首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A genomic library of Bifidobacterium adolescentis was constructed in Escherichia coli and a gene encoding an -galactosidase was isolated. The identified open reading frame showed high similarity and identity with bacterial -galactosidases, which belong to Family 36 of the glycosyl hydrolases. For the purification of the enzyme from the medium a single chromatography step was sufficient. The yield of the recombinant enzyme was 100 times higher than from B. adolescentis itself. In addition to hydrolytic activity the -galactosidase showed transglycosylation activity and can be used for the production of -galacto-oligosaccharides.  相似文献   

2.
1. The hydrolysis of a variety of galactosides and other glycosides by alpha-galactosidases I and II of Vicia faba was studied. 2. The effect of temperature on kinetic parameters was also examined. 3. Both enzymes are inhibited by excess of substrate (p-nitrophenyl alpha-d-galactoside); with enzyme I this is competitive and is caused by the galactosyl moiety. 4. Enzyme I is inhibited by oligosaccharides possessing terminal non-reducing galactose residues and to a smaller extent by l-arabinose and d-fucose. 5. The effect of pH on K(m) and V(max.) values suggests that carboxyl and imidazole groups are involved in the catalytic activity of enzyme I. 6. Photo-oxidation experiments with enzyme I also suggest that an imidazole group is present at the active site.  相似文献   

3.
BackgoundXylan is the second most abundant plant cell wall polysaccharide after cellulose with α-L-arabinofuranose (L-Araf) as one of the major side substituents. Capacity to degrade xylan is characteristic of many plant pathogens; and corresponding enzymes that debranch arabinoxylan provide tools to tailor xylan functionality or permit its full hydrolysis.MethodThree GH62_2 family α-arabinofuranosidases (Abfs) from plant pathogenic fungi, NhaAbf62A from Nectria haematococca, SreAbf62A from Sporisorium reilianum and GzeAbf62A from Gibberella zeae, were recombinantly produced in Escherichia coli. Their biochemical properties and substrate specificities were characterized in detail. Particularly with 1H NMR, the regioselectivity and debranching preference of the three Abfs were directly compared.ResultsThe activities of selected Abfs towards arabinoxylan were all optimal at pH 6.5. Their preferred substrates were wheat arabinoxylan, followed by soluble oat spelt xylan. The Abfs displayed selectivity towards either α-(1 → 2) or α-(1 → 3)-L- Araf mono-substituents in arabinoxylan. Specifically, SreAbf62A and GzeAbf62A removed m-α-(1 → 3)-L-Araf and m-α-(1 → 2)-L-Araf substituents with a similar rates, whereas NhaAbf62A released m-α-(1 → 3)-L-Araf 1.9 times faster than m-α-(1 → 2)-L-Araf.Major conclusionsBuilding upon the known selectivity of GH62 family α-arabinofuranosidases towards L-Araf mono-substituents in xylans, the current study uncovers enzyme-dependent preferences towards m-α-(1 → 3)-L-Araf and m-α-(1 → 2)-L-Araf substitutions. Comparative sequence-structure analyses of Abfs identified an arginine residue in the xylose binding +2R subsite that was correlated to the observed enzyme-dependent L-Araf debranching preferences.General significanceThis study expands the limited pool of characterized GH62 Abfs particularly those from plant pathogenic fungi, and provides biochemical details and methodology to evaluate regioselectivity within this glycoside hydrolase family.  相似文献   

4.
A unique β-fructofuranosidase was purified from the extract of Bifidobacterium adolescentis G1 by anion-exchange, hydrophobic, and gel filtration chromatographies, and preparative electrophoresis. The molecular mass was 74kDa by SDS–PAGE, and the isoelectric point was pH 4.5. The enzyme was a monomeric protein. The pH optimum was at 6.1. The enzyme was stable at pH from 6.5 to 10.0, and up to 45°C. The neutral sugar content was 1.2%. The enzyme hydrolyzed 1-kestose faster than sucrose or inulin. The hydrolytic activity was strongly inhibited by Cu2+, Ag+, Hg+, and ρ-chloromercuribenzoic acid. The Km (mM) and k0 (s?1) were: 1-kestose, 1.1 and 231; sucrose, 11 and 59.0; inulin, 8.0 and 149, respectively. From the kinetic results, β-fructofuranosidase from B. adolescentis G1 was concluded to have a high affinity for 1-kestose, thus differing from invertases and exo-inulinases in substrate specificity.  相似文献   

5.
Bifidobacterium adolescentis Int-57 (INT57), isolated from human feces, secretes an amylase. We have shot-gun cloned, sequence analyzed and expressed the gene encoding this amylase in B. longum. The sequenced 2477 bp fragment was homologous to other extracellular amylases. The encoded protein was predicted to be composed of 595 amino acids with a molecular weight of 64 kDa, and was designated AmyB. Highly conserved amylase domains were found in AmyB. The signal sequence and cleavage site was predicted by sequence analysis. AmyB was subcloned into pBES2, a novel E. coliBifidobacterium shuttle vector, to construct pYBamy59. Subsequently, B. longum, with no apparent amylase activity, was transformed with pYBamy59. More than 90% of the amylase activity was detected in the culture broth. This approach may open the way for the development of more efficient expression and secretion systems for Bifidobacterium. Both authors contributed equally Received 17 June 2005; Revisions requested 13 July 2005 and 26 September 2005; Revisions received 12 September 2005 and 8 November 2005; Accepted 11 November 2005  相似文献   

6.
7.
Bifidobacteria assimilated raffinose about 4-fold more effectively than other intestinal bacteria, and -galactosidase was active in all strains of Bifidobacteria tested. The enzyme activity of Bifidobacterium breve grown on raffinose was highly and specifically increased. Its activity was 30-fold higher than that of B. breve grown on glucose. Melibiose was also effective for production of the enzyme. The enzyme was purified to homogeneity from B. breve. It is a homodimer with Mr of about 160 kDa, and its optimum pH for activity of 5.5–6.5. The enzyme showed strict substrate specificity for -galactoside although it had slight activity for -glucoside. It hydrolysed stachyose, melibiose (Km = 2 mM) and raffinose (Km = 0.7 mM).  相似文献   

8.
A novel α-l-arabinofuranosidase (α-AraF) belonging to glycoside hydrolase (GH) family 43 was cloned from Humicola insolens and expressed in Aspergillus oryzae. 1H-NMR analysis revealed that the novel GH43 enzyme selectively hydrolysed (1→3)-α-l-arabinofuranosyl residues of doubly substituted xylopyranosyl residues in arabinoxylan and in arabinoxylan-derived oligosaccharides. The optimal activity of the cloned enzyme was at pH 6.7 and 53 °C. Two other novel α-l-arabinofuranosidases (α-AraFs), both belonging to GH family 51, were cloned from H. insolens and from the white-rot basidiomycete Meripilus giganteus. Both GH51 enzymes catalysed removal of (1→2) and (1→3)-α-l-arabinofuranosyl residues from singly substituted xylopyranosyls in arabinoxylan; the highest arabinose yields were obtained with the M. giganteus enzyme. Combinations (50:50) of the GH43 α-AraF from H. insolens and the GH51 α-AraFs from either M. giganteus or H. insolens resulted in a synergistic increase in arabinose release from water-soluble wheat arabinoxylan in extended reactions at pH 6 and 40 °C. This synergistic interaction between GH43 and GH51 α-AraFs was also evident when a GH43 α-AraF from a Bifidobacterium sp. was supplemented in combination with either of the GH51 enzymes. The synergistic effect is presumed to be a result of the GH51 α-AraFs being able to catalyse the removal of single-sitting (1→2)–α-l-arabinofuranosyls that resulted after the GH43 enzyme had catalysed the removal of (1→3)–α-l-arabinofuranosyl residues on doubly substituted xylopyranosyls in the wheat arabinoxylan.  相似文献   

9.
10.
An exceptionally large beta-galactosidase, BIF3, with a subunit molecular mass of 188 kDa (1,752 amino acid residues) was recently isolated from Bifidobacterium bifidum DSM20215 [M?ller et al. (2001) Appl Environ Microbiol 67:2276-2283]. The BIF3 polypeptide comprises a signal peptide followed by an N-terminal beta-galactosidase region and a C-terminal galactose-binding motif. We have investigated the functional importance of the C-terminal part of the BIF3 sequence by deletion mutagenesis and expression of truncated enzyme variants in Escherichia coli. Deletion of approximately 580 amino acid residues from the C-terminal end converted the enzyme from a normal, hydrolytic beta-galactosidase into a highly efficient, transgalactosylating enzyme. Quantitative analysis showed that the truncated beta-galactosidase utilised approximately 90% of the reacted lactose for the production of galacto-oligosaccharides, while hydrolysis constituted a 10% side reaction. This 9:1 ratio of transgalactosylation to hydrolysis was maintained at lactose concentrations ranging from 10% to 40%, implying that the truncated beta-galactosidase behaved as a "true" transgalactosylase even at low lactose concentrations.  相似文献   

11.
The pore forming toxin Hla (α-toxin) from Staphylococcus aureus is an important pathogenic factor of the bacterium S. aureus and also a model system for the process of membrane-induced protein oligomerisation and pore formation. It has been shown that binding to lipid membranes at neutral or basic pH requires the presence of a phosphocholine-headgroup. Thus, sphingomyelin and phosphatidylcholine may serve as interaction partners in cellular membranes. Based on earlier studies it has been suggested that rafts of sphingomyelin are particularly efficient in toxin binding. In this study we compared the oligomerisation of Hla on liposomes of various lipid compositions in order to identify the preferred interaction partners and conditions. Hla seems to have an intrinsic preference for sphingomyelin compared to phosphatidylcholine due to a higher probability of oligomerisation of membrane bound monomer. We also can show that increasing the surface density of Hla-binding sites enhances the oligomerisation efficiency. Thus, preferential binding to lipid rafts can be expected in the cellular context. On the other hand, sphingomyelin in the liquid disordered phase is a more favourable binding partner for Hla than sphingomyelin in the liquid ordered phase, which makes the membrane outside of lipid rafts the more preferred region of interaction. Thus, the partitioning of Hla is expected to strongly depend on the exact composition of raft and non-raft domains in the membrane.  相似文献   

12.
Bifidobacterium longum subsp. infantis ATCC 15697 utilizes several small-mass neutral human milk oligosaccharides (HMOs), several of which are fucosylated. Whereas previous studies focused on endpoint consumption, a temporal glycan consumption profile revealed a time-dependent effect. Specifically, among preferred HMOs, tetraose was favored early in fermentation, with other oligosaccharides consumed slightly later. In order to utilize fucosylated oligosaccharides, ATCC 15697 possesses several fucosidases, implicating GH29 and GH95 α-L-fucosidases in a gene cluster dedicated to HMO metabolism. Evaluation of the biochemical kinetics demonstrated that ATCC 15697 expresses three fucosidases with a high turnover rate. Moreover, several ATCC 15697 fucosidases are active on the linkages inherent to the HMO molecule. Finally, the HMO cluster GH29 α-L-fucosidase possesses a crystal structure that is similar to previously characterized fucosidases.  相似文献   

13.
Aims: This study focused on the cloning, expression and characterization of recombinant α‐l ‐arabinosidases from Bifidobacterium longum H‐1. Methods and Results: α‐l ‐Arabinofuranosidase (AfuB‐H1) and bifunctional α‐l ‐arabinopyranosidase/β‐d ‐galactosidase (Apy‐H1) from B. longum H‐1 were identified by Southern blotting, and their recombinant enzymes were overexpressed in Escherichia coli BL21 (DE3). Recombinant AfuB‐H1 (rAfuB‐H1) was purified by single‐step Ni2+‐affinity column chromatography, whereas recombinant Apy‐H1 (rApy‐H1) was purified by serial Q‐HP and Ni2+‐affinity column chromatography. Enzymatic properties and substrate specificities of the two enzymes were assessed, and their kinetic constants were calculated. According to the results, rAfuB‐H1 hydrolysed p‐nitrophenyl‐α‐l ‐arabinofuranoside (pNP‐αL‐Af) and ginsenoside Rc, but did not hydrolyse p‐nitrophenyl‐α‐l ‐arabinopyranoside (pNP‐αL‐Ap). On the other hand, rApy‐H1 hydrolysed pNP‐αL‐Ap, p‐nitrophenyl‐β‐d ‐galactopyranoside (pNP‐βD‐Ga) and ginsenoside Rb2. Conclusions: Ginsenoside‐metabolizing bifidobacterial rAfuB‐H1 and rApy‐H1 were successfully cloned, expressed, and characterized. rAfuB‐H1 specifically recognized the α‐l ‐arabinofuranoside, whereas rApy‐H1 had dual functions, that is, it could hydrolyse both β‐d ‐galactopyranoside and α‐l ‐arabinopyranoside. Significance and Impact of the Study: These findings suggest that the biochemical properties and substrate specificities of these recombinant enzymes differ from those of previously identified α‐l ‐arabinosidases from Bifidobacterium breve K‐110 and Clostridium cellulovorans.  相似文献   

14.
In this study we have investigated, at the population and the clonal levels, the immunophenotypes and the non-specific cytotoxic functions of peripheral blood lymphocytes from three stage IV neuroblastoma patients receiving treatment with recombinant interleukin-2 (IL-2) and interferon (IFN). Both IL-2 alone and the combination of IL-2 and IFN caused an in vivo expansion of CD56+, CD3 NK cells most of which expressed the p75 molecule, i.e. the chain of the IL-2 receptor. Peripheral blood mononuclear cells (PBMC), drawn after treatment, displayed an increased NK activity, but no lymphokine-activated killer (LAK) activity. However, the subsequent in vitro culture of PBMC with high-dose IL-2 induced the generation of a potent LAK activity, which was mediated by an expanded population of CD3+ CD8+ T cells. Finally lymphocytes that had been isolated after cytokine therapy were cloned, in the presence of low-dose phytohemagglutin, immediately or following culture with IL-2. Clones derived from LAK cells expanded in vitro had predominantly a CD3+, CD8+ immunophenotype, whereas those raised from freshly separated lymphocytes were either CD3+, CD4+ or CD3+, CD8+ in equal proportions. Most of the above clones were poorly or not at all cytolytic against NK-sensitive or NK-resistant targets. In contrast, the few NK clones obtained (CD3, CD56+) lysed all targets with high efficiency.This work was supported by a grant from Associazione Italiana per la Ricerca sul Cancro, Milano, Italy to V. P.  相似文献   

15.
Applied Microbiology and Biotechnology - Polyunsaturated fatty acids (PUFAs) are essential lipids for cell function, normal growth, and development, serving as key structural components of...  相似文献   

16.
A beta-galactosidase isoenzyme, beta-Gall, from Bifidobacterium infantis HL96, was expressed in Escherichia coli and purified to homogeneity. The molecular mass of the beta-Gall subunit was estimated to be 115 kDa by SDS-PAGE. The enzyme appeared to be a tetramer, with a molecular weight of about 470 kDa by native PAGE. The optimum temperature and pH for o-nitrophenyl-beta-D-galactopyranoside (ONPG) and lactose were 60 degrees C, pH 7.5, and 50 degrees C, pH 7.5, respectively. The enzyme was stable over a pH range of 5.0-8.5, and remained active for more than 80 min at pH 7.0, 50 degrees C. The enzyme activity was significantly increased by reducing agents. Maximum activity required the presence of both Na+ and K+, at a concentration of 10 mM. The enzyme was strongly inhibited by p-chloromercuribenzoic acid, divalent metal cations, and Cr3+, and to a lesser extent by EDTA and urea. The hydrolytic activity using lactose as a substrate was significantly inhibited by galactose. The Km, and Vmax values for ONPG and lactose were 2.6 mM, 262 U/mg, and 73.8 mM, 1.28 U/mg, respectively. beta-Gall possesses strong transgalactosylation activity. The production rate of galactooligosaccharides from 20% lactose at 30 and 60 degrees C was 120 mg/ml, and this rate increased to 190 mg/ml when 30% lactose was used.  相似文献   

17.
Kim M  Kwon T  Lee HJ  Kim KH  Chung DK  Ji GE  Byeon ES  Lee JH 《Biotechnology letters》2003,25(15):1211-1217
A DNA fragment, which complemented the growth of E. coli both on M9 medium containing raffinose and on LB medium containing ampicillin, IPTG and 5-bromo-4-chloro-3-indoxyl--d-galactoside, was isolated from the genomic library of Bifidobacterium longum SJ32, which had been digested with EcoRI. In the cloned DNA fragment, a gene encoding a sucrose phosphorylase (splP) and a partially cloned putative sucrose regulator gene (splR) were identified using the deletion analysis and sequence analysis. A 56 kDa protein was synthesized in E. coli and partially purified by DEAE-ion exchange chromatography. The partially purified enzyme did not react with melibiose, melezitoze and raffinose but did with sucrose. It had transglucosylation activity in addition to hydrolytic activity.  相似文献   

18.
Extremophiles - Fucosylated oligosaccharides present in human milk perform various biological functions that benefit infants’ health. These compounds can be also obtained by enzymatic...  相似文献   

19.
Two α-glucosidase-encoding genes (agl1 and agl2) from Bifidobacterium breve UCC2003 were identified and characterized. Based on their similarity to characterized carbohydrate hydrolases, the Agl1 and Agl2 enzymes are both assigned to a subgroup of the glycosyl hydrolase family 13, the α-1,6-glucosidases (EC 3.2.1.10). Recombinant Agl1 and Agl2 into which a His12 sequence was incorporated (Agl1His and Agl2His, respectively) exhibited hydrolytic activity towards panose, isomaltose, isomaltotriose, and four sucrose isomers—palatinose, trehalulose, turanose, and maltulose—while also degrading trehalose and, to a lesser extent, nigerose. The preferred substrates for both enzymes were panose, isomaltose, and trehalulose. Furthermore, the pH and temperature optima for both enzymes were determined, showing that Agl1His exhibits higher thermo and pH optima than Agl2His. The two purified α-1,6-glucosidases were also shown to have transglycosylation activity, synthesizing oligosaccharides from palatinose, trehalulose, trehalose, panose, and isomaltotriose.The gastrointestinal tract is inhabited by a complex community of microorganisms, also referred to as the microbiota, which are believed to play an important role in human health and disease (39). This concept has been driving extensive attempts to positively influence the composition and/or activity of the intestinal microbiota through the use of so-called probiotics and/or prebiotics. A probiotic has been defined as “a preparation or a product containing viable, defined microorganisms in sufficient numbers, which alter the microflora (by implantation or colonization) in a compartment of the host and by that exert beneficial health effect in this host” (48). A prebiotic has recently been (re)defined as “a selectively fermented ingredient that allows specific changes, both in the composition and/or activity in the gastrointestinal microbiota that confers benefits upon host well-being and health” (42). Finally, a synbiotic is the combination of a probiotic and a prebiotic (16).One of the dominant bacteria of the intestinal microbiota of humans and animals (51) is bifidobacteria. These are gram-positive, pleomorphic, and anaerobic bacteria that have received increasing scientific attention in recent years due to their perceived probiotic activity (15, 27). The growth of gut-derived bifidobacteria has been shown to be selectively stimulated by various dietary carbohydrates that can thus be considered as prebiotics (30). In this context, it is interesting to note that more than 8% of the identified genes on bifidobacterial genomes are predicted to be involved in sugar metabolism, thus indicative of extensive carbon source-degrading abilities (55, 56).Carbohydrate degradation has been extensively studied in a variety of different Bifidobacterium species (reviewed in reference 53). For example, various α- and β-galactosidases have been characterized in Bifidobacterium breve 203 (60), Bifidobacterium adolescentis DSM20083 (20), Bifidobacterium bifidum NCIMB41171 (18), and Bifidobacterium longum MB219 (43). A number of studies have also shown that Bifidobacterium spp. produce various α- and β-glucosidase activities (reviewed in reference 53), while Bifidobacterium infantis ATCC 15697 (58), Bifidobacterium lactis DSM10140(T) (13), and B. breve UCC2003 (45) have been reported to produce β-fructofuranosidases during growth on fructooligosaccharides. Additionally, starch-, amylopectin-, and pullulan-degrading activities in bifidobacteria have been investigated (36, 44). Several β-glucosidases have been biochemically characterized from a number of strains of bifidobacteria, e.g., B. adolescentis Int-57 (8), B. breve clb (35,) and Bifidobacterium sp. strain SEN (59). To date, only two α-glucosidases (AglA and AglB) have been described from B. adolescentis DSM20083 (54). AglA was shown to preferentially hydrolyze isomaltotriose, while AglB exhibits a high preference to maltose. Both AglA and AglB were also demonstrated to have transglycosylation activity. Aside from this report, little is known about the biochemical characteristics of α-glucosidase enzymes from bifidobacteria, although it is a common activity observed among these bacteria (41).Carbohydrates other than the commercially exploited prebiotics, e.g., fructooligosaccharides (such as inulin) and trans-galactooligosaccharides (42), have received relatively little attention with regard to their possible prebiotic properties. Such potential prebiotics are, for example, honey oligosaccharides, some of which are also interesting because of their noncariogenic properties (14). One of the predominant fractions of noncariogenic sugars in honey is isomaltulose (5, 46), also called palatinose or 6-O-α-d-glucopyranosyl-d-fructose, which is a reducing disaccharide and a functional isomer of sucrose. Palatinose possesses approximately one-third of the sweetness of sucrose and is very resistant to acid and invertase hydrolysis (29, 32). The hydrolysis and adsorption of palatinose in the small intestine thus occurs at a much slower rate than does those of sucrose (17), which results in a reduction of the postprandial plasma glucose and insulin levels (3), which means that most palatinose passes through the small intestine to present a growth substrate for elements of the colonic microbiota.In this study, we describe the identification of two genes, agl1 and agl2, present in the genome of B. breve UCC2003 and responsible for the hydrolysis of α-glycosidic linkages, such as those present in palatinose.  相似文献   

20.
《Process Biochemistry》2010,45(8):1383-1392
It is known that the sugar chain linked to steroidal frame plays an important role in physiological and pharmacological activities. In the previous research, we found and confirmed that the terminal C3-O-α-1,2-rhamnosyl moiety linked to the C-3 of steroidal saponin is the key group of platelet aggregation and cytotoxicity. In order to make a complete approach for the structure–activity relationship, we have tried to find the specific enzymes modifying the structure of C3-sugar chain. In the present paper, we describe a novel enzyme from, Klerzyme-150 (K-150), which is specifically capable of hydrolyzing the α-1,4-glycosyl residues at C-3 postion of steroidal saponins. 15 steroidal saponins with different monosaccharides at C3-sugar chains were chosen as substrates to investigate the substrate specificity of K-150. The results showed, based on TLC, HPLC and spectra data analyses, that all products were determined as secondary saponins with the α-1, 4-glycosyl residues removed, which indicated that the enzyme exhibited strict regioselectivity and stereoselectivity. The novel enzyme was purified from K-150 to apparent homogeneity and its structure was identified as rhamnogalacturonan lyase A (Rgl A). The molecular mass of the purified enzyme was 52.08 kDa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号