首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
生物素化ATP硫酸化酶的表达、固定化与应用   总被引:1,自引:0,他引:1  
现代大规模焦测序技术的产生是DNA测序技术的一次革命,其关键技术之一是得到高活性的、固定于磁性微球表面的ATP硫酸化酶.生物素化的ATP硫酸化酶可以通过生物素与亲和素之间的特异结合特性固定在包被亲和素的磁性微球表面,但是利用化学修饰法将ATP硫酸化酶进行生物素化修饰很可能会影响酶的活性.利用融合表达策略,将大肠杆菌生物素酰基载体蛋白C端87个氨基酸肽段(BCCP87)与ATP硫酸化酶在大肠杆菌内融合表达,经SDS-PAGE和Western blot分析,表达的融合蛋白分子质量约为64 ku,并且能够在大肠杆菌内被生物素化.生物素化的ATP硫酸化酶能够与亲和素包被的磁珠结合,固定后的ATP硫酸化酶具有活性,并且能够用于定量检测焦磷酸盐(PPi)和焦测序,为今后建立高通量大规模焦测序系统提供了一个有效的工具酶.  相似文献   

2.
3.
T Hultman  S Sthl  E Hornes    M Uhln 《Nucleic acids research》1989,17(13):4937-4946
Approaches to direct solid phase sequencing of genomic and plasmid DNA have been developed using magnetic beads, coated with streptavidin, as solid support. The DNA is immobilized through selective incorporation of biotin into one of the strands. A single stranded template, suitable for sequencing, is obtained through strand-specific elution. Using this concept, in vitro amplified plasmid DNA and chromosomal DNA were sequenced directly from single colonies. The solid phase approach ensures that the amplification and the sequencing reactions can be performed under optimal conditions. The system was found to be suitable for sequencing using both isotope- and fluorescent-labelled primers.  相似文献   

4.
Application of bacterial cellulose pellets in enzyme immobilization   总被引:1,自引:0,他引:1  
Over recent years, there has been a growing interest in the use of cellulose materials in bioprocessing technologies. Bacterial cellulose which is the pure cellulose has unique physical properties which differ from those of plant cellulose and has therefore attracted attention as a new functional material. The applications of bacterial cellulose rarely use the pellet type but it has potential in enzyme immobilization since pellet form is usually used in this field. In this research, Glucoamylase which is widely used in the food industry was immobilized on bacterial cellulose beads after testing using various activation procedures. The results showed that the epoxy method with glutaraldehyde coupling was the best method. After comparison of the different types of bacterial cellulose beads for glucoamylase immobilization, the wet bacterial cellulose beads of the smallest size (0.5–1.5 mm) were the best support. The immobilization of enzyme enhances its stability against changes in the pH value and temperature especially in the lower temperature region. The relative activity of the immobilized glucoamylase was still above 77% at pH 2.0 and it was the highest value in the literature. The relative activities were more than 68% in the lower temperature region even at 20 °C. Thus, bacterial cellulose beads are a practical potential support for the preparation of immobilized enzymes in industrial applications.  相似文献   

5.
Mutation detection and single-nucleotide polymorphism genotyping require screening of large samples of materials and therefore the importance of high-throughput DNA analysis techniques is significant. Pyrosequencing is a four-enzyme bioluminometric DNA sequencing technology based on the sequencing-by-synthesis principle. Currently, the technique is limited to simultaneous analysis of 96 or 384 samples. Earlier, attempts to increase the sample capacity were made using micromachined filter chamber arrays where parallel analyses of nanoliter samples could be monitored in real time. We have developed a strategy for specific immobilization of the light-producing enzyme luciferase to the DNA template within a reaction chamber. By this approach, luciferase is genetically fused to a DNA-binding protein (Klenow polymerase or Escherichia coli single-stranded DNA-binding (SSB) protein) and to a purification handle (Z(basic)). The proteins are produced in E. coli and purified using cation and anion exchange chromatography with removal of Z(basic). The produced proteins have been analyzed using an assay for complete primer extension of DNA templates immobilized on magnetic beads detected by pyrosequencing chemistry. Results from these experiments show that the proteins bind selectively to the immobilized DNA and that their enzymatic domains were active. Z(basic)-SSB-luciferase produced the highest signal in this assay and was further exploited as enzymatic reagent for DNA sequencing.  相似文献   

6.
A new approach for detection of point mutations has been developed. The nonradioactive test system proposed is based on enzymatic ligation of a tandem of three short oligonucleotides B∼pN8+pN4+pN′8 Bio in the presence of a complementary DNA template. The 5′-terminal octanucleotide B∼pN8 is immobilized on polymer methacrylate beads (B) and the 3′-terminal octanucleotide pN′8 Bio contains a biotin residue at the 3′-phosphate. Ligation of the tandem produces a 20-mer biotinylated oligonucleotide on a polymer bead, which is then visualized via subsequent treatments with streptavidin-alkaline phosphatase conjugate and chromogenic substrates. Intense staining of the polymer beads is observed when the amount of DNA template (20-mer oligonucleotide) is as low as ∼10−14 mol. It is shown that practically no polymer staining is observed when the complex formed by the tandem and the 20-mer DNA template contains a mismatch either in the tetranucleotide duplex or in the duplex of octanucleotide immobilized on the beads. This suggests a possibility of using the presented approach in test systems for detection of point mutations in PCR-amplified DNA fragments.  相似文献   

7.
Next‐generation sequencing (NGS) technology has extraordinarily enhanced the scope of research in the life sciences. To broaden the application of NGS to systems that were previously difficult to study, we present protocols for processing faecal and swab samples into amplicon libraries amenable to Illumina sequencing. We developed and tested a novel metagenomic DNA extraction approach using solid phase reversible immobilization (SPRI) beads on Western Bluebird (Sialia mexicana) samples stored in RNAlater. Compared with the MO BIO PowerSoil Kit, the current standard for the Human and Earth Microbiome Projects, the SPRI‐based method produced comparable 16S rRNA gene PCR amplification from faecal extractions but significantly greater DNA quality, quantity and PCR success for both cloacal and oral swab samples. We furthermore modified published protocols for preparing highly multiplexed Illumina libraries with minimal sample loss and without post‐adapter ligation amplification. Our library preparation protocol was successfully validated on three sets of heterogeneous amplicons (16S rRNA gene amplicons from SPRI and PowerSoil extractions as well as control arthropod COI gene amplicons) that were sequenced across three independent, 250‐bp, paired‐end runs on Illumina's MiSeq platform. Sequence analyses revealed largely equivalent results from the SPRI and PowerSoil extractions. Our comprehensive strategies focus on maximizing efficiency and minimizing costs. In addition to increasing the feasibility of using minimally invasive sampling and NGS capabilities in avian research, our methods are notably not avian‐specific and thus applicable to many research programmes that involve DNA extraction and amplicon sequencing.  相似文献   

8.
A label-free method for DNA sequencing based on the principle of the Millikan oil drop experiment was developed. This sequencing-by-synthesis approach sensed increases in bead charge as nucleotides were added by a polymerase to DNA templates attached to beads. The balance between an electrical force, which was dependent on the number of nucleotide charges on a bead, and opposing hydrodynamic drag and restoring tether forces resulted in a bead velocity that was a function of the number of nucleotides attached to the bead. The velocity of beads tethered via a polymer to a microfluidic channel and subjected to an oscillating electric field was measured using dark-field microscopy and used to determine how many nucleotides were incorporated during each sequencing-by-synthesis cycle. Increases in bead velocity of approximately 1% were reliably detected during DNA polymerization, allowing for sequencing of short DNA templates. The method could lead to a low-cost, high-throughput sequencing platform that could enable routine sequencing in medical applications.  相似文献   

9.
The completion of human genome sequencing has shifted the focus of research from genes to proteins. In this regard, a protein library chip has become a useful tool for cell-free protein synthesis. In this study, we attempted to make a highly-integrated protein chip from a DNA library using in vitro protein synthesis on a microchamber array fabricated by using PDMS (polydimethyl siloxane), a hydrophobic surface, and glass, a hydrophilic bottom substrate. These structural properties prevented cross-contamination among the chambers. The minimum volume capacity of the smallest chamber was about 1 pl. The total number of chambers per chip was 10,000 on one chip (capacity 150 pl) and 250,000 on two others (1 and 5 pl). Next, we attempted in vitro protein synthesis using this microchamber array. The fluorescence of Green Fluorescent Protein (GFP) expressed on the chamber was rapidly detected (within just 1 h). GFP expression was also successful using immobilized DNA molecules on polymer beads. DNA immobilized beads were added as the source to each microchamber. Protein was successfully synthesized from DNA immobilized beads, which allowed easy handling of the DNA molecules.  相似文献   

10.
Since the development of affinity chromatography, affinity purification technology has been applied to many aspects of biological research, becoming an indispensable tool. Efficient strategies for the identification of biologically active compounds based on biochemical specificity have not yet been established, despite widespread interest in identifying chemicals that directly alter biomolecular functions. Here, we report a novel method for purifying chemicals that specifically interact with a target biomolecule using reverse affinity beads, a receptor-immobilized high-performance solid-phase matrix. When FK506-binding protein 12 (FKBP12) immobilized beads were used in this process, FK506 was efficiently purified in one step either from a mixture of chemical compounds or from fermented broth extract. The reverse affinity beads facilitated identification of drug/receptor complex binding proteins by reconstitution of immobilized ligand/receptor complexes on the beads. When FKBP12/FK506 and FKBP12/rapamycin complexes were immobilized, calcineurin and FKBP/rapamycin-associated protein were purified from a crude cell extract, respectively. These data indicate that reverse affinity beads are powerful tools for identification of both specific ligands and proteins that interact with receptor/ligand complexes.  相似文献   

11.
The accessibility of immobilized DNA has been shown to depend more crucially on the method of immobilization than on the type of support used for fixation. When sonicated denatured DNA is coupled via diazotization or via cyanogen bromide reaction to solid Sephadex G-25 and Cellex 410 or to macroporous Sephacryl S-500 and Sepharose C1-6B its accessibility varies from 100 to 24 percent. Generally the loss of accessibility is linked to a depression of the melting temperature of DNA helices formed on the support. This correlation shows a characteristic course for a particular coupling method. DNA coupled under denaturing conditions may become totally inaccessible when only 3 percent of its bases are involved in the covalent linkage. Kinetic experiments with sonicated E.coli DNA have shown that the rate constants for renaturation or hybridization reactions are very similar for DNA immobilized by different methods to solid or macroporous supports. Generally the second order rate constant for a heterogeneous reaction (between mobile and immobilized DNA) is about one order of magnitude smaller than that of the analogous homogeneous reaction (in solution).  相似文献   

12.
Increasing the efficiency of DNA sequencing necessitates the development of systems which reduce the need for manual operations by integrating template preparation, sequencing reactions, product separation and detection. A semi-automated system, whereby PCR-amplified biotinylated genomic or plasmid DNA is immobilized on streptavidin-coated magnetic beads, has been developed.  相似文献   

13.
H Andréasson  A Asp  A Alderborn  U Gyllensten  M Allen 《BioTechniques》2002,32(1):124-6, 128, 130-3
Over recent years, requests for mtDNA analysis in the field of forensic medicine have notably increased, and the results of such analyses have proved to be very useful in forensic cases where nuclear DNA analysis cannot be performed. Traditionally, mtDNA has been analyzed by DNA sequencing of the two hypervariable regions, HVI and HVII, in the D-loop. DNA sequence analysis using the conventional Sanger sequencing is very robust but time consuming and labor intensive. By contrast, mtDNA analysis based on the pyrosequencing technology provides fast and accurate results from the human mtDNA present in many types of evidence materials in forensic casework. The assay has been developed to determine polymorphic sites in the mitochondrial D-loop as well as the coding region to further increase the discrimination power of mtDNA analysis. The pyrosequencing technology for analysis of mtDNA polymorphisms has been tested with regard to sensitivity, reproducibility, and success rate when applied to control samples and actual casework materials. The results show that the method is very accurate and sensitive; the results are easily interpreted and provide a high success rate on casework samples. The panel of pyrosequencing reactions for the mtDNA polymorphisms were chosen to result in an optimal discrimination power in relation to the number of bases determined.  相似文献   

14.
Koichi Orino 《Biometals》2013,26(5):789-794
Human fibrinogen is a metal ion-binding protein, but its mechanism of binding with iron and heme has not been elucidated in detail. In this study, human fibrinogen was immobilized on CNBr-activated Sepharose 4B beads. The fibrinogen beads bound hemin (iron–protoporphyrin IX: PPIX) as well as iron ion released from ferrous ammonium sulfate (FAS) more efficiently than Sepharose 4B beads alone. Hemin bound to fibrinogen still exhibited pseudo-peroxidase activity. The affinity of fibrinogen binding to hemin, Sn–PPIX, Zn–PPIX and metal-free PPIX followed the order Sn–PPIX < metal-free PPIX < hemin < Zn–PPIX; PPIX bound more non-specifically to control beads. FAS significantly enhanced the binding of hemin to fibrinogen beads. These results suggest that human fibrinogen directly recognizes iron ion, the PPIX ring and metal ions complexed with the PPIX ring, and that the binding of hemin is augmented by iron ions.  相似文献   

15.
为了避免四酶焦测序体系中由于三磷酸腺苷双磷酸酶(apyrase)造成的测序结果偏差, 文章建立了一种定量性能好的无三磷酸腺苷双磷酸酶的三酶焦测序体系。方法是将生物素修饰的DNA模板、荧光素酶和ATP硫酸化酶固定在磁性微球表面进行焦测序反应, 当加入一种dNTP进行焦测序反应完后, 采用磁性分离技术, 除去焦测序反应产生的ATP和剩余的dNTP, 然后加入另一种dNTP进行测序, 按同样的方法去除影响下一轮测序反应的成分, 实现循环测序。此体系能准确判读待测DNA的碱基序列, 且可定量测定单核苷酸序列多态性(SNP)中两种等位基因型的相对比值。文章成功检测了16例正常人和8例唐氏综合征患者样本中21号染色体上两个杂合率较高位点(rs1042917和 rs4818219)的等位基因型比值, 所得结果能够明确说明待测样本中来自于父方和母方的21号染色体数目是否相等。该法具有良好的定量性能, 适合于SNP等位基因型的定量分析, 可以用于唐氏综合征的快速检测。  相似文献   

16.
Cellulase produced by fungus Trichoderma viride was immobilized on agarose beads (Sepharose 4B) activated by cyanogen bromide and also on activated agarose beads that contained spacer arm (activated CH-Sepharose 4B and Affi-Gel 15). The CMCase activity retained by immobilized cellulase on activated Sepharose containing the spacer tended to be higher than that immobilized without spacer, although the extent of protein immobilization was lower. Also, the higher substrate specificity for cellulase immobilized on beads with spacer was obtained for cellobiose, acid-swollen cellulose, or cellulose powder. The hydrolysis product from their substrates was mainly glucose.  相似文献   

17.
A protocol for colorimetric determination of DNA amplified by the polymerase chain reaction (PCR) and subsequently immobilized to a solid support is described. The protocol consists of three steps: (i) binding of PCR amplified lac operator-containing DNA to magnetic beads; (ii) binding of a Lac repressor-beta-galactosidase fusion protein to the lac operator and (iii) colorimetric detection of the immobilized beta-galactosidase. In practice, steps (i) and (ii) are performed concurrently. The protocol is well suited both for manual and automated procedures and the immobilized template can, after melting, be used directly for solid phase sequencing. The assay is used to demonstrate that template concentration is important for the quality of sequence data obtained from an automated DNA sequencer.  相似文献   

18.
Different assay formats based on the coupling of magnetic beads with electrochemical transduction were compared here for the detection of thrombin by using a thrombin specific aptamer. By using the thrombin-binding aptamer, a direct and an indirect competitive assay for thrombin have been developed by immobilising the aptamer or the protein, respectively. Moreover, another strategy was based on the direct measurement of the enzymatic product of thrombin captured by the immobilised aptamer. All the assays were developed by coupling the electrochemical transduction with the innovative and advantageous use of magnetic beads.

The assays based on the immobilisation of the protein were not successful since no binding was recorded between thrombin and its aptamer. With the direct competitive assay, when the aptamer was immobilised onto the magnetic beads, a detection limit of 430 nM for thrombin was achieved. A lower detection limit for the protein (175 nM) was instead obtained by detecting the product of the enzymatic reaction catalysed by thrombin. All these assays were finally compared with a sandwich assay which reached a detection limit of 0.45 nM of thrombin demonstrating the best analytical performances.

With this comparison the importance of a deep study on the different analytical approaches for thrombin detection to reach the performances of the best assay configuration has been demonstrated.  相似文献   


19.
Chitosan (CS) gel beads were prepared by using phase inversion and precipitation technique. The gel beads could bind copper (II), by which Cu (II) ion-immobilized chitosan gel beads (CS-Cu2+ gel beads) were prepared, and the amount of the immobilized Cu (II) was about 35 mg/g when the CS gel beads were incubated in 150 ppm cupric sulfate solution. The CS-Cu2+ gel beads could selectively adsorb histidine (His) from the mixed solution containing His and tryptophan (Trp); and the selective coefficient which was defined as the adsorbed amount ratio of His to Trp was about 8.0 at the pH value of 7.4. The effect of the pH value on the amino acid adsorption was also studied. In order to investigate the relationship of the amino acid adsorption and protein adsorption, the adsorbed amounts for IgG and albumin were determined; and the results indicated that the CS-Cu2+ gel beads could adsorb a larger amount of IgG than albumin due to the larger amount of the exposed residual His. The study provided a sorbent and a method to selectively remove His and IgG.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号