些差异蛋白质中,有的在支气管上皮癌变过程中进行性上调,有的在支气管上皮癌变过程中进行性下调,有的呈阶段特异性改变;功能分析表明,这些差异蛋白质涉及代谢、细胞凋亡、增殖、分化、信号传导、转录、翻译、细胞粘附、免疫反应与发育等。Western blotting 及免疫组织化学技术验证了其中 2个差异蛋白(S100A9和 CKB) 的表达,证实了定量蛋白质组学结果的可靠性。研究结果提示:这些差异表达蛋白质与支气管上皮癌变相关,并可成为肺鳞癌的早期诊断标志物,进一步研究差异蛋白的生物学功能,将有助于阐明支气管上皮的癌变机制,从而为肺鳞癌的早期诊断与发病机制研究提供新思路。  相似文献   

17.
18.
19.
Abstract. Apoptosis (programmed cell death) may play a part in carcinogenesis. The mucosa of the oral cavity, a common site for the development of dysplasia and squamous cell carcinoma, is ideal for the study of carcinogenesis in vivo. Earlier work suggested that apoptosis falls with the development of carcinoma, and that carcinogenesis is preceded by topographical changes in apoptosis. To explore these hypotheses, 72 paraffin sections were obtained: 15 normal (N), nine mild dysplasia (D), 15 severe dysplasia/carcinoma in situ (CIS), 30 squamous cell carcinoma (SCC: power analysis suggested 15 per group). Apoptotic (AI) and mitotic (MI) indices and AI/MI ratio were calculated (1000 cells/slide). These, with age, sex, alcohol and smoking habits, and anatomical subsite, were entered into a regression model with histological group as dependent. Vertical cell position (cp) was plotted, and resultant frequency curves were compared. MI significantly increased (mean N 0.39, 95% confidence interval 0–0.35; D 0.63, 0.23–0.98; SCC 0.86, 0.51–1.21, P <0.0001) and AI/MI significantly decreased (D 0.54, 0.20–0.86; SCC 0.28, 0.05–0.61, P <0.05) progressing from D, through CIS, to SCC. However, after inclusion of all variables, only MI remained significant ( P <0.0001). Peak incidence of mitosis shifted downwards in CIS relative to N and D, whilst peak apoptosis shifted upwards. Thus, programmed cell death remains static as mitosis increases in carcinogenesis of the oral cavity. However, there is an alteration in the topographical relationship of these events in CIS which may make homeostatic mechanisms involving apoptosis less efficient.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号