首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cellular signalling》2014,26(5):933-941
The omega-3 polyunsaturated fatty acids (ω  3 fatty acids) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been reported to inhibit or delay the progression of cardiovascular diseases, including myocardial fibrosis. Recently we reported that angiotensin II (Ang II) promotes cardiac fibroblast (CF) migration by suppressing the MMP regulator reversion-inducing-cysteine-rich protein with Kazal motifs (RECK), through a mechanism dependent on AT1, ERK, and Sp1. Here we investigated the role of miR-21 in Ang II-mediated RECK suppression, and determined whether the ω  3 fatty acids reverse these effects. Ang II induced miR-21 expression in primary mouse cardiac fibroblasts (CFs) via ERK-dependent AP-1 and STAT3 activation, and while a miR-21 inhibitor reversed Ang II-induced RECK suppression, a miR-21 mimic inhibited both RECK expression and Ang II-induced CF migration. Moreover, Ang II suppressed the pro-apoptotic PTEN, and the ERK negative regulator Sprouty homologue 1 (SPRY1), but induced the metalloendopeptidase MMP2, all in a manner that was miR-21-dependent. Further, forced expression of PTEN inhibited Akt phosphorylation, Sp1 activation, and MMP2 induction. Notably, while both EPA and DHA reversed Ang II-mediated RECK suppression, DHA appeared to be more effective, and reversed Ang II-induced miR-21 expression, RECK suppression, MMP2 induction, and CF migration. These results indicate that Ang II-induced CF migration is differentially regulated by miR-21-mediated MMP induction and RECK suppression, and that DHA has the potential to upregulate RECK, and therefore may exert potential beneficial effects in cardiac fibrosis.  相似文献   

2.
Background and aimsAngiotensin II (Ang II) is commonly used to induce aortic aneurysm and atherosclerosis in animal models. Ang II upregulates NADPH oxidase isoform Nox4 in aortic smooth muscle cells (SMCs) in mice. However, whether smooth muscle Nox4 is directly involved in Ang II-induced aortic aneurysm and atherosclerosis is unclear.Methods & resultsTo address this, we used smooth muscle-specific Nox4 dominant-negative (SDN) transgenic mice, in which Nox4 activity is constitutively inhibited. In non-transgenic (NTg) mice, Ang II increased the expression of proteins known to contribute to both aortic aneurysm and atherosclerosis, namely osteopontin (OPN), collagen type I&III (Col I&III), matrix metalloproteinase 2 (MMP2), and vascular cell adhesion molecule 1 (VCAM1), which were all significantly downregulated in SDN mice. The number and size of Ang II-induced aorta collateral aneurysms and atherosclerotic lesions in the renal artery and aortic root of SDN mice were significantly decreased compared to NTg mice, and directly correlated with a decrease in OPN expression. Replenishing OPN in SDN SMCs, increased the expression of Col I&III, MMP2, and VCAM1, and promoted SMC proliferation, migration, and inflammation.ConclusionsOur data demonstrate that smooth muscle Nox4 directly promotes the development of Ang II-induced aortic aneurysm and atherosclerosis, at least in part, through regulating OPN expression.  相似文献   

3.
4.
In hypertension studies, anti-inflammatory cytokine interleukin-10 (IL-10) has been shown to prevent angiotensin II (Ang II)-induced vasoconstriction and regulate vascular function by down-regulating pro-inflammatory cytokine and superoxide production in vascular cells. However, little is known about the mechanism behind the down-regulatory effect of IL-10 on Ang II-induced hypertensive mediators. In this study, we demonstrated the effects of IL-10 on expression of dimethylarginine dimethylaminohydrolase (DDAH)-1, a regulator of NO bioavailability, as well as the down-regulatory mechanism of action of IL-10 in relation to Ang II-induced hypertensive mediator expression and cell proliferation in vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHR). IL-10 increased DDAH-1 but not DDAH-2 expression and increased DDAH activity. Additionally, IL-10 attenuated Ang II-induced DDAH-1 inhibition in SHR VSMCs. Increased DDAH activity due to IL-10 was mediated mainly through Ang II subtype II receptor (AT2 R) and AMP-activated protein kinase (AMPK) activation. DDAH-1 induced by IL-10 partially mediated the inhibitory action of IL-10 on Ang II-induced 12-lipoxygenase (LO) and endothelin (ET)-1 expression in SHR VSMCs. In addition, the inhibitory effect of IL-10 on proliferation of Ang II-induced VSMCs was mediated partially via DDAH-1 activity. These results suggest that DDAH-1 plays a potentially important role in the anti-hypertensive activity of IL-10 during Ang II-induced hypertension.  相似文献   

5.
6.
Li AY  Han M  Zheng B  Wen JK 《FEBS letters》2008,582(2):243-248
Roscovitine is a potent CDK inhibitor often used as a biological tool in cell-cycle studies, but its working mechanism and real targets in vascular smooth muscle cells (VSMCs) remain unclear. In this study, we observed that ERK1/2 phosphorylation induced by Ang II was abrogated by pretreating VSMCs with roscovitine for 15h. Pretreating VSMCs with roscovitine also inhibited Ang II-induced c-Jun expression and phosphorylation. We further demonstrated that roscovitine could suppress the DNA binding activity of c-Jun and activation of angiotensinogen promoter by Ang II. These results suggest that roscovitine represses Ang II-induced angiotensinogen expression by inhibiting activation of ERK1/2 and c-Jun.  相似文献   

7.
8.
9.
Akt/protein kinase B (PKB) activation/phosphorylation by angiotensin II (Ang II) is a critical signaling event in hypertrophy of vascular smooth muscle cells (VSMCs). Conventional wisdom asserts that Akt activation occurs mainly in plasma membrane domains. Recent evidence that Akt activation may take place within intracellular compartments challenges this dogma. The spatial identity and mechanistic features of these putative signaling domains have not been defined. Using cell fractionation and fluorescence methods, we demonstrate that the early endosomal antigen-1 (EEA1)-positive endosomes are a major site of Ang II-induced Akt activation. Akt moves to and is activated in EEA1 endosomes. The expression of EEA1 is required for phosphorylation of Akt at both Thr-308 and Ser-473 as well as for phosphorylation of its downstream targets mTOR and S6 kinase, but not for Erk1/2 activation. Both Akt and phosphorylated Akt (p-Akt) interact with EEA1. We also found that PKC-α is required for organizing Ang II-induced, EEA1-dependent Akt phosphorylation in VSMC early endosomes. EEA1 expression enables PKC-α phosphorylation, which in turn regulates Akt upstream signaling kinases, PDK1 and p38 MAPK. Our results indicate that PKC-α is a necessary regulator of EEA1-dependent Akt signaling in early endosomes. Finally, EEA1 down-regulation or expression of a dominant negative mutant of PKC-α blunts Ang II-induced leucine incorporation in VSMCs. Thus, EEA1 serves a novel function as an obligate scaffold for Ang II-induced Akt activation in early endosomes.  相似文献   

10.
Angiotensin II (Ang II)-mediated modification of the redox milieu of vascular smooth muscle cells (VSMCs) has been implicated in several pathophysiological processes, including cell proliferation, migration and differentiation. In this study, we demonstrate that the peroxisome proliferator-activated receptor (PPAR) δ counteracts Ang II-induced production of reactive oxygen species (ROS) in VSMCs. Activation of PPARδ by GW501516, a specific ligand for PPARδ, significantly reduced Ang II-induced ROS generation in VSMCs. This effect was, however, reversed in the presence of small interfering (si)RNA against PPARδ. The marked increase in ROS levels induced by Ang II was also eliminated by the inhibition of phosphatidylinositol 3-kinase (PI3K) but not of protein kinase C, suggesting the involvement of the PI3K/Akt signalling pathway in this process. Accordingly, ablation of Akt with siRNA further enhanced the inhibitory effects of GW501516 in Ang II-induced superoxide production. Ligand-activated PPARδ also blocked Ang II-induced translocation of Rac1 to the cell membrane, inhibiting the activation of NADPH oxidases and consequently ROS generation. These results indicate that ligand-activated PPARδ plays an important role in the cellular response to oxidative stress by decreasing ROS generated by Ang II in vascular cells.  相似文献   

11.
12.
《Free radical research》2013,47(7):912-919
Abstract

Angiotensin II (Ang II)-mediated modification of the redox milieu of vascular smooth muscle cells (VSMCs) has been implicated in several pathophysiological processes, including cell proliferation, migration and differentiation. In this study, we demonstrate that the peroxisome proliferator-activated receptor (PPAR) δ counteracts Ang II-induced production of reactive oxygen species (ROS) in VSMCs. Activation of PPARδ by GW501516, a specific ligand for PPARδ, significantly reduced Ang II-induced ROS generation in VSMCs. This effect was, however, reversed in the presence of small interfering (si)RNA against PPARδ. The marked increase in ROS levels induced by Ang II was also eliminated by the inhibition of phosphatidylinositol 3-kinase (PI3K) but not of protein kinase C, suggesting the involvement of the PI3K/Akt signalling pathway in this process. Accordingly, ablation of Akt with siRNA further enhanced the inhibitory effects of GW501516 in Ang II-induced superoxide production. Ligand-activated PPARδ also blocked Ang II-induced translocation of Rac1 to the cell membrane, inhibiting the activation of NADPH oxidases and consequently ROS generation. These results indicate that ligand-activated PPARδ plays an important role in the cellular response to oxidative stress by decreasing ROS generated by Ang II in vascular cells.  相似文献   

13.
14.
15.
Endochondral ossification is an essential step for skeletal development, which requires chondrocyte differentiation in growth cartilage. The low-density lipoprotein receptor-related protein 4 (LRP4), a member of LDLR family, is an inhibitor for Wnt signaling, but its roles in chondrocyte differentiation remain to be investigated. Here we found by laser capture microdissection that LRP4 expression was induced during chondrocyte differentiation in growth plate. In order to address the roles, we overexpressed recombinant human LRP4 or knocked down endogenous LRP4 by lentivirus in mouse ATDC5 chondrocyte cells. We found that LRP4 induced gene expressions of extracellular matrix proteins of type II collagen (Col2a1), aggrecan (Acan), and type X collagen (Col10a1), as well as production of total proteoglycans in ATDC5 cells, whereas LRP4 knockdown had opposite effects. Interestingly, LRP4-knockdown reduced mRNA expression of Sox9, a master regulator for chondrogenesis, as well as Dkk1, an extracellular Wnt inhibitor. Analysis of Wnt signaling revealed that LRP4 blocked the Wnt/β-catenin signaling activity in ATDC5 cells. Finally, the reduction of these extracellular matrix productions by LRP4-knockdown was rescued by a β-catenin/TCF inhibitor, suggesting that LRP4 is an important regulator for extracellular matrix productions and chondrocyte differentiation by suppressing Wnt/β-catenin signaling.  相似文献   

16.

Background

Angiotensin (Ang) II and Ang-(1-7) are two of the bioactive peptides of the rennin-angiotensin system. Ang II is involved in the development of cardiovascular disease, such as hypertension and atherosclerosis, while Ang-(1-7) shows cardiovascular protection in contrast to Ang II.

Methodology/Principal Findings

In this study, we investigated effects of Ang II and Ang-(1-7) on vascular smooth muscle cell (SMC) proliferation and migration, which are critical in the formation of atherosclerotic lesions. Treatment with Ang II resulted in an increase of SMC proliferation, whereas Ang-(1-7) alone had no effects. However, preincubation with Ang-(1-7) inhibited Ang II-induced SMC proliferation. Ang II promoted SMC migration, and this effect was abolished by pretreatment with Ang-(1-7). The stimulatory effects of Ang II on SMC proliferation and migration were blocked by the Ang II receptor antagonist lorsartan, while the inhibitory effects of Ang-(1-7) were abolished by the Ang-(1-7) receptor antagonist A-799. Ang II treatment caused activation of ERK1/2 mediated signaling, and this was inhibited by preincubation of SMCs with Ang-(1-7).

Conclusion

These results suggest that Ang-(1-7) inhibits Ang II-induced SMC proliferation and migration, at least in part, through negative modulation of Ang II induced ERK1/2 activity.  相似文献   

17.
18.
The role of angiotensin II (Ang II) in skeletal muscle is poorly understood. We report that pharmacological inhibition of Ang II signaling or ablation of the AT1a receptor significantly impaired skeletal muscle growth following myotrauma, in vivo, likely due to impaired satellite cell activation and chemotaxis. In vitro experiments demonstrated that Ang II treatment activated quiescent myoblasts as evidenced by the upregulation of myogenic regulatory factors, increased number of β-gal+, Myf5-LacZ myoblasts and the acquisition of cellular motility. Furthermore, exogenous treatment with Ang II significantly increased the chemotactic capacity of C2C12 and primary cells while AT1a(-/-) myoblasts demonstrated a severe impairment in basal migration and were not responsive to Ang II treatment. Additionally, Ang II interacted with myoblasts in a paracrine-mediated fashion as 4 h of cyclic mechanical stimulation resulted in Ang II-induced migration of cocultured myoblasts. Ang II-induced chemotaxis appeared to be regulated by multiple mechanisms including reorganization of the actin cytoskeleton and augmentation of MMP2 activity. Collectively, these results highlight a novel role for Ang II and ACE inhibitors in the regulation of skeletal muscle growth and satellite cell function.  相似文献   

19.
Ren XY  Ruan QR  Zhu DH  Zhu M  Qu ZL  Lu J 《生理学报》2007,59(3):339-344
本文旨在观察血管紧张素Ⅱ(angiotensinⅡ,AngⅡ)对血管平滑肌细胞核转录因子-κB(nuclear factor-κB,NF-κB)的活性及骨形成蛋白-2(bone morphogenetic protein-2,BMP-2)表达的影响,以探讨AngⅡ参与动脉粥样硬化的机制,并探讨川芎嗪是否能抑制AngⅡ的促动脉粥样硬化作用。采用Western blot、免疫组化和原位杂交等方法分别检测AngⅡ刺激和川芎嗪干预后NF-κB活性、BMP-2蛋白和mRNA表达的变化。结果显示:(1)AngⅡ刺激激活NF-κB。AngⅡ刺激15min即有NF-κB p65核转移,30min达高峰(P〈0.01),1h后减退。川芎嗪抑制AngⅡ诱导的NF-κB激活,与AngⅡ组比较,川芎嗪+AngⅡ组NF-κB活性显著降低(P〈0.01)。(2)AngⅡ刺激6h时BMP-2表达增强(P〈0.05),12h时减弱(P〈0.01),24h时更弱(P〈0.01)。川芎嗪+AngⅡ组中,川芎嗪干预6h时BMP-2表达亦增强,12与24h时保持正常水平。(3)川芎嗪对正常细胞的NF-κB活性和BMP-2表达无影响。以上结果表明,AngⅡ刺激后激活NF-κB并最终使生长抑制因子BMP-2表达下降,这可能是其参与动脉粥样硬化发生的机制之一。BMP-2一过性增高可能不依赖NF-κB通路的激活。川芎嗪可抑制AngⅡ诱导的NF-κB激活与BMP-2表达降低,提示它在抗动脉粥样硬化形成中起重要作用。  相似文献   

20.
Stimulation of the angiotensin II (Ang II) type 1 receptor (AT1-R) causes phosphorylation of extracellularly regulated kinases 1 and 2 (ERK1/2) via epidermal growth factor receptor (EGF-R) transactivation-dependent or -independent pathways in Ang II target cells. Here we examined the mechanisms involved in agonist-induced EGF-R transactivation and subsequent ERK1/2 phosphorylation in clone 9 (C9) hepatocytes, which express endogenous AT1-R, and COS-7 and human embryonic kidney (HEK) 293 cells transfected with the AT1-R. Ang II-induced ERK1/2 activation was attenuated by inhibition of Src kinase and of matrix metalloproteinases (MMPs) in C9 and COS-7 cells, but not in HEK 293 cells. Agonist-mediated MMP activation in C9 cells led to shedding of heparin-binding EGF (HB-EGF) and stimulation of ERK1/2 phosphorylation. Blockade of HB-EGF action by neutralizing antibody or its selective inhibitor, CRM197, attenuated ERK1/2 activation by Ang II. Consistent with its agonist action, HB-EGF stimulation of these cells caused marked phosphorylation of the EGF-R and its adapter molecule, Shc, as well as ERK1/2 and its dependent protein, p90 ribosomal S6 kinase, in a manner similar to that elicited by Ang II or EGF. Although the Tyr319 residue of the AT1-R has been proposed to be an essential regulator of EGF-R transactivation, stimulation of wild-type and mutant (Y319F) AT1-R expressed in COS-7 cells caused EGF-R transactivation and subsequent ERK1/2 phosphorylation through release of HB-EGF in a Src-dependent manner. In contrast, the noninvolvement of MMPs in HEK 293 cells, which may reflect the absence of Src activation by Ang II, was associated with lack of transactivation of the EGF-R. These data demonstrate that the individual actions of Ang II on EGF-R transactivation in specific cell types are related to differential involvement of MMP-dependent HB-EGF release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号